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In this work, we investigate the fully developed flow field of two vertically stratified

fluids (one phase flowing above the other) in a curved channel of rectangular cross

section. The domain perturbation technique is applied to obtain an analytical solution

in the asymptotic limit of low Reynolds numbers and small curvature ratios (the ratio

of the width of the channel to its radius of curvature). The accuracy of this solution

is verified by comparison with numerical simulations of the nonlinear equations. The

flow is characterized by helical vortices within each fluid, which are driven by cen-

trifugal forces. The number of vortices and their direction of circulation varies with

the parameters of the system (the volume fraction, viscosity ratio, and Reynolds num-

bers). We identify nine distinct flow patterns and organize the parameter space into

corresponding flow regimes. We show that the fully developed interface between the

fluids is not horizontal, in general, but is deformed by normal stresses associated with

the circulatory flow. The results are especially significant for flows in microchannels,

where the Reynolds numbers are small. The mathematical results in this paper include

an analytical solution to two coupled biharmonic partial differential equations; these

equations arise in two-phase, two-dimensional Stokes flows. C© 2014 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4889738]

I. INTRODUCTION

In this work, we study the fully developed flow of two vertically stratified immiscible fluids in

a curved channel. The channel has a rectangular cross section and is curved along the streamwise

direction. We focus on the regime of low Reynolds numbers (Re). However, this is not a Stokes flow

problem (i.e., Re �= 0). The centrifugal force has a significant qualitative impact on the flow field at

non-zero (though small) Reynolds numbers – it generates helical vortices. This circulatory motion,

in turn, affects the balance of normal forces at the interface. Thus, the shape of the interface cannot

be specified a priori. In this analysis, we study these features of the two-phase flow by deriving an

asymptotic solution for small Reynolds numbers and a gently curved channel. This solution is used

to gain physical insight into the hydrodynamic phenomena and to understand the effects of different

fluid properties and operating conditions on the flow field.

Fluid flowing in a curved channel experiences a centrifugal force that drives a secondary

circulatory flow. In the case of a single fluid, two counter-rotating helical vortices are formed as

reported first by Dean;1 these vortices are now called Dean vortices. While Dean studied channels

with a circular cross section, Cuming2 extended his work to channels with elliptic and rectangular

cross-sections. These early studies analyzed regular perturbation solutions for channels of small

dimension and gentle curvature, to gain insight into the key features of the flow at low Reynolds

a)Author to whom correspondence should be addressed. Electronic mail: spush@iitm.ac.in. Tel.: +91-44-2254161. Fax:
+91-44-22570509.

1070-6631/2014/26(7)/073604/36/$30.00 C©2014 AIP Publishing LLC26, 073604-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

136.167.3.36 On: Sun, 02 Nov 2014 16:44:08



073604-2 Garg, Picardo, and Pushpavanam Phys. Fluids 26, 073604 (2014)

numbers. Subsequently, several numerical studies have investigated the flow at high Reynolds

numbers, in sharply curved channels; these have been reviewed in detail by Berger et al.3 Work has

also been done on the instability and bifurcation of the primary Dean vortex flow.4, 5

In contrast, only a few theoretical studies have been carried out, thus far, on two-phase flows

in curved channels. Advances in computational power have now made it possible to study these

flows numerically. Recent computational work has been done on the core-annular flow regime6 and

the slug flow regime.7, 8 Vertically stratified flow – the problem addressed in this work – has been

studied via finite volume simulations by Gelfgat et al.9 They investigated the effect of increasing

the Reynolds numbers and the channel curvature on the cross flow. However, only a limited range

of parameter values were investigated; thus, only one flow pattern was found. A complementary

study, which analyzes the system across parameter space, is required to unveil the full range of

hydrodynamic behavior.

The qualitative nature of the axial velocity profile in two-phase flow, and the interaction between

the two fluids, is strongly dependent on the parameters. Thus, a variety of flow patterns are found

in two-phase flow when the full range of parameter values are considered. The strength of the

centrifugal force experienced by the fluids depends on the magnitude of the axial velocity. For the

single-phase case, the maximum of the axial velocity, and thus the maximum of the centrifugal force,

always lies at the center of the channel. Hence the fluid at the center is forced outwards, strongly,

in the direction of the centrifugal force; this fluid then recirculates along the top and bottom walls,

setting up two counter-rotating vortices. For vertically stratified two-phase flow, when the maxima

lies near the interface, the flow field is similar to that of single-phase flow; two vortices are formed

– one in each fluid. However, on varying the parameters, the maxima of the axial velocity can move

into the bulk of either fluid. If the maxima is present in the top fluid, then we anticipate the presence

of 2 vortices within the top fluid itself, and at least one in the bottom fluid.

Apart from the influence of the axial velocity profile, the interaction between the vortices

at the interface is expected to generate more patterns. This inter-fluid interaction is responsible

for a range of flow patterns in core-annular flow in a curved circular channel – recently studied by

Picardo and Pushpavanam,10 using an asymptotic solution at low Reynolds numbers. They identified

five different flow patterns; we expect a similar variety of circulation patterns when the fluids are

vertically stratified.

Another feature of interest is the behavior of the interface in the presence of normal stresses.

These stresses are exerted by the two fluids on either side of the interface. The magnitude of the

normal stress depends on the strength of the circulatory flow within each fluid. While these forces

tend to deform the interface, surface tension attempts to keep it flat. Thus the fully developed

configuration of the interface results from a balance between capillary forces and flow forces – both

viscous and centrifugal.

There has been a sustained interest in analyzing flow in curved channels due to their wide

applicability. The secondary flow leads to improved heat and mass transfer coefficients as well as en-

hanced mixing.3 This makes curved channels especially useful for industrial applications.11 Curved

channels are also widely prevalent in nature. For instance blood vessels in humans, especially the

aorta, are highly curved.12 Recent advances in microfluidics have brought curved microchannels

into focus because of their ability to substantially enhance mixing in the low Reynolds number

regime.13, 14 Stable vertically stratified two-phase flows have been observed recently in microchan-

nels, where Reynolds numbers are low and capillary forces dominate gravity.15, 16 Kuban et al.16

have experimentally observed stable vertically stratified flow in a straight microchannel for Reynolds

numbers ranging from 10 to 80. (Here, Re is defined on the basis of the pressure gradient, as given

in Sec. II.) These flows have applications in solvent extraction16–18 and phase transfer catalysis.19

Here, a solute is transferred across the interface from one fluid stream to the other. The additional

mixing in curved microchannels will enhance the performance of these devices.10

With the aim of elucidating the underlying physical mechanisms, we address the problem of

vertically stratified flow in the limit of a gently curved channel and low Reynolds numbers. We

apply the method of domain perturbations,20 which approximates the solution of the velocity field

and interface location as a small deviation from their straight channel counterparts. We also assume

a 90◦ contact angle between the interface and the walls; this simplifies the analysis and permits
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an analytical solution. This solution enables us to carry out detailed parametric studies, at a low

computational cost, to unravel features of the flow which would otherwise be missed. Our objective

is to identify all possible flow patterns in a systematic manner, to analyze the nature and extent

of interface deformation, and to identify general principles which will aid in the design of curved

microchannels for specific pairs of fluids. Once the flow regimes are identified, targeted numerical

simulations are performed to check the accuracy of the perturbation solution at finite Reynolds

numbers and curvature ratios.

This problem is characterized by four macroscopic quantities: the axial pressure drop, the holdup

or volume fraction (which is defined as the fraction of the total channel’s volume occupied by the

top fluid), and the flow rates of each fluid. To specify the problem completely, we must provide the

value of any two of these flow quantities as inputs. (A similar situation holds true for stratified flow

in straight channels.21) In this work, we choose to specify the holdup (which determines the interface

position) and the pressure drop. These inputs must then be satisfied by the perturbation solution at

all orders of the curvature ratio. The flow rates may then be calculated after obtaining the solution.

In case the flow rates are specified as inputs, the solution must be determined iteratively, beginning

with an initial guess for the pressure drop and holdup.

The paper is organized in the following manner. In Sec. II, the governing equations and boundary

conditions are presented. In Sec. III, we derive the asymptotic solution using the domain perturbation

method.20 This calculation involves solving two coupled biharmonic equations analytically, for which

we extend the method of superposition to two-phase problems (it has been used previously in single

phase flow22). The technique is detailed in the Appendix. We begin the analysis of the flow field

in Sec. IV; we discuss nine qualitatively different flow patterns, along with visualizations of the

flow field. In Sec. V, we analyze the effect of parameters in detail. We present a simple method to

compute flow regime maps, which are used to understand the physical mechanisms underlying the

multiplicity of flow patterns. With potential applications in mind, we briefly study the dependence of

the strength of the cross flow on the aspect ratio of the channel in Sec. VI. In Sec. VII, we describe the

effect of the cross-flow on the shape of the interface. The generic features of the deformed interface

are identified here, and their quantitative dependence on the parameters is studied. The perturbation

solution is compared with numerical simulations of the nonlinear equations in Sec. VIII. We end by

summarizing the key results and discussing their significance in Sec. IX.

II. GOVERNING EQUATIONS

The flow configuration under study consists of two, vertically stratified, immiscible fluids,

flowing through a gently curved channel. A schematic of the system, with the curvilinear coordinate

system (x, y, θ ), is depicted in Fig. 1. The origin of the x-y plane (O′) is located at the center of

a cross section of the channel. The azimuthal θ coordinate determines the axial position of this

cross section. The fluid located in the lower part of the channel is labeled as fluid 1, while the one

FIG. 1. Cross sectional view and top-view of vertically stratified flow in a curved channel. The (X, Y, Z) axes represent the

Cartesian co-ordinate system, while (x, y, θ ) axes represent the curvilinear co-ordinate system used in this paper. The dashed

line, located at K, marks the position that the interface would have if the channel were straight.
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above is called fluid 2. The width (x-direction) and height (y-direction) of the channel are 2a and

2b, respectively. The position of the interface, which is unknown a priori, is represented by a curve,

that is displaced from a horizontal dashed line. This dashed line, located at K, marks the position

that the interface would have if the channel were straight.

The flow field is assumed to be fully developed and driven by a constant pressure drop ∂ P
∂θ

in

the axial direction. The characteristic scales used to define the non-dimensional variables are

xc = a, yc = b, Vc,i =
− (�P) a2

μi

, Pc = − (�P) a

with �P = − 1
R

∂ P
∂θ

.

Here, �P is the magnitude of the azimuthal pressure gradient, along the centerline of the channel

(located at radial distance R from the point O in Fig. 1). The pressure and velocity scales are chosen

to reflect the balance between the axial pressure gradient and the viscous forces, as is characteristic

of Poiseuille flow at low Reynolds numbers.

The dimensional and non-dimensional variables (denoted by a prime) are related in the following

manner:

x = xcx ′, y = yc y′, Pi = Pc P ′
i , (ui,vi , wi ) = Vc(u′

i , v
′
i , w

′
i ),

where i ( = 1,2) is an index which denotes the fluid.

This choice of scales leads to the following non-dimensional groups:

λ =
a

b
, ε =

a

R
, k =

K

b
, μ12 =

μ1

μ2

, Rei =
ρi (�P)a3

μ2
i

, Ca =
(�P)a2

γ
.

Here λ is the aspect ratio of the channel (ratio of width to height), ε is the curvature ratio of

the channel, μ12 is the viscosity ratio of the two fluids, Rei is the Reynolds number of each fluid,

Ca is the capillary number (γ is the surface tension of the interface), and k is the non-dimensional

position that the interface would have in a straight channel. This position is directly determined by

specifying the holdup or volume fraction of fluid 2, α (the ratio of the volume of phase 2 to the

volume of the channel), i.e., α = (1 − k)/2. The pressure drop (�P) and the holdup (α) are inputs,

which are required to uniquely specify the problem.

Since the density ratio only affects the relative inertial forces in the momentum equation, we

do not define it as an independent parameter. Instead the effects of the fluid densities are captured

by Re1 and Re2. On the other hand, the viscosity ratio has an independent effect in the balance

of viscous tangential stresses at the inter-fluid interface, which is not captured by the Reynolds

numbers. Hence, the viscosity ratio appears as a separate parameter in the equations. Scaling the

equations in this manner facilitates a clear understanding of the underlying physics.

