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Abstract – Spontaneous emergence of periodic oscillations due to self-organization is ubiquitous
in turbulent flows. The emergence of such oscillatory instabilities in turbulent fluid mechanical
systems is often studied in different system-specific frameworks. We uncover the existence of
a universal scaling behaviour during self-organization in turbulent flows leading to oscillatory
instability. Our experiments show that the spectral amplitude of the dominant mode of oscillations
scales inversely with the Hurst exponent of a fluctuating state variable following an inverse power
law relation. Interestingly, we observe the same power law behaviour with a constant exponent
near -2 across various turbulent systems such as aeroacoustic, thermoacoustic and aeroelastic
systems.

Introduction. – A large number of physical systems
involve turbulent flows that have chaotic variations in
properties such as pressure and velocity. Turbulent flows
are characterized by eddies of different length and time
scales that interact nonlinearly. The transfer of energy
across eddies of different length scales takes place through
various cascade processes [1, 2]. A unique collective be-
haviour can often arise from the interaction of multiple
subsystems resulting in various phenomena at many dif-
ferent scales. Turbulent flow systems can therefore be re-
garded as a complex system. Although turbulent flows are
chaotic, self-organization due to feedback in such a com-
plex system can cause the emergence of order from chaos.

Self-organization is a fundamental property of a com-
plex system, where some form of macroscopic order
emerges from interactions between subsystems of an ini-
tially disordered system. In turbulent flows, spatially
extended patterns such as large coherent structures are
formed due to self-organization, for example, devastating
cyclones in atmospheric flows. Self-organization driven
by feedback between subsystems in turbulent systems can

lead to oscillatory instabilities as observed in thermoacous-
tic [3], aeroacoustic [4], and aeroelastic systems [5]. These
oscillatory instabilities cause high amplitude vibrations
which may incur catastrophic effects in engineering sys-
tems. In the present work, we study the emergence of such
oscillatory instabilities in three different fluid mechanical
systems, namely thermoacoustic, aeroacoustic, and aeroe-
lastic systems.

Feedback between turbulent flow and other subsystems
is often the cause for oscillatory instabilities. Thermoa-
coustic instability, a state of self-sustained large amplitude
periodic oscillations in the state variables, arises due to the
nonlinear coupling between the reactive flow field and the
acoustic field in a confinement [6]. This phenomenon can
cause structural damages due to the increased thermal and
vibrational loads, forcing shutdown of gas turbine engines
[6, 7], or failure of rockets [8]. Similarly, aeroacoustic in-
stability is caused by the interaction between the acoustic
field in a confinement and vortex shedding in turbulent
flows [4]. Examples include the pleasant sounds generated
in a flute or the destructive large amplitude oscillations
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established in gas-transport pipelines [9]. Aeroelastic in-
stability occurs as a consequence of the interaction of the
flow with the structural elements of the system [5], e.g.,
the catastrophic collapse of the Tacoma Bridge [10]. The
transition to such oscillatory instabilities from a state of
chaotic oscillations in turbulent systems occurs via inter-
mittency [11–13]. We attribute the emergence of ordered
periodic oscillations from high dimensional chaos to self-
organization due to feedback between subsystems.

We explore the scaling behaviour of such self-
organization leading to oscillatory instabilities in turbu-
lent fluid mechanical systems. The proximity to the onset
of oscillatory instability in each system is quantified using
the Hurst exponent (H ) which also serves as a system inde-
pendent parameter to study the scaling behaviour of self-
organization. An unsteady variable of each of the three
systems is measured as we vary an appropriate system-
specific control parameter to approach oscillatory instabil-
ity. We estimate H, which is related to the fractal dimen-
sion (D) as H = 2−D, for the time series corresponding
to each state [14].