The equations governing the system are the continuity equation and the Navier-Stokes equations.

After simplifying these equations for the case of fully developed flow, and rewriting in terms of the

aforementioned dimensionless variables (the prime is dropped for convenience), we obtain

∂ui

∂x
+ λ

∂vi

∂y
+ ε

ui

(1 + xε)
= 0, (1)

Rei [ui

∂ui

∂x
+ λvi

∂ui

∂y
− ε

w2
i

(1 + xε)
] =

∂ Pi

∂x
+ λ2 ∂2ui

∂y2
− λ

∂2vi

∂x∂y
, (2)

Rei [ui

∂vi

∂x
+ λvi

∂vi

∂y
] = −λ

∂ Pi

∂y
+

∂2vi

∂x2
− λ

∂2ui

∂y∂x
+

ε

(1 + xε)
(
∂vi

∂x
− λ

∂ui

∂y
), (3)

Rei [ui

∂wi

∂x
+ λvi

∂wi

∂y
+ ε

wi ui

(1 + xε)
] =

1

(1 + xε)
+

∂2wi

∂x2
+ λ2 ∂2wi

∂y2

+
ε

(1 + xε)

∂wi

∂x
− ε2 wi

(1 + xε)2
.

(4)
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This form of the equations is obtained by substituting ∇2v̄ = −∇ × ∇ × v̄ + ∇ (∇ · v̄) and

applying the continuity equation for incompressible flow, ∇ · v̄ = 0.

Along with Eqs. (1)–(4), we require 28 boundary conditions to uniquely specify the flow field.

This includes 24 boundary conditions for the velocity field and 4 conditions for the position of the

interface.

The no-slip condition at the wall yields the following 18 boundary conditions:

{u1, v1, w1} = 0 at y = −1 for − 1 ≤ x ≤ 1, (5)

{u1, v1, w1} = 0 at x = ±1 for − 1 ≤ y ≤ F(x), (6)

{u2, v2, w2} = 0 at y = +1 for − 1 ≤ x ≤ 1, (7)

{u2, v2, w2} = 0 at x = ±1 for F(x) ≤ y ≤ 1. (8)

The location of the interface, in fully developed flow, may be represented explicitly as a function

of x as follows:

y = F(x). (9)

The unit normal vector to the interface is given by

n̂ =
(

êy −
∂ F

∂x
êx

)

(

1 +
(

∂ F

∂x

)2
)−1/2

. (10)

Requiring the velocity field to be continuous, at the interface, yields 3 boundary conditions

{u1, v1, w1} = μ12{u2, v2, w2} at y = F(x) for − 1 ≤ x ≤ 1. (11)

The kinematic condition must also be applied

v1 −
∂ F

∂x
u1 = 0 at y = F(x) for − 1 ≤ x ≤ 1. (12)

The tangential stress balance at the interface gives 2 more boundary conditions

n̂. ¯̄σ 2 − (n̂.n̂. ¯̄σ 2)n̂ = n̂. ¯̄σ 1 − (n̂.n̂. ¯̄σ 1)n̂ at y = F(x). (13)

The normal stress balance yields

P1 − P2 + (n̂.n̂. ¯̄σ 2) − (n̂.n̂. ¯̄σ 1) =
1

Ca
∇.n̂ at y = F(x), (14)

where Ca = (�P)a2

γ
is the Capillary number. It is the ratio of viscous forces to surface tension forces

acting at the interface.

Three additional boundary conditions are needed to determine the shape of the interface. These

are given by specifying the contact angle and the holdup/volume fraction of fluid 2.

Here, we assume the contact angle between the interface and the wall to be 90◦ for simplicity.

This gives two conditions for the interface

d F(x)

dx
= 0 at x = ±1. (15)
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Finally, we require the interface to satisfy the input specification on the holdup (volume fraction)

of fluid 2. This yields the last boundary condition

1
∫

−1

1
∫

F(x)

(1 + εx)dydx

1
∫

−1

1
∫

−1

(1 + εx)dydx

= α. (16)

Note that the input pressure drop has been implicitly fixed by using it to define the velocity

scale.

For a given channel geometry (i.e., fixed aspect ratio and curvature ratio), the parameters

characterizing the system are viscosity ratio μ12, holdup (α), Reynolds numbers (Re1 and Re2), and

the capillary number (Ca).

III. SOLUTION BY DOMAIN PERTURBATION

The general solution of the nonlinear, governing Eqs. (1)–(4) is dependent on the curvature

ratio ε. In the limit of a gently curved channel, i.e., a small curvature ratio (ε ≪ 1), the perturbation

approach20 can be used to obtain an asymptotic analytical solution.

In this approach, the implicit dependence of the solution on ε is represented explicitly as a

power series

ui (x, y; ε) = ui,0(x, y) + εui,1(x, y) + ε2ui,2(x, y) + O(ε3), (17)

vi (x, y; ε) = vi,0(x, y) + εvi,1(x, y) + ε2vi,2(x, y) + O(ε3), (18)

wi (x, y; ε) = wi,0(x, y) + εwi,1(x, y) + ε2wi,2(x, y) + O(ε3), (19)

Pi (x, y; ε) = Pi,0(x, y) + εPi,1(x, y) + ε2 Pi,2(x, y) + O(ε3), (20)

F(x ; ε) = k + ε f1(x) + ε2 f2(x) + O(ε3). (21)

Here the first subscript denotes the fluid and the second subscript denotes the order of the term

in the asymptotic expansion.

We substitute (17)–(21) into (1)–(16) and equate the coefficients of various powers of ε. This

yields a series of linear problems, which must be solved sequentially to determine the coefficients

in the asymptotic expansion. Applying the boundary conditions at the interface poses a problem,

since the shape of the interface is not known a priori. To overcome this, a Taylor series expansion

is used; it makes explicit, the implicit dependence of the solution on the shape of the interface. This

procedure is called the domain perturbation method.20 For instance, in the case of the continuity

boundary condition (11) for ui, we have

u1 = μ12u2 at y = F(x)

u1 + ε
∂u1

∂y

∂ F(x, ε)

∂ε

∣

∣

∣

∣

ε=0

+ O(ε2) = μ12

(

u2 + ε
∂u2

∂y

∂ F(x, ε)

∂ε

∣

∣

∣

∣

ε=0

)

+ O(ε2) at y = k
.

(22)

On substituting Eqs. (17) and (21) into (22), we obtain

u1,0 + ε

(

u1,1 +
∂u1,0

∂y
f1

)

+ O(ε2) = μ12

(

u2,0 + ε

(

u2,1 +
∂u2,0

∂y
f1

))

+ O(ε2) at y = k.

(23a)
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Equating the powers of ε yields the continuity conditions for ui, 0 and ui, 1,

u1,0 = μ12u2,0 at y = k, (23b)

(

u1,1 +
∂u1,0

∂y
f1

)

= μ12

(

u2,1 +
∂u2,0

∂y
f1

)

at y = k. (23c)

In Subsections III A and III B, we calculate the solution up to O(ε1), which provides a good

approximation for small curvature ratios and small Reynolds numbers. Moreover, it captures the key

features of the flow field, i.e., the number of vortices, their direction of rotation, and the shape of the

interface. The analytical solution is then analyzed over a wide range of parameter values to unravel

the underlying physics.

A. Zeroth order solution

When ε = 0, the channel has no curvature. Hence, the zeroth order solution (ε0) corresponds

to the case of flow through a straight rectangular channel without any effects of curvature and

centrifugal force. We refer to this as the base flow. Equating the coefficients of ε0 from (2) to (4),

we obtain the following equations:

ui,0 = 0, (24)

vi,0 = 0, (25)

∂2wi,0

∂x2
+ λ2 ∂2wi,0

∂y2
= −1. (26)

Thus, the flow is unidirectional and fully developed. The boundary conditions reduce to

w1,0 = 0 at x = ±1 for − 1 ≤ y ≤ k, (27)

w2,0 = 0 at x = ±1 for k ≤ y ≤ 1, (28)

w1,0 = 0 at y = −1 for − 1 ≤ x ≤ 1, (29)

w2,0 = 0 at y = 1 for − 1 ≤ x ≤ 1, (30)

w1,0 = μ12w2,0 at y = k for − 1 ≤ x ≤ 1, (31)

∂w1,0

∂y
=

∂w2,0

∂y
at y = k for − 1 ≤ x ≤ 1. (32)

The continuity equation (1), the normal stress boundary condition (13), and the conditions on

the contact angle (15) are trivially satisfied. From (16) we have

1 − k

2
= α, (33a)

k = 1 − 2α. (33b)

Thus, the holdup is directly related to the interface position at O(ε0). In the analysis to follow,

we study the flow field for different volume fractions (α), by varying k. This is more convenient as

the latter appears directly in the equations.
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The operator ∂2

∂x2 in (26) is self-adjoint with homogenous boundary conditions (27) and (28);

thus its eigen functions form a basis in L2[−1, 1] and can be used to represent the solution of (26).

The general solution, based on this methodology, has been derived by Cornish:23

wi,0 =
∞

∑

n=1

16(−1)n

π3(2n + 1)3

(

Ai,ncosh
(2n + 1)πy

2λ
+ Bi,nsinh

(2n + 1)πy

2λ
+ 1

)(

cos
(2n + 1)πx

2

)

.

(34)

The integration constants A1,n, A2,n, B1,n, and B2,n must be found by applying the boundary

conditions (29)–(32). The series converges rapidly, and after 5 terms the incremental change is less

than 0.1%. In fact, the first term captures all the important qualitative features of the flow, at O(ε0).

B. First order solution

The solution at O(ε1) takes into account the curvature of the channel and the effect of the

resulting centrifugal force on the flow. Equating the coefficients of ε1 from Eqs. (1) to (4), we obtain

the following set of equations:

∂ui,1

∂x
+ λ

∂vi,1

∂y
= 0, (35)

−
∂ Pi,1

∂x
+ λ2 ∂2ui,1

∂y2
− λ

∂2vi,1

∂y∂x
= −Reiw

2
i,0, (36)

−
∂ Pi,1

∂y
+

∂2vi,1

∂x2
− λ

∂2ui,1

∂y∂x
= 0, (37)

Rei

(

ui,1

∂wi,0

∂x
+ λvi,1

∂wi,0

∂y

)

−
∂wi,0

∂x
=

∂2wi,1

∂x2
+ λ2 ∂2wi,1

∂y2
. (38)

In Eq. (36), the term (−Reiw
2
i,0) accounts for the effects of the centrifugal force. Thus the impact

of the centrifugal force on a fluid at O(ε1) depends both on the base axial velocity (wi,0) and the

Reynolds number Rei. For simplicity, only the first term of the expansion for wi,0 is used in further

analysis; all the major features of the flow are captured by it.

The first order axial velocity term (wi,1) is absent from Eqs. (35) to (37). Hence, the secondary

circulatory flow at O(ε1) is independent of wi,1. The effect of wi,1 will be observed only at O(ε2).

We determine the secondary flow in Subsection III B 1. We then study the deformation of the

interface due to the secondary flow. Finally, the change in the flow rates, due to the modified axial

velocity (wi,1) and the deformation of the interface, is determined.