Results. – We analyze the time series of acoustic
pressure fluctuations during the transition to oscillatory
instabilities for thermoacoustic and aeroacoustic systems.
Whereas, in the case of the aeroelastic system, we analyze
the time series of strain experienced by the structure. In
this work, we study the transition to oscillatory instabili-
ties in the following different cases: (i) a bluff body stabi-
lized combustor of length 700 mm, (ii) and one of length
1400 mm, (iii) a swirl stabilized combustor of length 700
mm, (iv) an aeroacoustic system and (v) an aeroelastic
system. We choose these systems as they have different
mechanisms for onset of oscillatory instability and have
different levels of turbulence, amplitude and frequency of
oscillations. The first three cases are for thermoacoustic
system wherein the first two cases, the length of the com-
bustor is varied to achieve different acoustic timescales.
Similarly, the different flame stabilizing mechanisms ren-
ders completely different flow physics. Experimental se-
tups are summarized in Fig. 1 and detailed descriptions of
the setups are provided in Appendix B.

In Fig. 2, we show representative datasets from all the
three systems.

I) Figure 2a-c shows the acoustic pressure fluctuations in
a thermoacoustic system (case (i)) during the transition
to thermoacoustic instability. Figure 2a corresponds to
a chaotic state far from the oscillatory instability. The
time series consists of low amplitude aperiodic fluctu-
ations. Recently, Tony et al. [15] showed that these
aperiodic fluctuations have features of high-dimensional
chaos contaminated with white and coloured noise.
Nair et al. [11] discovered that the transition to ther-
moacoustic instability occurs through a state of inter-
mittency, which contains epochs of high amplitude pe-
riodic oscillations amidst low amplitude aperiodic oscil-
lations (Fig. 2b). Thermoacoustic instability (Fig. 2c)

Fig. 1: Schematic of the experimental setups. (a) Turbulent
combustor (thermoacoustic system) exhibiting transition to
thermoacoustic instability. Mass flow rate of air is increased by
keeping the mass flow rate of fuel constant thus increasing Re

to attain different dynamical states. The acoustic pressure fluc-
tuations are acquired using a piezoelectric transducer. (b) An
aeroacoustic system with two orifices. Vortices are shed when
the turbulent flow passes through the orifices. We increase the
mass flow rate of the air to achieve different dynamical states.
We measure the acoustic pressure fluctuations during the tran-
sition to aeroacoustic instability. (c) In the aeroelastic system,
the left end of the beam has a small vertical fin attached to
it, akin to a winglet of an aircraft wing. When a jet of air
passes along the length of the cantilever from left to right, vor-
tices are shed from the fins. These vortices impart an unsteady
aerodynamic load to the cantilever. We measure the resulting
strain on the cantilever close to the fixed end of the beam. The
control parameter in this case is the mean velocity of the jet.

corresponds to a state of high amplitude periodic os-
cillations. We observe a similar behaviour for all the
above mentioned combustor configurations during the
transition to thermoacoustic instability.

II) Figure 2d-f shows the time series of pressure fluctu-
ations corresponding to the transition to aeroacoustic
instability. The temporal behaviour of acoustic pres-
sure during this transition is similar to that in the ther-
moacoustic system, despite the fact that the amplitude
levels in both systems differ by orders of magnitude.

III) Figure 2g-i represents the time series of strain experi-
enced by the structure during the transition to aeroelas-
tic instability. The observed oscillations are similar to
those of the thermoacoustic and aeroacoustic systems,
even though we are measuring a completely different
unsteady variable.

From Fig. 2, we clearly see that these turbulent systems
considered here follow an intermittency route to oscilla-
tory instability. Next, we quantify the proximity to the
onset of oscillatory instability in the discussed systems us-
ing H. As mentioned earlier, the periodic content in time
series of the unsteady variable increases as we approach
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Fig. 2: Time series of state variables during the transition to oscillatory instability. (a-c) Data representing the acoustic
pressure fluctuations acquired from a bluff body stabilized combustor of length 700 mm. The corresponding Re for a, b and
c are (1.9 ± 0.053)x104, (2.6 ± 0.069)x104 and (2.8 ± 0.073)x104 respectively. (d-f) Acoustic pressure fluctuations acquired
during the transition to aeroacoustic instability (Re = 5615 ± 185, 7283 ± 198 and 9270 ± 212 corresponding to d, e and f).
(j-i) The time series of strain experienced by the cantilever in the aeroelastic system as we vary Re (2384 ± 111, 3972 ± 142
and 4768 ± 159). In all the systems, we observe a transition from low amplitude aperiodic fluctuations (a, d and g) to high
amplitude periodic oscillations (c, f and i) via a regime of intermittency where intermittent bursts of high amplitude periodic
oscillations appear in a nearly random fashion amidst epochs of low amplitude aperiodic fluctuations (b, e and h) as we vary
the control parameters (Re increases from top to bottom). The transition from aperiodicity to periodicity always occurs via a
regime of intermittency for other configurations of these systems as well.