1. Calculation of the secondary flow field

The secondary flow field is governed by Eqs. (35)–(37), subject to the following boundary

conditions:

{u1,1, v1,1} = 0 at x = ±1 for − 1 ≤ y ≤ k, (39)

{u2,1, v2,1} = 0 at x = ±1 for k ≤ y ≤ 1, (40)

{u1,1, v1,1} = 0 at y = −1 for − 1 ≤ x ≤ 1, (41)

{u2,1, v2,1} = 0 at y = 1 for − 1 ≤ x ≤ 1, (42)

{v1,1, v2,1} = 0 at y = k for − 1 ≤ x ≤ 1, (43)
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u1,1 = μ12u2,1 at y = k for − 1 ≤ x ≤ 1, (44)

∂v1,1

∂x
+ λ

∂u1,1

∂y
=

∂v2,1

∂x
+ λ

∂u2,1

∂y
at y = k for − 1 ≤ x ≤ 1. (45)

The normal stress boundary condition yields

P1,1 − P2,1 + 2λ

(

∂v2,1

∂y
−

∂v1,1

∂y

)

=
1

Ca

(

−
∂2 f1

∂x2

)

at y = k for − 1 ≤ x ≤ 1. (46)

Equations (35)–(37) describe a two dimensional, secondary flow. Hence, we adopt a stream

function formulation and define ψ to satisfy (35),

ui,1 = λ
∂ψi

∂y
, (47)

vi,1 = −
∂ψi

∂x
. (48)

Substituting (47) and (48) in (36) and (37) and eliminating Pi, 1, we obtain two biharmonic

equations

∂4ψi

∂x4
+ 2λ2 ∂4ψi

∂x2∂y2
+ λ4 ∂4ψi

∂y4
= −λRei

dw2
i,o

dy
. (49)

Taking the reference of value for ψ i as ψ i(−1, −1) = 0, we recast the boundary conditions

(39)–(45) in terms of ψ i,

ψ1 = 0 at x = ±1 for − 1 ≤ y ≤ k, (50)

ψ2 = 0 at x = ±1 for k ≤ y ≤ 1, (51)

ψ1 = 0 at y = −1 for − 1 ≤ x ≤ 1, (52)

ψ2 = 0 at y = 1 for − 1 ≤ x ≤ 1, (53)

∂ψ1

∂x
= 0 at x = ±1 for − 1 ≤ y ≤ k, (54)

∂ψ2

∂x
= 0 at x = ±1 for k ≤ y ≤ 1, (55)

∂ψ1

∂y
= 0 at y = −1 for − 1 ≤ x ≤ 1, (56)

∂ψ2

∂y
= 0 at y = 1 for − 1 ≤ x ≤ 1, (57)

ψ1 = 0 at y = k for − 1 ≤ x ≤ 1, (58)

ψ2 = 0 at y = k for − 1 ≤ x ≤ 1, (59)

∂ψ1

∂y
= μ12

∂ψ2

∂y
at y = k for − 1 ≤ x ≤ 1, (60)

−
∂2ψ1

∂x2
+ λ2 ∂2ψ1

∂y2
= −

∂2ψ2

∂x2
+ λ2 ∂2ψ2

∂y2
at y = k for − 1 ≤ x ≤ 1. (61)
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The system of Eqs. (49)–(61) form a coupled biharmonic equation system. The method of

superposition, for solving a single biharmonic equation, has been discussed by Meleshko.22 In this

paper, we extend the method to solve two simultaneous biharmonic equations, drawing on the theory

of linear operators.24 The detailed derivation is presented in the Appendix. The final expressions for

the stream functions are given below

ψ1 =
∞

∑

m=1

(

C1cosh(ωm,1x) + C2xsinh(ωm,1x) + S1

(

1

ω4
m,1

+
cos(πx)

(π2 + ω2
m,1)2

))

φy,1

+
∞
∑

n=1

(

C3cosh
(ωn y

λ

)

+ C4sinh
(ωn y

λ

)

+ C5 ycosh
(ωn y

λ

)

+ C6 ysinh
(ωn y

λ

))

φx ,

(62)

ψ2 =
∞

∑

m=1

(

C7cosh(ωm,2x) + C8xsinh(ωm,2x) + S2

(

1

ω4
m,2

+
cos(πx)

(π2 + ω2
m,2)2

))

φy,2

+
∞
∑

n=1

(

C9cosh
(ωn y

λ

)

+ C10sinh
(ωn y

λ

)

+ C11 ycosh
(ωn y

λ

)

+ C12 ysinh
(ωn y

λ

))

φx ,

(63)

S1 =
(

−64Re1

π5

)

⎛

⎝2A1,0 B1,0

k
∫

−1

cosh
(πy

λ

)

φy,1dy + 2A1,0

k
∫

−1

sinh
(πy

2λ

)

φy,1dy+

2B1,0

k
∫

−1

cosh
(πy

2λ

)

φy,1dy + (A2
1,0 + B2

1,0)

k
∫

−1

sinh
(πy

λ

)

φy,1dy

⎞

⎠ ,

(64)

S2 =
(

−64Re2

π5

)

⎛

⎝2A2,0 B2,0

1
∫

k

cosh
(πy

λ

)

φy,2dy + 2A2,0

1
∫

k

sinh
(πy

2λ

)

φy,2dy+

2B2,0

1
∫

k

cosh
(πy

2λ

)

φy,2dy +
(

A2
2,0 + B2

2,0

)

1
∫

k

sinh
(πy

λ

)

φy,2dy

⎞

⎠ ,

(65)

φx =cos

(

(2n−1)πx

2

)

, φy,1 =
(

2

1+k

)1/2

sin

(

mπ (y−k)

1+k

)

, φy,2 =
(

2

1−k

)1/2

sin

(

mπ (y−k)

1−k

)

ωn =
(2n − 1)π

2
ωm,1 =

mπλ

1 + k
ωm,2 =

mπλ

1 − k

for n = 1, 2, 3... for m = 1, 2, 3... for m = 1, 2, 3....

Here C1–C12 are arbitrary constants, which must be determined using the boundary conditions

(50)–(61), as detailed in the Appendix.

The rate of convergence of (62) and (63) depends on both k and λ. We find that, to capture all

the qualitative features of the solution, 2 terms of each series in (62) and (63) are sufficient at k =
0; whereas, 3 are required for k = 0.2–0.5 (or k = −0.2 to −0.5). Any further shift in the interface

position at O(ε0) requires a larger number of terms.

2. Calculation of the interface shape

Calculation of the circulatory flow at first order did not require knowledge of the location of

the interface, i.e., all the boundary conditions were applied at the zeroth order approximation to the

interface position, y = k. Having determined the cross flow, we can calculate the normal stresses

exerted by the fluids on the interface. Then the normal stress balance (14) can be used to determine

the interface position at O(ε1). Thus the calculation of the flow field has been decoupled from the

calculation of the interface position; this simplification is a result of the domain perturbation method.

The pressure distribution across the cross section, associated with the circulatory flow, may be

determined by integrating either Eqs. (36) or (37). We choose to integrate (37) for its simplicity.
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This results in

P1,1 = −
1

λ

∫

∂3ψ1,1

∂x3
dy − λ

∂2ψ1,1

∂x∂y
+ D1, (66)

P2,1 = −
1

λ

∫

∂3ψ2,1

∂x3
dy − λ

∂2ψ2,1

∂x∂y
+ D2. (67)

Here D1 and D2 are arbitrary constants. We choose D1 = 0; thereby, setting a convenient

reference value for the pressure field. The value of D2 determines the pressure jump across the

interface; this is related to the shape of the interface, via the normal stress balance, at O(ε1),

∂2 f1

∂x2
= Ca

[

1

λ

(∫

∂3ψ1

∂x3
dy −

∫

∂3ψ2

∂x3
dy

)

− λ

(

∂2ψ1

∂x∂y
−

∂2ψ2

∂x∂y

)]

+ D2Ca. (68)

Integrating (68), we obtain a solution with three arbitrary constants. The three boundary condi-

tions necessary to obtain a unique solution are

d f1

dx
= 0 at x = ±1, (69)

1
∫

−1

1
∫

k+ε f1(x)

(1 + εx)dydx

1
∫

−1

1
∫

−1

(1 + εx)dydx

= α. (70)

Equation (69) specifies the contact angle at both walls as 90◦. Equation (70) ensures that the

interface shape satisfies the input specification of the holdup (volume fraction) of fluid 2. Further

simplification of (70) results in the following:

2(1 − k) + ε
1
∫

−1

f1dx + ε2
1
∫

−1

f1xdx

4
= α. (71)

The third term in the numerator of (71) represents the increase in volume of a differential

element, as we move from the inner to the outer wall of a curved channel. This is a second order

effect, however, and is neglected at O(ε1). Using (33a), we obtain

2(1 − k) + ε
1
∫

−1

f1dx

4
=

2(1 − k)

4
, (72)

which results in the following condition on the interface deflection function f1(x):

1
∫

−1

f1dx = 0. (73)

Solving (68), subject to the boundary conditions (69) and (73), determines simultaneously the

shape of the interface and the pressure distribution. The corresponding analytical expressions are

lengthy and not reproduced here.

The inhomogeneous term in (68) and the boundary conditions (69) and (73) imply that f1(x) is

an odd function of x. Thus, the deformation of the interface is anti-symmetric (equal and opposite)

about the y-axis.

We conclude this subsection by considering the limiting case of strong capillary forces, i.e., Ca

→ 0. In this limit, Eq. (68) simplifies to

∂2 f1

∂x2
= 0, (74)
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which along with the homogeneous boundary conditions (69) and (73) yields the trivial solution

f1 = 0. (75)

Hence in the limit of low capillary numbers (high surface tension and small channel dimensions),

capillary forces overcome the normal stresses and keep the interface flat. For small but finite values

of Ca, the interface deformation will be small and can be accurately described by the perturbation

solution presented here. This situation is common in microchannel flows.

3. Calculation of the flow rates at the first order

The flow rates of the fluids in a curved channel are expected to differ from those in a straight

channel. The factors which may affect the flow rate are: (i) the change in the flow area due to the

deformation of the interface and (ii) the axial velocity correction (wi,1). In this section, we show

that the change to the flow rates is relatively small, of O(ε2); i.e., the change is zero at O(ε1). This

calculation is of practical significance, as the flow rates are more easily controlled in an experiment

than the pressure drop and holdup.

As a precursor to the flow rate calculation, we determine the axial velocity correction at O(ε1).

This requires solving (38) for wi,1, subject to the following boundary conditions:

w1,1 = 0 at x = ±1 for − 1 ≤ y ≤ k, (76)

w2,1 = 0 at x = ±1 for k ≤ y ≤ 1, (77)

w1,1 = 0 at y = −1 for − 1 ≤ x ≤ 1, (78)

w2,1 = 0 at y = 1 for − 1 ≤ x ≤ 1, (79)

w1,1 + f1

∂w1,0

∂y
= μ12

(

w2,1 + f1

∂w2,0

∂y

)

at y = k for − 1 ≤ x ≤ 1, (80)

∂w1,1

∂y
+ f1

∂2w1,0

∂y2
=

∂w2,1

∂y
+ f1

∂2w2,0

∂y2
at y = k for − 1 ≤ x ≤ 1. (81)

The solution procedure is similar to that used for obtaining wi,0, except that the inhomogeneous

terms are functions of x and y. We seek a solution of the following form, which is an odd function

of x:

wi,1 =
∞

∑

n=1

gi,n(y)sin(nπx). (82)

The coefficients gi, n(y) are obtained by solving the following ordinary differential equations:

Rei

⎛

⎝

1
∫

−1

ui,1

∂wi,0

∂x
sin(nπx)dx +

1
∫

−1

λvi,1

∂wi,0

∂y
sin(nπx)dx

⎞

⎠

−
1

∫

−1

∂wi,0

∂x
sin(nπx)dx = −(nπ )2gi,n + λ2 d2gi,n

dy2
.

(83)

The analytical expressions for gi, n(y) are obtained using Mathematica and are not reproduced

here, owing to their length.

The flow rates are obtained by integrating wi over the domain of each fluid

Q1 =
1

∫

−1

k+ε f1
∫

−1

w1,0(1 + εx)dydx+
1

∫

−1

k+ε f1
∫

−1

εw1,1(1 + εx)dydx, (84)
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Q2 =
1

∫

−1

1
∫

k+ε f1

w2,0(1 + εx)dydx+
1

∫

−1

1
∫

k+ε f1

εw2,1(1 + εx)dydx . (85)

Expanding (84) yields

Q1 =
1

∫

−1

k+ε f1
∫

−1

(w1,0 + εw1,1)dydx + ε

1
∫

−1

k+ε f1
∫

−1

xw1,0dydx+ε2

1
∫

−1

k+ε f1
∫

−1

xw1,1dydx . (86)

The third term in (86) accounts for the increasing volume of a differential element, as one

moves from the inner to the outer wall, in a curved channel. However, this is a second order effect

and is neglected at O(ε1). The integrand in the second term is an odd function of x; it reduces to zero

on integrating over the channel’s width. This leaves the first term, which after expansion as a Taylor

series about ε = 0, yields

Q1 =
1

∫

−1

k
∫

−1

w1,0dydx + ε
∂

∂ε

1
∫

−1

k+ε f1
∫

−1

(w1,0 + εw1,1)dydx . (87)

The first term in (87) is the flow rate at O(ε0) – the case of a straight channel; the second term

is the change that occurs in a curved channel (�Q1),

�Q1 = ε
∂

∂ε

1
∫

−1

k+ε f1
∫

−1

(w1,0 + εw1,1)dydx

∣

∣

∣

∣

∣

∣

ε=0

, (88)

�Q1 = ε
∂

∂ε

1
∫

−1

k+ε f1
∫

−1

w1,0dydx

∣

∣

∣

∣

∣

∣

ε=0

+ ε

1
∫

−1

k
∫

−1

w1,1dydx + ε2 ∂

∂ε

1
∫

−1

k+ε f1
∫

−1

w1,1dydx

∣

∣

∣

∣

∣

∣

ε=0

. (89)

Neglecting the second order term and applying Leibnitz rule on the first term yields

�Q1 = ε

1
∫

−1

w1,0(x, k) f1(x)dx + ε

1
∫

−1

k
∫

−1

w1,1(x, y)dydx . (90)

Both these integrands are odd functions of x which reduce to zero on integrating over [−1,+1].

Physically, the first term represents the change in flow rate due to interface deformation; whereas,

the second term represents the change due to the first order axial velocity correction. Since both

these features are anti-symmetric about x = 0, an increase in the flow rate, through one lateral half of

the channel, is compensated by an equivalent decrease, in the other half. Similar calculations show

that the flow rate change for phase 2 at O(ε1) is also zero. Thus we have

Q1 =
1

∫

−1

k
∫

−1

w1,0dydx + O
(

ε2
)

, (91)

Q2 =
1

∫

−1

1
∫

−k

w2,0dydx + O
(

ε2
)

. (92)

Dean25and Cuming2 also found no change in the flow rate at O(ε1), for single-phase flow through

curved, circular, and rectangular channels, respectively. However, they report a decrease in the flow

rate at O(ε2). This decrease occurs due to the extra energy expended in driving the circulatory flow.

We expect to find a similar effect in the two phase problem, at O(ε2), as well.

Equations (91) and (92) are explicit formulae for the flow rates, in terms of the holdup and

pressure drop (G in the definition of the Reynolds numbers). If the flow rates are specified, then the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

136.167.3.36 On: Sun, 02 Nov 2014 16:44:08



073604-14 Garg, Picardo, and Pushpavanam Phys. Fluids 26, 073604 (2014)

flow field can be calculated iteratively, starting from guess values of the pressure drop and holdup,

using (91) and (92).

IV. FLOW PATTERNS

In this section, we present different circulatory flow patterns, obtained as the parameters are

varied. We also identify the two key factors which are responsible for generating these patterns.

Before examining the two-phase flow field, it is instructive to review the circulatory flow in the

single-phase case.1, 2 The circulatory flow, for a single fluid flowing through a gently curved channel,

consists of two counter rotating helical vortices, as shown in Fig. 2. For ease of visualization, we

project the streamlines of the flow onto the x-y plane (cross-section of the channel). The helical

flow then appears as two-dimensional vortices. These counter rotating vortices form because the

centrifugal forces are much stronger along the central horizontal plane, y = 0, where the axial

velocity is maximum- the magnitude of the centrifugal force is proportional to the square of the axial

velocity. On the other hand, the centrifugal forces are much lower near the top and bottom walls,

where the axial velocity approaches zero. Thus, fluid is thrown out strongly along the center of the

channel and recirculates along the walls. This leads to the formation of a pair of counter-rotating

vortices on either side of y = 0.

Generalizing the relationship between the maximum of the base axial velocity and the vortex

location, we deduce the following: the separatrix (line of separation) between the pair of counter

rotating vortices corresponds closely to the location of the maximum base axial velocity. In the

single-phase case, this maximum always lies at the center of the channel (i.e., y = 0). However in

two-phase flow, the base, axial velocity profile is generally asymmetric; it depends on the viscosities

and holdup (volume fraction) of the fluids, and the maximum may lie in either fluid. This leads to the

generation of new circulation patterns. Further, if the two fluids happen to flow in opposite directions

near the interface, then inter-fluid shear interaction comes into play. These two mechanisms lead to

a variety of flow patterns, which are discussed subsequently. Each pattern is denoted by a unique

two-tuple label (#-#); the two entries represent the number of vortices in the first and second fluid,

respectively.

A. Identification of flow patterns

1. 1–1 Configuration

Consider the situation when the maxima of the base axial velocity lies near the interface

(Fig. 3(a)); then the centrifugal force has the strongest impact near the interface. Therefore, both

fluids flow outward along the interface, in the direction of the centrifugal force, and recirculate along

the top and bottom walls. Thus two vortices are formed, one in each fluid, which have an opposite

FIG. 2. The secondary circulations in single-phase flow through a gently curved channel. These are called Dean vortices.

Here the streamlines of the flow are projected onto the x-y plane; the helical Dean flow appears as two-dimensional vortices.
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FIG. 3. (a) Variation of the axial velocity at zeroth order (wi,0) across the height of the channel (y). The maxima of the

axial velocity lies near the interface, in phase 2. (b) 1–1 Configuration: One principal vortex (P) is present in each phase.

(c) Variation of the x-component of velocity at first order (ui,1), at x = 0, across the height of the channel (y). The system

parameters are μ12 = 1, Re1 = 5, Re2 = 1, k = −0.2, λ = 1. The location of streamlines in (b) have been chosen to best

illustrate the circulation pattern. The magnitude of the cross flow may be gauged from the plot of ui,1 in (c).

sense of rotation (Fig. 3(b)). These vortices resemble those in the single phase case (cf. Fig. 2); they

are called principal vortices, and labeled “P.” The magnitude of the cross flow, in each fluid, may be

gauged from the plot of ui, 1 at x = 0 along y (Fig. 3(c)). The zeros of ui, 1 (x = 0) within each fluid

domain correspond to the two vortex centers. In this case the fluids flow in the same direction at

the interface, and inter-fluid interaction is irrelevant. This 1–1 configuration is the only flow pattern

which has been reported previously (by Gelfgat et al.9).

2. 1–3 Configuration

Next, we examine a case wherein the maximum of the base axial velocity lies away from the

interface, within fluid 2 (Fig. 4(a)). The centrifugal force is now strongest within the bulk of fluid

2; this creates a pair of counter rotating vortices in fluid 2 itself. This pair of vortices are named

split vortices – labelled “SP” (Fig. 4(b)). In fluid 1, the situation remains the same as in the 1–1

configuration – a single principle vortex is present. However, the principle vortex in fluid 1 has the

same sense of rotation as the lower spilt vortex in fluid 2. This would result in opposing directions

of flow at the interface – violating continuity of the velocity field. The situation is resolved by

the presence of an intermediate vortex which preserves the continuity of the velocity field at the

interface. This vortex is called a sandwich vortex – labelled “SW.”. In this case it is located in

fluid 2 (Fig. 4(b)). Thus, we have a total of four vortices: one in phase 1 and three in phase 2 (Fig.

4(b)). Corresponding to these vortex centers, ui, 1(x = 0) has four zeros within the fluid domains

(cf. Fig. 4(c)).

Sandwich vortices arise whenever there is a tendency for fluid to flow in opposite directions, at

an interface. These were studied by Picardo and Pushpavanam10 in the context of core-annular flow
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FIG. 4. (a) Variation of the axial velocity at zeroth order (wi,0) across the height of the channel (y). The maxima of the axial

velocity is in phase 2, away from the interface. (b) 1–3 Configuration: The principal vortex (P) is present in phase 1. A pair

of split vortices (SP) and a sandwich vortex (SW) is present in phase 2. (c) Variation of the x- component of velocity at first

order (ui,1), at x = 0, across the height of the channel (y). The system parameters are μ12 = 10, Re1 = 1, Re2 = 1, k = −0.3,

λ = 1.

in curved channels. The sandwich vortex may be present in either fluid, depending on the parameter

values. In fact, their location is related to a competition between the two fluids. The sandwich vortex

corresponds to a local reversal of flow; the fluid within the sandwich vortex is forced to circulate

against its natural tendency. Thus in the case of the 1–3 pattern, fluid 1 controls the flow locally near

the interface, forcing fluid 2 to form a sandwich vortex. This is in spite of fluid 2 having a stronger

average circulatory flow.

Two key ideas have been introduced here, to explain the 1–3 configuration: (i) the creation of

counter-rotating split vortices within one of the fluids, when the maximum of wi,0 is located away

from the interface (ii) the creation of sandwich vortices, due to inter-fluid stress interaction, when

the fluids have a tendency to flow in opposite directions at the interface. These two mechanisms are

sufficient to explain, and anticipate, all the other flow configurations observed in this system.

3. 1–2 Configuration

In the previous, 1–3 pattern, fluid 1 controls the flow at the interface, causing a sandwich vortex

to form in fluid 2. As parameters are varied, the influence of fluid 1 on fluid 2 can decrease; this

will cause the size of the sandwich vortex to reduce. Ultimately, the sandwich vortex will disappear,

resulting in a 1–2 configuration as depicted in Fig. 5. Here fluid 2 has a pair of split vortices (Figs. 5(b)

and 5(c)), since the maximum of wi,0 is still located within fluid 2 (Fig. 5(a)). Fluid 1 contains only

a principle vortex (Figs. 5(b) and 5(c)). In this case, the x component of velocity (ui, 1) is identically

zero at the interface, to maintain continuity of velocity, while fluid flows in opposite directions on

either side of the interface (Fig. 5(c)). This situation represents a perfect balance between the two

fluids at the interface, with neither fluid controlling the flow.
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FIG. 5. (a) Variation of the axial velocity at zeroth order (wi,0) across the height of the channel (y). The maximum of the base

axial velocity is in phase 2. (b) 1–2 Configuration: The principal vortex (P) is present in phase 1, and a pair of split vortices

(SP) is present in phase 2. (c) Variation of the x-component of velocity at first order (ui,1), at x = 0, across the height of the

channel (y). The system parameters are μ12 = 1.2, Re1 = 1, Re2 = 1, k = −0.6, λ = 1.

4. 2–2 Configuration

In this configuration, fluid 2 controls the flow near the interface, while containing the maximum

wi,0 (Fig. 6(a)). Thus we have a 2–2 configuration: fluid 2 has a pair of split vortices, while fluid 1

contains a principle vortex along with a sandwich vortex near the interface (Figs. 6(b) and 6(c)). On

comparing this configuration with the previous two – 1–3, 1–2, and 2–2 configurations – we observe

that the sandwich vortex shifts from fluid 2 into fluid 1. Thus, the 1–2 pattern represents a transition

between the 1–3 pattern and the 2–2 configuration, i.e., a transition between a regime where fluid 1

controls the flow at the interface to a regime in which fluid 2 is dominant.

5. 1(R)-2 Configuration

In this configuration, fluid 2 completely dominates the flow within fluid 1; the sandwich vortex,

which was localized near the interface in the 2–2 configuration, now occupies the entire region

of fluid 1 (compare the vortices in Figs. 6(b) and 7(b)). All the fluid in phase 1 is now forced to

circulate against its natural tendency, as is evident from a comparison of the flow in the present case

(Fig. 7) with the 1–2 configuration (Fig. 5) – the single vortex (in phase 1) in Fig. 7(b) circulates

in an opposite direction to the principle vortex in Fig. 5(b). (This change of direction is confirmed

by the derivative of ui, 1(x = 0) at its zero within phase 1 – it has a different sign in Figs. 5(c) and

7(c).) This reversal of the flow in fluid 1 is caused by the dominating influence of fluid 2, via stress

interaction at the interface. The resultant vortex in fluid 1 is called a reversed vortex – labeled “R,”

and the flow pattern is called the 1(R)-2 configuration. It contains a reversed vortex in fluid 1 and a

pair of split vortices in fluid 2 (Fig. 7(b)).