an oscillatory instability. The state of low amplitude ape-
riodic oscillations has a fractal nature which is born out
of the inherent fractal nature of turbulence. As the sys-
tem self-organizes into oscillatory instability, the fractal
time series transitions to a more regular periodic signal
[16]. We capture the variation of fractal characteristics of
the time series by calculating H following the multifractal
detrended fluctuation analysis detailed in the Appendix
A.

In Fig. 3, we plot the amplitude of the dominant mode of
oscillations (A) and Hurst exponent (H ) for the time series
of pressure oscillations as a function of Reynolds number
(Re) for the thermoacoustic system (described earlier as
case (i)). Note that, A is the amplitude of the dominant
peak from the amplitude spectrum of the fluctuating state
variable obtained using fast Fourier transform. The signal
corresponding to thermoacoustic instability has H very
close to 0, as the signal is perfectly periodic. We observe

that during the transition, A increases steeply near the
onset of thermoacoustic instability as we vary the control
parameter. In contrast, H gradually decreases towards
zero during the transition. The amplitude of oscillations
or the value of A at the onset of oscillatory instability de-
pends on the specific system under consideration. In con-
trast, the variation of H describes the self-organization of
turbulent flows into oscillatory instabilities, independent
of the system features.

We plot the variation of A/AI with H in log-log scale
(Fig. 4) for the five different cases mentioned earlier. Here,
we normalize A of each system with the amplitude of oscil-
lations at the onset of instability (AI) for the given system.
We observe that all the data points collapse to a single
straight line and this reveals an inverse power law rela-
tion between A and H during the intermittency regime for
all the cases considered. Experimentally observed value
for the power law exponent is found to remain constant
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Fig. 3: Amplitude of the dominant mode of oscillations and
the Hurst exponent for unsteady pressure signals as a function
of Reynolds number (Re). We analyze the data from a labo-
ratory bluff body stabilized combustor of length 700 mm for
different Re. The amplitude is obtained from the amplitude
spectrum plotted with a resolution of 4 Hz. The amplitude
increases steeply near the transition to thermoacoustic insta-
bility, whereas the Hurst exponent shows a gradual decrease
during the transition and it is approaching zero.

around -2, for all the data irrespective of the frequency of
oscillations or the physics of the system.
Scaling laws and universality are important concepts in

statistical physics. They describe the striking similarity in
the behaviour during critical transitions among systems
that are otherwise different. Scaling in non-equilibrium
phase transitions is a topic of interest in recent years [17].
For example, Tham et al. [18] experimentally obtained a
similar power law scaling relationship between the elec-
trostatic fluctuation levels and the linear growth rate for
self-organization in turbulent plasma leading to a quasi-
coherent state.

Discussions. – Transition to oscillatory instability in
the class of turbulent fluid mechanical systems discussed
here occurs via the state of intermittency and we observe
a universal scaling law during the transition. In fluid dy-
namics literature, intermittency refers to a state in which
a laminar flow is interrupted by high amplitude turbulent
bursts at apparently random intervals [19]. During the
bursts, the phase space trajectory goes to a larger chaotic
attractor with the original periodic attractor as its sub-
set. Three types of bifurcations are associated with such
intermittencies, namely, cyclic fold, subcritical Hopf, and
subcritical period-doubling bifurcations. Intermittencies
corresponding to these bifurcations are labelled as type I,
II and III, respectively [20, 21]. 1

In our case, to begin with, the system is chaotic and
is Lyapunov stable. However, during intermittency, this
stability is lost and the system intermittently approaches

1Several other types of intermittencies have been reported and
discussed [22].