Thus far, we have described one pattern in which the maximum of the base axial velocity was

near the interface and four patterns where the maximum was in the bulk of fluid 2. Apart from these,
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FIG. 6. (a) Variation of the axial velocity at zeroth order (wi,0) across the height of the channel (y): The maximum of the

base axial is in phase 2. (b) 2–2 Configuration: The sandwich (SW) and the principal vortex (P) is in phase 1; the pair of split

vortices (SP) is in phase 2. (c) Variation of the x-component of velocity at first order (ui,1), at x = 0, across the height of the

channel (y). The system parameters are μ12 = 1.2, Re1 = 1, Re2 = 2, k = −0.6, λ = 1.

four more patterns occur when the maximum is located in the bulk of fluid 1. These four are similar

to those described above, and are related by an inversion of phases. They are listed below, with a

brief description relating them to their inverse counterparts.

6. 3–1 Configuration

This is the inverse of the 1–3 configuration (cf. Fig. 4(b)). Split vortices are created within fluid

1 (Fig. 8(a)). Fluid 2 has a single principle vortex. The flow at the interface is controlled by fluid 2;

hence a sandwich vortex is present in fluid 1 (Fig. 8(a)).

7. 2–1 Configuration

Here the size of the sandwich vortex of the 3–1 pattern has shrunk to zero; the velocity is

identically zero at the interface, while the fluids flow in opposite directions on either side. Thus, a

pair of split vortices are present in fluid 1, while fluid 2 has a single principle vortex (Fig. 8(b)). This

is the inverse of the 1–2 configuration (cf. Fig. 5(b)).

8. 2–2(s) Configuration

In this pattern, the sandwich vortex is located in fluid 2, while the split vortices are present in

fluid 1 (Fig. 8(c)). Fluid 1, therefore, controls the flow at the interface. This pattern has been called

2–2(s)- the (s) is added to distinguish it from its inverse 2–2 pattern (cf. Fig. 6(b)).
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FIG. 7. (a) Variation of the axial velocity, at zeroth order (wi,0), across the height of the channel (y). The maximum of

centrifugal force is in phase 2. (b) 1(R)-2 Configuration: Fluid 1 contains a reversed vortex (R) (a sandwich vortex occupying

the entire phase); fluid 2 contains a pair of split vortices (SP). (c) Variation of the x-component of velocity at first order (ui,1),

at x = 0, across the height of the channel (y). The system parameters are μ12 = 3, Re1 = 1, Re2 = 10, k = −0.6, λ = 1.

9. 2–1(R) Configuration

In this case, fluid 2 contains a reversed vortex; it is forced to circulate against its natural tendency,

under the influence of fluid 1. Fluid 1 itself contains a pair of split vortices (Fig. 8(d)). This pattern

is the inverse of the 1(R)-2 configuration (cf. Fig. 7(b)).

10. Classification of the flow patterns

The nine different flow patterns just described can be classified into three groups, based on the

location of the maximum of the base axial velocity (wi,0):

� Type 1: The maximum of the base axial velocity (wi,0) is near the interface, in either of the

fluids. Only the 1–1 configuration, with two principle vortices, belongs to this category.
� Type 2: The maximum of wi,0 is in the bulk of phase 2, far from the interface. 1–3, 1–2, 2–2,

and 1(R)-2 flow configurations belong to this category. Apart from generating split vortices,

the presence of the maximum in fluid 2 results in stronger centrifugal forces; thus the average

circulatory flow is stronger in fluid 2. However, near the interface, the flow can be controlled by

either fluid 1 or 2. This inter-fluid competition is evident in the location of the sandwich/reversed

vortex. Fluid 1 controls the flow along the interface in the 1–3 pattern, while fluid 2 plays a

dominating role in the other three flow configurations.
� Type 3: The maximum of wi,0 is in the bulk of phase 1, far from the interface. The 3–1, 2–1,

2–2(s), and 2–1(R) flow configurations belong to this category. The average circulatory flow is

stronger in fluid 1, in all cases. The flow, in the vicinity of the interface, is controlled by fluid

2 in the 3–1 pattern; whereas, fluid 1 is dominant in the other three cases.
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FIG. 8. (a) 3–1 Configuration: μ12 = 1/10, Re1 = 1, Re2 = 1, k = 0.3, λ = 1; (b) 2–1 Configuration: μ12 = 1/1.2, Re1 = 1,

Re2 = 1, k = 0.6, λ = 1; (c) 2–2(s) Configuration: μ12 = 1/1.2, Re1 = 2, Re2 = 1, k = 0.6, λ = 1; (d) 2–1(R) Configuration:

μ12 = 1/3, Re1 = 10, Re2 = 1, k = 0.6, λ = 1.

In this section, we have identified and classified different types of circulatory patterns which can

occur in vertically stratified curved channel flow at low Reynolds numbers. This diversity of flow

patterns has been explained in terms of inter-fluid competition and the location of the maximum base

axial velocity (wi,0). In Sec. V, we discuss how these two factors can be manipulated by varying the

parameters of the system. Thus, the parameter values which correspond to different flow patterns

may be identified – the parameters for the examples depicted in Figs. 3–8 were chosen on this basis.

The circulatory flow field studied in this section does not include any effects of the deformed

interface. This effect occurs at the higher order of ε2; thus the flow at O(ε) is plotted on the base

domain with an undeformed interface. The effect of interface deformation will be relatively small

and localized near the interface, when ε is small. It can be ignored to a good approximation at low

capillary numbers, when the interface deformation itself is very small (cf. Sec. VII).

V. ORGANIZATION OF THE PARAMETER SPACE (µ12, Re1, Re2, and k)

In this subsection, we focus on identifying regions of the parameter space in which different

flow patterns occur. First, we demonstrate an efficient method for constructing flow regime maps,

using our analytical asymptotic solution. Then, these maps are used to understand the effect of the

parameters on the flow field. This requires an understanding of the effect of parameter variations on

the two mechanisms governing the flow patterns: the location of the maximum base axial velocity

(wi,0) and the inter-fluid competition.
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A. Flow regime maps

The flow regime maps are constructed by locating the boundaries, in parameter space, between

different flow patterns. These boundaries can be determined precisely by identifying special charac-

teristic features of the plot of ui, 1 at x = 0, at the transition between flow patterns. These line plots

(cf. Figs. 3(c) and 4(c)–7(c)) contain key information about the flow field. The zeros of the plot,

within the domain of the fluids, correspond to vortex centers; the derivative at these zeros indicate

the sense of rotation of the vortex – a negative derivative corresponds to counter-clockwise rotation,

while a positive derivative represents a clockwise vortex. We now present conditions on the profile of

ui, 1(x = 0) which must be satisfied at the transition between various flow patterns. These conditions,

in conjunction with our analytical result for ui, 1, can be used to efficiently map out the parameter

space.

Since the Type-2 (maximum of wi,0 in phase 2) and Type-3 (maximum of wi,0 in phase 1)

configurations are in a one-to-one correspondence – related by swapping the two fluids – we discuss

only the transitions between Type 1 and Type 2 patterns in detail. The boundaries between different

Type 3 flow patterns are then obtained analogously.

1. Boundary between 1–1 and 1–3 configurations

Observing Fig. 4(c) – the plot of ui, 1(x = 0) for the 1–3 configuration – we find a local minimum

near the interface in fluid 2, which has a negative value. There are two zeros on either side of this

local minimum, which correspond to vortex centers: the one near the interface is the sandwich vortex,

and the one away from the interface is the lower split vortex. Now, as the value of u2, 1(x = 0) at this

minimum increases, the two zeros approach each other; they eventually merge into a double root,

when the local minimum has a value of zero. Any further increase in the local minimum leads to

the disappearance of the two vortices, and we have the 1–1 configuration (e.g., Fig. 3(c)). Thus, the

boundary between the 1–1 and 1–3 patterns is characterized by the following double zero condition

within fluid 2:

∂u2,1

∂y
= 0 and u2,1 = 0 at x= 0. (93)

These two equations can be solved simultaneously to determine the location of the double root

and the value of any one parameter at the transition, for specified values of the other parameters.

Since we have four physical parameters (apart from the geometric parameters) – μ12, Re1, Re2, and k

-- the transition boundary determined by (93) is a three dimensional manifold in a four dimensional

parameter space.

2. Boundary between 1–3 and 2–2 configurations

In the 1–3 pattern the sandwich vortex is present in fluid 2 (Fig. 4); whereas, in the 2–2

configuration the sandwich vortex is in fluid 1 (Fig. 6). At the critical boundary between these two

cases, the sandwich vortex disappears; it is in neither fluid. This is precisely the situation in the 1–2

configuration (Fig. 5). At this transition pattern, the velocity at the interface must be identically zero,

to maintain continuity of the velocity field (Fig. 5(c)). In terms of ui, 1(x = 0), the 1–3 configuration

has a sandwich vortex zero near the interface, in fluid 2 (Fig. 4(c)); whereas, the 2–2 pattern has a

sandwich vortex zero in fluid 1 (Fig. 6(c)). In the 1–2 transition pattern, the corresponding zero is

located exactly at y = k (Fig. 5(c)). Thus we have the following condition for the boundary between

1–3 and 2–2:

u1,1 = u2,1 = 0 at y = k at x= 0. (94)

This equation can be solved to determine any one parameter, when the values of all others are

fixed. Thus (94) represents a three dimensional manifold in the four dimensional parameter space.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

136.167.3.36 On: Sun, 02 Nov 2014 16:44:08



073604-22 Garg, Picardo, and Pushpavanam Phys. Fluids 26, 073604 (2014)

3. Boundary between 2–2 and 1(R)-2 configurations

At the transition from the 2–2 pattern (Fig. 6) to the 1(R)-2 pattern (Fig. 7), the principle vortex

near the lower wall in fluid 1 shrinks and disappears (Fig. 6(b)). The corresponding zero of u1, 1(x =
0) moves closer to the lower wall (y = −1) and ultimately coincides with the wall at the transition.

However, u1, 1 is always zero at the wall due to the no-slip condition. Hence, at the transition, we

have a double root at the lower wall

∂u1,1

∂y
= 0 at y = −1 atx= 0. (95)

Like (94), this equation can be solved to determine any one parameter, when the values of all

others are fixed. Thus (95) also represents a three dimensional manifold in the four dimensional

parameter space.

4. Boundaries between Type 3 patterns

The boundaries between different Type 3 flow patterns are characterized by conditions, entirely

analogous to those for the Type 2 patterns. The same arguments apply, but with an interchange of

the two fluids. These conditions are listed below.

Boundary between the 1–1 configuration and the 3–1 configuration:

∂u1,1

∂y
= 0 and u1,1 = 0 at x= 0. (96)

Boundary between the 3–1 configuration and the 2–2(s) configuration, which corresponds to

the 2–1 pattern

u1,1 = u2,1 = 0 at y = k at x= 0. (97)

Boundary between the 2–2(s) configuration and the 2–1(R) configuration

∂u2,1

∂y
= 0 at y = +1 at x= 0. (98)

5. Flow regime maps in the Rei -µ12 parameter plane

We now fix the values of two parameters – the volume fraction (k) and one of the Reynolds

numbers – and construct flow regime maps in the parameter plane of the remaining two parameters,

using conditions (93)–(98).

In Fig. 9(a), the parameter regions for Type 1 and Type 2 patterns are identified in the Re2-μ12

plane, for the case of k = −0.2, Re1 = 1. The three conditions, (93)–(95), define three curves in

the Re2-μ12 plane, that divide it into four regions. These regions correspond to different circulation

patterns (Type1 and Type 2), as indicated in Fig. 9(a). The boundaries between Type 3 patterns can

also be plotted in this figure; however, they occur at physically unrealistic value of Re2 and μ12.

Instead, we plot another flow regime map (Fig. 9(b)) for the opposite case of k = +0.2, Re2 = 1. This

map in the Re1-μ12 plane reveals the boundaries between Type 1 and Type 3 flow configurations, as

obtained from conditions (96)–(98).

Flow regime maps, similar to those in Fig. 9, can be easily constructed for any parameter

range of interest. Once two parameter values are fixed, Eqs. (93)–(98) must be solved to yield

relationships between the remaining two parameters. To generate Fig. 9, Eqs. (93) and (96) were

solved numerically, while the other conditions were solved analytically.

B. Influence of parameter variations

On the basis of the flow regime maps in Fig. 9 and the results presented in Sec. IV, we proceed

to discuss the influence of each parameter on the flow pattern. Transitions between flow patterns are
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FIG. 9. Flow regime maps in (a) Re2-μ12 parameter plane for k = −0.2, Re1 = 1, and λ = 1 (b) Re1-μ12 parameter plane

for k = 0.2, Re2 = 1, and λ = 1.

caused by the effect of parameters on the following two factors: (i) the location of the maximum

base axial velocity (wi,0) and (ii) the inter-fluid competition.

1. Case of similar fluid properties and volume fractions

When the fluids have similar properties and volume fractions (μ12 ∼ 1, Re1 ∼ Re2, k ∼ 0), the

maximum of the base axial velocity is located near the interface (y ∼ k ∼ 0). Thus we have a 1–1

configuration (Type 1), with a principle vortex in each fluid. This flow field is similar, in appearance,

to the single phase case (Fig. 2). In the following discussion, we treat this situation as the base case,

and examine the flow pattern transitions which occur on varying each of the parameters.

2. Influence of the viscosity ratio

When the viscosity ratio is near unity, then the maximum of the axial velocity is located near

the center of the channel. If the interface is located at the center, as well (equal volume fractions),

then we have the 1–1 configuration. However, if the fluids have significantly different viscosities,

then the less viscous fluid flows faster, and the maximum of wi,0 is located within the bulk of the less

viscous fluid. Therefore, when the viscosity ratio is increased above unity (fluid 2 is less viscous)

the maximum shifts into the fluid 2; this results in the formation of spilt vortices in fluid 2. Thus

we have a transition from the 1–1 pattern to the 1–3 pattern (Fig. 9(a)). On the other hand, if the

viscosity ratio is decreased, below unity, then the maximum of wi,0 shifts into fluid 1, and we have

a transition from the 1–1 to 3–1 configuration (Fig. 9(b)).

Apart from its influence on the location of the maximum base axial velocity, the viscosity ratio

plays an important and subtle role in the inter-fluid interaction. At viscosity ratios near unity, the

more viscous fluid controls the flow at the interface and forces the less viscous fluid to locally

reverse its flow. Thus, the 1–3 pattern is found at μ12 greater than unity (cf. Fig. 9(a)); here the more

viscous fluid 1 induces a sandwich vortex in fluid 2 (less viscous). Analogously, at viscosity ratios

below unity we have the 3–1 pattern; wherein, fluid 1 (less viscous) contains a sandwich vortex

(cf. Fig. 9(b)). However, this is only one aspect of the dual role played by viscosity in the inter-

fluid competition. The second effect dominates at extreme viscosity ratios, large or small, when the

Reynolds number of the less viscous fluid is greater. The less viscous fluid has a much higher axial

velocity and consequently experiences stronger centrifugal forces, compared to the more viscous

fluid. Thus, at very high viscosity ratios, the less viscous second fluid begins to dominate the flow.

In the case of Fig. 9(a), increasing μ12 causes the sandwich vortex to shift from fluid 2 to fluid 1

(1–3 to 2–2 transition). The sandwich vortex in fluid 1 then grows in size, as the viscosity of fluid 1

is increased further, until it occupies the entire fluid and becomes a reversed vortex (2–2 to 1(R)-2

transition). Note that this requires the Reynolds number of the less viscous fluid 2 to be greater than

that of fluid 1 (Re1 < Re2) – this is true at large μ12, if the fluids have similar densities. The opposite

series of Type 3 transitions occur on decreasing μ12 below unity, with Re1 > Re2 – in Fig. 9(b); the
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sandwich vortex shifts from fluid 1 to fluid 2 (3–1 to 2–2(s) transition), where it ultimately becomes

a reversed vortex (2–2(s) to 3–1(R) transition).

The influence of the relative viscosities on the flow pattern is closely related to the relative

Reynolds number of the fluids. Thus in Fig. 9, the full range of flow patterns cannot be observed by

varying the viscosity ratio alone; rather, it requires changes in the Reynolds numbers (densities) of

the fluids as well. The physical role played by the Reynolds number is discussed next.

3. Influence of the Reynolds numbers

In this analysis, the Reynolds numbers represent the strength of centrifugal forces relative to

viscous forces within each fluid. The Reynolds number will be higher for the fluid of greater density

and lower viscosity. Fig. 9 demonstrates the significant impact of the Reynolds numbers on the flow

pattern. However, this figure also shows that differences in the Reynolds numbers are unimportant

when the viscosity ratio is near unity and the volume fraction is near 0.5. In fact, Fig. 9(a) has a

threshold viscosity ratio of 3.08, above which the Reynolds numbers begin to affect the flow pattern.

This occurs because the Reynolds number does not affect the base flow profile and has no influence

over the location of the maximum of wi,0. Hence, split vortices cannot be formed by solely varying

the Reynolds numbers of the two fluids; variation of the viscosity ratio or the interface position is

necessary to cause transitions between 1–1 and 1–3 (or 3–1) patterns.

If the viscosity ratio or the interface position is such that Type 2 (or Type 3) patterns are possible,

then the Reynolds numbers of the two fluids play an important role. Their relative magnitudes have

a significant impact on the inter-fluid competition: the fluid with the higher Reynolds number has

a tendency to control the flow near the interface, since it experiences stronger centrifugal forces.

Thus in Fig. 9(a), increasing Re2 pushes the sandwich vortex from fluid 2 into fluid 1 (1–3 to 2–2

transition). Ultimately, fluid 2 completely dominates the flow, causing fluid 1 to flow against its

natural tendency with a reversed vortex (the 1(R)-2 pattern). On the other hand, in Fig. 9(b), fluid 1

controls the flow at the interface, as Re1 is increased. The sandwich vortex shifts into fluid 2, resulting

in transitions from the 3–1 pattern to the 2–2(s) pattern and ultimately to the 2–1(R) configuration.

4. Influence of the volume fraction/holdup

The volume fraction of the fluids determines the location of the interface, which in turn affects

both the location of the maximum of wi,0 and the inter-fluid competition. If the fluid viscosities are

similar, then the maximum of wi,0 will be located in the fluid of higher volume fraction. Consequently,

this fluid will contain split vortices. Thus decreasing (increasing) k below (above) 0.5 promotes the

formation of split vortices within fluid 2 (fluid 1). This effect is illustrated by Fig. 10, which depicts

the flow regime map for k = −0.35 and Re1 = 1. In comparison with Fig. 9(a) (k = −0.2 and Re1

= 1), the 1–1 to 1–2 transition occurs at lower μ12 and Re2; the threshold viscosity ratio for the

formation of split vortices in fluid 2 is also smaller.

Apart from influencing the formation of spit vortices, the volume fraction also affects the position

of the sandwich vortex. As the volume fraction of a fluid increases, its flow field must approach

the single phase case. Thus sandwich vortices must shift into the fluid of lower volume fraction.

FIG. 10. Flow regime map in the Re2 -μ12 parameter plane for k = −0.35, Re1 = 1, and λ = 1.
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Physically, the fluid with lower volume fraction is confined between the wall and the interface,

which restricts its flow. Thus, it is dominated by the fluid with a larger volume fraction. Hence, the

transition to 2–2(s) and 1(R)-2 patterns occur at lower μ12 and Re2 in Fig. 10 (k = −0.35), compared

to Fig. 9(a) (k = −0.2).

C. Selection of a desired flow pattern

For a specific pair of fluids, a range of flow patterns will be observed by varying the operating

conditions – pressure drop and the volume fraction/holdup. The volume fraction determines k (cf. Eq.

(33a)) and the pressure drop (G) specifies the magnitude of the Reynolds numbers. Experimentally,

it is more convenient to vary the flow rates of the two fluids, which are related to the pressure drop

and holdup via Eqs. (91) and (92). Using the results of Sec. V, the flow rates can be chosen to obtain

any desired circulation pattern.

VI. ASPECT RATIO AND STRENGTH OF THE CIRCULATORY FLOW

The aspect ratio (λ) is defined as the ratio of the width of the channel to its height. The results

presented thus far correspond to a square channel (λ = 1). In rectangular channels (λ �= 1), we

find the same basic cross flow configurations presented in Sec. IV; although, their exact location in

parameter space differs. Flow regime maps, such as Figs. 9 and 10, can be constructed (based on the

methodology presented in Sec V), to obtain more detailed information, for any specific aspect ratio.

Changing the aspect ratio has a more significant effect on the strength of the circulatory flow

(the magnitude of ui,1 and vi,1) than on the flow pattern. In this section, we analyze the dependence

of the strength of the cross-flow on the aspect ratio. To quantify the strength of the circulatory flow,

we define an intensity parameter for each fluid (Ii),

I1 =

⎛

⎝

1
∫

−1

k
∫

−1

(

u1,1
2 + v1,1

2
)

dydx

⎞
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⎛
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1
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k

(
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2
)
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⎞

⎠

1/2

. (99b)

We now compare the intensities of the cross-flow (Ii) in channels of different aspect ratios. To

make a fair comparison, the cross sectional area of the channel is kept constant at a value of 4a2.

Thus, a channel of aspect ratio λ has a width of 2a
√

λ and a height of 2a /
√

λ. If instead one kept

the width of the channel constant, then the cross-sectional area for flow (4ab = 4a2/λ) will decrease

as the aspect ratio is increased. Since the pressure drop is the same in all cases, the larger aspect

ratio channels will have a much smaller axial flow; this in turn will result in a small intensity of

circulation. To eliminate this bias, we keep the cross-sectional area constant and change both the

width and height to obtain channels of different aspect ratios.

Another subtlety, related to the Reynolds numbers and characteristic velocity scales, arises

while comparing channels of different aspect ratios. Since the width of each channel is different, its

Reynolds numbers and velocity scales will differ; these will be equal to λ3 / 2Rei, and λVc,i, where

Rei and Vc,i are the Reynolds numbers and velocity scales for a square channel. While comparing

the values of the intensity factors, we take Vc,i as the common scale. Thus the intensity factor for

flow in a curved channel, of aspect ratio λ and cross sectional area 4a2, that is driven by a pressure

drop of -GR is

Ī1 = λ

⎛

⎝

1
∫

−1

k
∫

−1

(

u1,1
2 + v1,1

2
)

dydx

⎞

⎠
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, (100a)
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FIG. 11. Dependence of the strength/intensity of the circulatory flow on the aspect ratio. The system parameters are: μ12 =
1, Re1 = 5, Re2 = 1, k = 0.

Ī2 = λ
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∫

−1

1
∫
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)

dydx

⎞

⎠

1/2

. (100b)

The values of these intensity factors ( Īi ) are plotted for a range of aspect ratios in Fig. 11, for

μ12 = 1, Re1 = 5, Re2 = 1, k = 0. Here, we observe a considerable variation with the aspect ratio;

importantly, each curve has a maximum value which corresponds to the aspect ratio that maximizes

the circulation strength within that fluid. In general, the maximum of each curve will be different.

Thus, one must choose between the two fluids when designing channels for an application, since the

strength of the circulatory flow can be maximized in only one of them at a time. Alternatively, an

intermediate aspect ratio may be more favourable in terms of increasing the overall strength of the

circulatory flow. These decisions depend on the specifics of the application; calculations like those

presented here will aid in designing a curved channel that provides the maximum benefit.