Fig. 4: Inverse power law scaling of amplitude with Hurst ex-
ponent. Variation of amplitude with Hurst exponent is plotted
on a logarithmic scale for the data acquired from different sys-
tems. We observe a power law relation with a constant power
law exponent around -2 (-1.83 ± 0.17 for the bluff body com-
bustor with length 700 mm, -2.22 ± 0.58 for the bluff body
combustor with length 1400 mm, -2.06 ± 0.24 for the swirl
combustor, -2.02 ± 0.32 for the aeroacoustic system and -2.21
± 0.19 for the aeroelastic system). The uncertainties are esti-
mated for 90% confidence intervals. The points with H > 0.1
are ignored while finding the power law exponent as they rep-
resent the low amplitude aperiodic oscillations far away from
the self-organized state.

limit cycle oscillations. In contrast to the known types of
intermittencies discussed above, here, the intermittency
comprises of high amplitude periodic oscillations amidst
epochs of low amplitude aperiodic oscillations [23]. The
trajectory in the phase space goes to a larger periodic at-
tractor from a smaller chaotic attractor during the inter-
mittent bursts (Fig. 2 b, e and h). Thus, there is an inher-
ent difference in the type of intermittency observed dur-
ing the emergence of oscillatory instabilities in turbulent
flows, as observed for example in thermoacoustic, aeroa-
coustic and aeroelastic systems compared to the classical
ones.

In the present study, we observe the scaling behaviour
in all the systems we have examined, where oscillatory in-
stabilities emerge in turbulent flows. We do not observe
this inverse power law relation in models such as kicked
oscillator [24] or noisy Hopf bifurcations [25], even though
they capture the transition from chaos to limit cycle via
intermittency. Further, this scaling is not exhibited by
models which capture the transition from chaos to peri-
odic oscillations through type I, II and III intermittencies
(shown in the supplementary material). This experimen-
tally observed scaling appears like a universal property
for a class of systems in which order emerges from chaos,
as a result of self-organization in turbulence following an
intermittency route.

Fully developed, isotropic turbulence has a well-known
power-law scaling for its energy spectrum [1, 2], which
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shows the distribution of energy across different wave num-
bers. The instances of self-organization in turbulence lead-
ing to oscillatory instability discussed in this paper are as-
sociated with the emergence of periodically shed, large co-
herent structures in the flow. This is accompanied by the
redistribution of energy across different length scales and
thus deviation from the scaling observed in fully developed
turbulent flows. In the various systems which we exam-
ine, as we approach oscillatory instabilities by changing
some control parameter of each system, the redistribution
of energy into the most dominant scale (i.e., scale of coher-
ent structure) in each system is captured by studying the
amplitude spectra of an appropriate state variable of the
system. In our study, we used unsteady pressure measure-
ments for thermoacoustic and aeroacoustic systems and
strain rate for the aeroelastic system.

Conclusions. – In the present study, using three
different systems, we describe a universal route through
which oscillatory instabilities emerge in turbulent flow.
The amplitude of the dominant mode of oscillations in-
creases following an inverse power law scaling with the
Hurst exponent of the time series of the appropriate state
variable, and the scaling exponent is invariant across the
three systems considered. The proximity to the onset
of oscillatory instabilities is quantified by the Hurst ex-
ponent, which serves as a system independent measure
of self-organization. Here, the spectral amplitude of the
dominant mode of oscillations serves as the order param-
eter of the system.
Power law scaling have been discovered for various criti-

cal transitions. Here, we report the experimental observa-
tion of a scaling behaviour (A ∝ H−2) for a class of non-
equilibrium systems. The discovery of this unique scaling
enables a priori estimation of the amplitude of oscillations.
This information can be critical in devising the counter
measures needed to limit the possible damages from such
oscillatory instabilities.
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