VII. INTERFACE DEFORMATION

A. General characteristics of the deformed interface

The secondary cross-flow (εui,1 and εvi,1) exerts normal stresses at the interface, causing it to

deform. Surface tension, on the other hand, resists this deformation. Thus, the shape of the interface is

determined by a balance between these competing forces, as expressed in the normal stress condition

(14). The right hand side of (14) accounts for the restoring action of surface tension, while the left

hand side represents the stresses exerted by the two fluids. These stresses are composed of two parts:

the pressure exerted on the interface and the viscous stress due to the normal component of velocity

(vi,1).

Figure 12 depicts the pressure distribution and the deformed interface shape, for the case of μ12

= 2, Re1 = 20, Re2 = 1, k = 0.2, Ca = 10, ε = 0.1. The pressure is seen to increase from the inner

wall (x = −1) to the outer wall (x = +1) of the channel, in both fluids (Fig. 12(a)). However, the

magnitude of the pressure differs significantly in the two fluids, as shown in Fig. 12(b). At the outer

wall the pressure is higher in fluid 1 than in fluid 2; whereas, at the inner wall it is lower in fluid 1.

Thus the interface is pushed upward into fluid 2 at the outer wall, while at the inner wall the interface

is pushed downward (Fig. 12(c)). This anti-symmetric shape is a general feature of the interface; it

is a result of the anti-symmetry of the pressure distribution and the vi,1 field.

In Sec. V, we showed that the inter-fluid interaction, at the interface, is a key factor in setting

up a variety of flow patterns. Similarly, this interaction plays an important in determining the shape

of the deformed interface. In the case of the 1–2 and 2–1 flow patterns, the vertical component of

velocity (vi,1) is in the same direction at y = k (the position of the interface at O(ε0)). Also, the

pressure decreases in opposite directions along y = k, since ui,1 is in opposite directions along the
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FIG. 12. (a) Pressure distribution across the cross section of the channel. (b) Variation in the pressure across the width of the

channel at y = k, i.e., Pi, 1(x, k). Here the solid and dashed lines represent the pressures in fluid 1 and fluid 2, respectively.

(c) The interface at O(ε1) (solid line) along with the interface in a straight channel (dashed line). The values of the system

parameters are: μ12 = 2, Re1 = 20, Re2 = 1, k = 0.2, Ca = 10, ε = 0.1.

interface. As a result, the normal stresses, exerted by the two fluids, reinforce each other to deform

the interface. However, in all the other flow patterns, which account for almost all parameter values,

vi,1 is in opposite directions at y = k. The pressure also decreases, along the interface, in the same

direction. This is the case in Fig. 12. In these situations, the stresses exerted by the two fluids counter

act each other. The fluids attempt to push/pull the interface in opposite directions. In spite of this,

there is a net normal stress that ultimately deforms the interface. This is because the cross flow in

the two fluids are not identical. Thus one of the fluids overcomes the other and controls the shape of

the interface.

In the case of Fig. 12, fluid 1 controls the shape of the interface, due to the stronger pressure

gradients within it. For the opposite set of parameter values – μ12 = 1/2, Re1 = 1, Re2 = 20, k =
−0.2 – the situation will reverse and fluid 2 will exert a stronger normal stress; the interface will

then deform upward at x = −1 and downward at x = 1. It is possible for the pressures within the

two fluids to be similar – at appropriate parameter values – in which case, the viscous normal stress

due to vi,1 will play a prominent role. Thus the interface can deform in either direction, depending

on the parameters; further, the extent of deformation will also depend on the parameter values. We

study the effect of each parameter in Subsection VII C.

B. Possibility for a flat horizontal interface: An exceptional case

Due to the opposing nature of the normal stresses, exerted by the two fluids at the interface, it

is possible for the interface to be flat and horizontal even at finite Ca. These exceptional situations

will occur when the forces exerted by the fluids on the interface exactly balance one another.

A condition on the parameters, for this special case, can be derived by setting f1(x) = 0 in (68).

The resulting equation has the form Ca × �(μ12, Re1, Re2, k) = 0. For Ca �= 0, this equation specifies

a three dimensional manifold in a four dimensional parameter space. If the parameter values lie on
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FIG. 13. Effect of varying different parameters on the deformation of the interface. (a) Effect of increasing the viscosity of

fluid 1; other parameters are kept constant at Re1 = 1, Re2 = 1, k = 0. (b) Effect of increasing the Reynolds number of fluid

1; μ12 = 1, Re2 = 1, k = 0. (c) Effect of increasing the volume fraction of fluid 1; μ12 = 1, Re1 = 1, Re2 = 1. (d) Two

opposite interface shapes, obtained when fluid 1 controls the interface (solid line) and when fluid 2 controls the interface

(dashed line).

this manifold, then the interface will be flat. A trivial example is the case of equal fluid properties

and volume fractions: μ12 = 1, Re1 = Re2, k = 0. The deformation of the interface will be smaller,

the closer the parameter values are to this manifold. However, the parameters will not lie exactly

on this manifold in a practical two-phase flow; thus, in general, the fully developed interface in a

curved channel will be deformed.

C. Effect of parameter variations

Now we investigate the effect of varying the system parameters on the shape of the interface.

We consider the case of μ12 = 1, Re1 = Re2, k = 0, in which the interface remains flat, as the base

case. Then the value of each parameter is varied sequentially to study its effect on the shape of the

interface. In Fig. 13(a), we plot the modification to the interface shape at O(ε1) for increasingly

large viscosities of fluid 1. In Fig. 13(b), three cases of increasing Re1 are depicted, while in Fig.

13(c) we consider the case of increasing holdup (volume fraction) of fluid 1. In all these figures, the

interface deformation is seen to increase with the difference between the properties of the two fluids

and their volume fractions; In fact the deformation increases as the parameters are located further

away from the manifold of special cases (Sec. VII B). The further these parameters are from the

manifold, the more unequal are the normal stresses at the interface and the greater is the net force

exerted to deform it. In Figs. 13(a)–13(c), the interface shape is controlled by fluid 1 due to stronger

pressure gradients. The opposite situation is depicted in Fig. 13(d), where the fluid properties are

flipped (dashed line), to allow fluid 2 to control the interface.

The effect of the capillary number can be anticipated from Eq. (68) for f1(x): the interface

deformation is proportional to Ca. At low Ca, surface tension dominates and reduces the deformation

of the interface; ultimately, in the limit of Ca = 0, the interface is flat. Ca is defined in terms of
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the pressure gradient as Ga2/γ . Thus even for moderate values of the surface tension, Ca will be

low if the channel dimension (a) is small. A small channel width also ensures a small value of the

curvature ratio (ε). Thus, the interface deformation in curved microchannels will be quite small, and

the results of this work will be directly applicable.

VIII. NUMERICAL SIMULATIONS

In this section, we identify the range of Reynolds numbers and curvature ratios for which the

first order perturbation solution is accurate. Towards this end, we carry out numerical simulations

of the nonlinear governing equations (1)–(4) and compare the results with the perturbation solution.

Here, we only consider the case of a flat vertical interface, which is a good approximation at small

Capillary numbers (cf. Sec. VII).

We have developed a numerical code to solve the fully developed, nonlinear, 3D two-phase

flow, in a curved channel (Eqs. (1)–(4)). The solution is obtained by iteratively solving a sequence of

nonlinear, 2D two-phase flows. The numerical scheme begins with an initial guess for the velocity

field. Treating the axial velocity as a known quantity, the continuity equation (1) and the momentum

equations in the x and y directions (2–3) are solved to determine the 2D circulatory flow (ui and vi).

Next, the axial velocity (wi) is updated, by substituting the calculated values of ui and vi into the axial

momentum equation (4) and solving for wi. The updated wi is, in turn, used to correct the circulatory

flow. This procedure is repeated, iteratively, until the velocity fields converge. The 2D flow problem

at each iteration is solved using the vorticity-stream function formulation, with a finite difference

based discretization. A 160 × 100 (x-y) grid is required for a grid independent solution, at the

Reynolds numbers investigated here (up to 400). For quicker convergence, we used the perturbation

solution as the initial guess for simulations at low values of Re and ε, while continuation was used

for higher values of these parameters.

Guided by the flow regime maps in Sec. V A, we carried out simulations for different parameter

values, to obtain all the circulatory flow patterns. The results of the nonlinear simulations are

compared with the perturbation calculation in Fig. 14, for the flow regimes studied previously in

FIG. 14. Comparison of the perturbation solution with numerical simulations for different flow patterns – plots of ui,, at x

= 0, along the vertical direction. The dashed line is the perturbation solution and the solid line is the numerical solution. (a)

Re1 = 1, Re2 = 5, μ12 = 1, k = −0.2; (b) Re1 = 1, Re2 = 1, μ12 = 1.2, k = −0.6; (c) Re1 = 1, Re2 = 2, μ12 = 1.2, k =
−0.6; (d) Re1 = 1, Re2 = 10, μ12 = 3, k = −0.6. In all cases, λ = 1, ε = 0.1.
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FIG. 15. Comparison of the perturbation solution with numerical simulations for increasing Re- plots of ui,, at x = 0, along

the vertical direction. The dashed line is the perturbation solution and the solid line is the numerical solution. μ12 = 10, λ =
1, k = −0.3 (a) Re1 = 50, Re2 = 50; (b) Re1 = 100, Re2 = 100; (c) Re1 = 200, Re2 = 200; (d) Re1 = 400, Re2 = 400.

FIG. 16. Circulatory flow patterns for the 1–3 configuration at various values of the Reynolds numbers. (a) The prediction

of the perturbation solution – this vortex pattern is independent of Re1 and Re2. The figures (b)–(e) depict the numerical

calculations: (b) Re1 = 50, Re2 = 50; (c) Re1 = 100, Re2 = 100; (d) Re1 = 200, Re2 = 200; (e) Re1 = 400, Re2 = 400. The

other parameter values are μ12 = 10, λ = 1, k = −0.3.
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FIG. 17. Modification of the axial velocity contours in a curved channel. The dashed line contours correspond to the flow in

a straight channel, while the solid line contours correspond to flow through the curved channel, as computed by numerical

simulations. The contours in both cases are plotted for the same set of axial velocity values. (a) Re1 = 50, Re2 = 50; (b) Re1

= 100, Re2 = 100; (c) Re1 = 200, Re2 = 200; (d) Re1 = 400, Re2 = 400. Other parameter values: μ12 = 10, λ = 1, k =
−0.3.

Figs. 3 and 5–7 (Type 1 and Type 2 patterns, with the exception of the 3–1 pattern; the latter is studied

in detail in the figures to follow). We find very good agreement in all cases. The small differences

between the perturbation and numerical calculations in Fig. 14 are mainly due to the simplification

made in the calculation of the stream function (ψ i,1) in Sec. III B, in which we used only the first

term of wi,0 (cf. Eqs. (34) in Eqs. (49)).

Next, we study the effect of increasing the Reynolds number on the 1–3 flow configuration (cf.

Fig. 4). The results of the numerical simulations, computed for Re1 and Re1 from 50 to 400, are

compared with the perturbation solution in Figs. 15 and 16. Line plots of ui, at x = 0, are compared

in Fig. 15. The streamlines of the circulatory flow are presented in Fig. 16. We observe that the

perturbation solution remains quite accurate up to Re = 100, but shows significant deviations from

the numerical calculations for Re = 200 and above.

The first order perturbation solution does not account for the effect of increasing Reynolds

numbers on the circulatory flow pattern. The streamlines of the perturbation solution (Fig. 16(a))

are independent of Re and ε; only the magnitude of the cross-flow changes. On the other hand, the

numerical simulations show significant changes in the vortex pattern at Reynolds numbers of 200

and 400 in Figs. 16(d) and 16(e). The vortices shift off-center and move towards the outer half of

the channel, as the Reynolds number is increased.

The differences between the predictions of the perturbation solution and the numerical calcula-

tions at high Re are directly related to the modification of the axial velocity profile, caused by the

circulatory flow. Fig. 17 depicts the contours of the axial velocity in a curved channel, along with the

contours for a straight channel. The circulatory flow causes the contours to shift outwards, at higher

Re. The first order perturbation solution is based on the axial velocity in a straight channel. Since, at
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FIG. 18. Comparison of the perturbation solution with numerical simulations for a relatively high curvature ratio of ε = 0.3.

(a) Streamlines of the cross flow. The streamlines predicted by the perturbation solution are shown in Fig. 16(a). (b) Plot of

ui,, at x = 0. The dashed line is the perturbation solution and the solid line is the numerical solution. Parameter values: Re1

= 50, Re2 = 50, μ12 = 10, λ = 1, k = −0.3, and ε = 0.3.

Re beyond 100, the circulations significantly modify the axial velocity (cf. Fig. 17), the perturbation

solution fails to describe the flow accurately. To account for the modified axial velocity, one must

extend the perturbation calculation to O(ε2) at least.

The numerical simulations and the perturbation solution show deviations for relatively high

values of the curvature ratio, as well. An example is depicted in Fig. 18, for the 1–3 configuration,

for ε = 0.3 and Re1 = Re2 = 50. Comparing the streamline plots in Fig. 18(a) with Fig. 16(a), we

see qualitative differences in the vortex patterns. It should be noted that the perturbation calculation

is more accurate for the same curvature ratio, if the Reynolds numbers are smaller.

The numerical results in this section provide an indication of the upper limit on the Reynolds

numbers and curvature ratios, below which the perturbation solution is accurate. This limit is

sufficiently high for the solution to be applied to practical stratified micro-flows.16

IX. CONCLUDING REMARKS

In this paper, the low Reynolds number flow of two vertically stratified fluids through a curved

channel has been analyzed. We have derived an asymptotic solution, for the limit of a small curvature

ratio, by applying the domain perturbation method. The solution revealed a variety of circulatory

flow patterns, when analyzed across the parameter space. Nine different flow patterns have been

identified and categorized based on the number and location of the secondary vortices. Two key

factors determining the flow pattern are: (i) the vertical location of the maximum axial velocity,

(ii) the inter-fluid competition at the interface. The first dictates the formation and location of split

vortices; the second determines the location of the sandwich vortex. By studying how the parameters

(Reynolds numbers, viscosity ratio, and volume fraction) influence these two pattern-generating

mechanisms, one can anticipate the effect of each parameter on the cross-flow. This qualitative

understanding supplements the quantitative flow regime maps presented here. These maps can be

easily constructed using the analytical solution and a computationally inexpensive algorithm; this

algorithm is based on special conditions that must be satisfied by the velocity field at the boundary

between different flow regimes. Using these maps, one can identify the operating conditions (pressure

drop and volume fraction – or the two flow rates) corresponding to a desired flow pattern.

Targeted numerical simulations confirmed the accuracy of the perturbation solution for small,

but finite, values of the Reynolds numbers (up to 100) and curvature ratios (up to 0.2). Thus, the

perturbation solution and the results given in this paper, along with the inferences drawn from them,

may be applied with confidence to stratified micro-flows. These flows are encountered in solvent

extraction16–18 and phase transfer catalysis.19 Carrying out these applications in curved channels will

enhance intra-fluid mixing and increase the device efficiency.26,9 A particularly significant result in

this regard is the existence of optimum aspect ratios, which maximize the strength of the cross-flow
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in each fluid. Choosing these aspect ratios will maximize the benefits of using curved microchannels

as inter-fluid mass transport devices.

An important issue in two-phase flows is the shape of the interface, which is unknown a priori.

Applying the domain perturbation method, we have approximated the location of the interface to

O(ε1); the results indicate that, while the interface is flat and horizontal in a straight channel, it

will almost always deform in a curved channel (in case of finite Capillary numbers). This result is

non-obvious because the centrifugal force is horizontally directed, with no component perpendicular

to a horizontal surface. The principle cause of the deformation is the indirect action of the centrifugal

force, via the cross-flow which exerts a net normal stress on the interface. However, this fact alone

is insufficient to guarantee a deformed interface, since the stresses exerted by the two fluids are

oppositely directed, in most cases, and counter-act each other. The deformation becomes inevitable

because the flow in each fluid is almost always non-identical – with different pressure and velocity

fields. Thus the associated normal stresses are unequal and lead to a resultant normal force which

deforms the interface. Exceptional cases do exist, but correspond to a three dimensional manifold

of parameter values embedded in a four dimensional parameter space- a subset which in practice

will never be exactly realized. Therefore, in a practical two-phase flow, the interface will most likely

deform (unless the Capillary number is very low).

The interface attains an anti-symmetric shape about the vertical mid-plane of the cross section.

It deflects upward at one lateral wall and downward at the other, while retaining the same position

at the center. The direction of deflection is dictated by the fluid that exerts the greater normal

stress. Thus, in addition to the extent of deformation, the direction of deflection also depends on the

parameter values. The capillary number (Ca), which is inversely related to the strength of surface

tension forces, is a key parameter; the deformation at O(ε1) is directly proportional to it.

Before concluding, some comments on the stability of stratified flow in curved channels are

in order. The interface is susceptible to a viscosity induced mode and a Rayleigh-Taylor mode;

these modes have been studied in the context of stratified flows between flat plates. However, both

these modes are stabilized by surface tension at low capillary numbers. Stable interfaces in stratified

flows have been reported in straight and curved microchannels.16 ,27,17,18 The flow can also become

unstable due to the action of centrifugal forces within the bulk of the fluid. In single phase flow, the

pair of Dean vortices becomes unstable at high Reynolds numbers and bifurcates to a four vortex

solution.4 Therefore, on the basis of the current literature and available experiments, we expect the

flow to be stable at low values of the Reynolds number, the curvature ratio and the capillary number

– the same conditions under which the asymptotic solution is applicable. Specific stability results

for stratified flow in curved channels are currently unavailable. This study provides the flow field

corresponding to the base steady state; this solution is the starting point for a linear stability analysis.

In conclusion, we highlight the important characteristics of this two-phase problem. They are:

(i) a source of vorticity (centrifugal forces) at low Reynolds numbers, (ii) inter-fluid interaction at

an interface and (iii) several independent dimensionless parameters. These characteristics result in

a rich variety of flow patterns, even in the regime of weak nonlinearity (low Reynolds numbers and

curvature ratios). The asymptotic perturbation analysis has enabled us to study the system across

parameter space in detail, providing insight into the behavior of the system at low Reynolds numbers.

This knowledge provides a basis for future experimental studies, to visualize the circulation patterns

and harness the potential of these flows for microfluidic applications.

APPENDIX: SOLUTION OF THE STREAM FUNCTION EQUATIONS

Equations (49) are recast into a linear operator form

(L x + L y)2ψi = −λRei

dw2
i,o

dy
, (A1)

where Lx and Ly are linear operators, defined as L x = − ∂2

∂x2 and L y = −λ2 ∂2

∂y2 .
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The operators Lx and Ly, along with the boundary conditions in x and y, define three eigen value

problems

L xφx = ω2
nφx φx (+1) = φx (−1) = 0 for − 1 ≤ x ≤ 1, (A2)

L yφy,1 = ω2
m,1φy,1 φy,1(−1) = φy,1(k) = 0 for − 1 ≤ y ≤ k, (A3)

L yφy,2 = ω2
m,2φy,2 φy,2(k) = φy,2(+1) = 0 for k ≤ y ≤ 1. (A4)

Lx and Ly are self-adjoint bounded linear operators; thus, the eigen vectors of (A2) to (A3) form

basis sets in the Hilbert spaces L2[−1, 1], L2[−1, k], and L2[k, 1], respectively. These basis sets are

used to represent the solution. First, we compute the eigen functions as follows.

Since the forcing term in (A1) and the boundary conditions (50)–(61) are even in x, only the

even eigen functions of (A2) are considered. Thus we have

φx = cos

(

(2n − 1)πx

2

)

; ωn =
(2n − 1)π

2
for n = 1, 2, 3 . . . . (A5)

Solving the other two eigen value problems in each fluid, we obtain

φy,1 =
(

2

1 + k

)1/2

sin

(

mπ (y − k)

1 + k

)

, ωm,1 =
mπλ

1 + k
for m = 1, 2, 3 . . . , (A6)

φy,2 =
(

2

1 − k

)1/2

sin

(

mπ (y − k)

1 − k

)

, ωm,2 =
mπλ

1 − k
for m = 1, 2, 3 . . . . (A7)

Now, the solution to (A1) is written in terms of these eigen functions.

ψi (x, y) =
∞

∑

m=1

am,i (x)φy,i +
∞

∑

n=1

bn(y)φx , (A8)

where the coefficients am, i of φy, i are functions of x, while the coefficients bn of φx are functions of

y.

In (A8), the second sum- involving φx- satisfies the homogenous forms of Eqs. (A1) respec-

tively, while the first sum- involving φy, i- satisfies the inhomogeneous forms. Therefore to find the

coefficients am, i and bn, we substitute (A8) into the respective equations and project along the eigen

functions; this results in the following set of ODEs,

(

D4
y −

2ω2
n

λ2
D2

y +
ω4

n

λ4

)

bn = 0 where Dy =
d

dy
, (A9)

(

D4
x − 2ω2

m,i D2
x + ω4

m,i

)

am,i = −Reiλ

∫

d(w2
i,o)

dy
φy,i dy where Dx =

d

dx
. (A10)

On solving (A9) and (A10) for am, i and bn we obtain the general solution (62)–(65); here C1 to

C12 are arbitrary constants, to be determined using the boundary conditions.

Applying the Dirichlet boundary conditions is straightforward. On the other hand, applying

the Neumann boundary condition results in an equation with distinct functions of x (or y). Such an

equation must be satisfied at every value of x (or y). To determine the value of the constants, we

project out the equation along each of the N basis functions φx (or φy, i); this yields N algebraic

equations.

For example, the Dirichlet condition (50) at x = 1 can be applied for every m ranging from 1 to

N, to yield N equations

C1cosh(ωm,1) + C2sinh(ωm,1) + S1(
1

ω4
m,1

+
(−1)

(π2 + ω2
m,1)2

) = 0. (A11)
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Equation (54) at x = 1 is an example of a Neumann boundary condition

∞
∑

m=1

[C1ωm,1sinh(ωm,1) + C2(sinh(ωm,1) + ωm,1cosh(ωm,1))]φy,1+

∞
∑

n=1

(2n − 1)π (−1)n+2

2
(C3cosh(

ωn y

λ
) + C4sinh(

ωn y

λ
) + C5 ycosh(

ωn y

λ
) + C6 ysinh(

ωn y

λ
)] = 0

(A12)

(A12) contains distinct functions of y; it must be projected along the N basis functions φy, 1 (m =
1,2,3..N) to obtain N equations

C1ωm,1sinh(ωm,1) + C2

(

sinh(ωm,1) + ωm,1cosh(ωm,1)
)

+
∞

∑

n=1

(2n − 1)π (−1)n+2

2

⎛

⎝C3

k
∫

−1

cosh(
ωn y

λ
)φy,1dy + C4

k
∫

−1

sinh(
ωn y

λ
)φy,1dy+

C5

k
∫

−1

ycosh(
ωn y

λ
)φy,1dy + C6

k
∫

−1

ysinh(
ωn y

λ
)φy,1dy

⎞

⎠ = 0.

(A13)

Here, m = 1,2,3..N. These N projected equations ensure that the approximate series solution,

with N basis functions, closely satisfies (A12). The error at this boundary condition is orthogonal to

the first N functions of the orthonormal basis set φy, 1. Thus the error decreases as N is increased;

taking more eigen functions in the solution not only increases the accuracy of the solution within

the domain, but also at the boundary.

Continuing in a similar fashion, we obtain equations to determine all the constants. Since the

solution is even in x, application of the boundary conditions at x = 1 automatically ensures that the

conditions at x = −1 are satisfied. Thus we have to apply 12 boundary conditions instead of 16.

Ultimately we obtain a set of 12N coupled linear equations for the 12N constants. Each time N is

increased all the constants have to be re-evaluated, to obtain the refined solution.
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