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ABSTRACT

The hyperbolic dependence of catalytic rate on substrate concentration is a classical result in enzyme kinetics, quantified by the celebrated
Michaelis–Menten equation. The ubiquity of this relation in diverse chemical and biological contexts has recently been rationalized by a graph-
theoretic analysis of deterministic reaction networks. Experiments, however, have revealed that “molecular noise”—intrinsic stochasticity
at the molecular scale—leads to significant deviations from classical results and to unexpected effects like “molecular memory,” i.e., the
breakdown of statistical independence between turnover events. Here, we show, through a new method of analysis, that memory and non-
hyperbolicity have a common source in an initial, and observably long, transient peculiar to stochastic reaction networks of multiple enzymes.
Networks of single enzymes do not admit such transients. The transient yields, asymptotically, to a steady-state in which memory vanishes
and hyperbolicity is recovered. We propose new statistical measures, defined in terms of turnover times, to distinguish between the transient
and steady-states and apply these to experimental data from a landmark experiment that first observed molecular memory in a single enzyme
with multiple binding sites. Our study shows that catalysis at the molecular level with more than one enzyme always contains a non-classical
regime and provides insight on how the classical limit is attained.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031368., s

I. INTRODUCTION

TheMichaelis–Menten equation (MME), describing the hyper-
bolic dependence of the rate of catalysis on the substrate concen-
tration, is a classical result in enzyme kinetics.1 It was derived by
Michaelis and Menten in 1913 for a network of three elementary
reactions, E + S ⇌ ES → E + P, describing the reversible bind-
ing of enzyme E with substrate S to form complex ES and its
irreversible dissociation into product P and regenerated enzyme
E.2–4 The hyperbolic dependence of catalytic rate on substrate con-
centration is found to hold in enzymatic networks of far greater
complexity. It implies a linear relation between the inverse cat-
alytic rate and the inverse substrate concentration and, in this
form, is widely used to estimate rate parameters and infer mecha-
nisms from kinetic data.5 The surprising ubiquity of this equation
in chemical and biological processes has recently been rationalized
by a graph-theoretical analysis of complex, deterministic, reaction
networks.6

At the molecular level, however, enzymatic reactions do not
proceed deterministically.7–12 Fluctuations of both the quantum
mechanical and thermal origin, termed “molecular noise,” influence
each step of a chemical reaction such that neither the lifetime of
a chemical state nor the state to which it transits can be known
with certainty.13–17 Furthermore, the discrete change in the reac-
tant numbers is comparable to the number of reacting molecules,
and a description in terms of continuously varying concentrations is
inadmissible.13–19 In the limit of large numbers of reactants, when
both fluctuations and the change in reactants compared to their
total number are small, a deterministic description in terms of con-
tinuously varying concentrations is recovered.19 In addition, the
Michaelis–Menten equation is obtained when there is a separation of
timescales between the (rapid) equilibration of the enzyme and com-
plex and (slow) product formation.2 This rapid equilibrium approx-
imation is a special case of the steady-state approximation (SSA), in
which the rates of complex formation and dissociation are assumed
to be equal, as noted by Briggs and Haldane.20
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The first theoretical study of catalytic fluctuations was under-
taken by Bartholomay half a century after the discovery of the
Michaelis–Menten (MM) equation.19 His principal contribution
was to show that discrete-state continuous-time Markov processes
provide a mathematical framework that incorporates the discrete
change in molecular numbers, the effect of molecular noise in each
reaction step, and reaction mechanisms of arbitrary complexity.
The classical rate equations for concentrations were thus replaced
by chemical “master equations” for the probabilities of the (non-
negative) number of reactants. Bartholomay obtained the mean and
variance of these for the Michaelis–Menten mechanism E + S⇌ ES
→ E + P. The apparent irreproducibility of experiments that mea-
sured the rate of change of concentrations was recognized to be a
fluctuation effect, and a method was suggested to estimate the rate
constraints from the variances of the concentrations.

The long hiatus of interest that followed this pioneering work
was brought to a close by a landmark experiment that directly
observed catalytic fluctuations at the single-molecule level.10,11 As
concentrations are not defined for a single molecule, the exper-
iment measured, instead, the times at which the enzyme yielded
products, one product at a time. These time series data were ana-
lyzed in terms of the interval between consecutive turnovers, defined
to be the “waiting time.” For repeated experiments under identical
conditions, the waiting times showed a distribution and this was
attributed to the effect of molecular noise. The analysis of wait-
ing time distributions revealed several remarkable facts. First, the
distribution changed character with an increase in substrate con-
centration, from a single exponential to one that was not. Second,
the inverse of the mean waiting time obeyed the Michaelis–Menten
equation (MME) at low substrate concentrations. Third, the ran-
domness parameter, the ratio of the variance to the squared mean,
was a monotonically increasing function of the substrate concen-
tration bounded below by one. Fourth, the waiting times between
consecutive turnovers were found to be statistically dependent
with substantial positive correlations, an effect termed “molecular
memory.” Subsequent experiments in single-nanoparticle catalysis
confirmed these empirical facts and established their generality.21–23

While it was understood that these seemingly disparate observa-
tions have their origin in molecular noise, the precise manner in
which they emerge from underlying molecular fluctuations and
how they are influenced by different reaction mechanisms was not
elucidated.

The central theoretical question that needs to be answered in
rationalizing such single-molecule temporal data is the following:
Can we derive the statistics of temporal fluctuations from the chem-
ical master equation (CME), incorporating discreteness, molecu-
lar noise, and reaction mechanisms, in the manner that the statis-
tics of number fluctuations was derived by Bartholomay? Here, we
present a formalism that permits us to answer this question affirma-
tively. Using this formalism, we are able to make a direct connection
between reaction mechanisms and the statistics of waiting times
and, thus, explain their puzzling features from a unified point of
view.

In Sec. II, we consider a generic stochastic enzymatic reac-
tion network, incorporating conformational fluctuations and par-
allel pathways to product formation, and present the correspond-
ing chemical master equation (CME). We marginalize the reactant
probabilities to obtain the probability of there being n turnovers at

any given time and present several experimentally relevant summary
statistics. We introduce the probability distributions of the turnover
and waiting times and present their relevant summary statistics.
We then derive an expression that connects the reactant probabili-
ties of the CME to the distribution of waiting times. This provides
the sought-after link between the description in terms of waiting
times (point process),24 in which experimental data are naturally
recorded, and the description in terms of reactant numbers (count-
ing process),25 through which mechanisms are most conveniently
expressed.

In Sec. III, we apply this formalism to study a reaction net-
work corresponding to a single enzyme. In such a network, reactant
numbers are either zero or one, and a non-zero value of one reac-
tant number implies zero values of all others. We explore the con-
sequences of this “fermionic” character and find that, irrespective
of the complexity of the network, turnovers are always statistically
independent and identically distributed or, in other words, consti-
tute a renewal process.26 A single-enzyme network, then, cannot
show molecular memory.

In Sec. IV, we consider a network consisting of replicas of
single-enzyme networks, corresponding to oligomeric enzymes with
independent and identical binding sites. The absence of “fermionic”
character in these networks permits turnovers to be statistically
dependent and allows them to showmolecular memory. The statisti-
cal dependence decreases with the number of turnovers and vanishes
asymptotically. We characterize this transient with fading memory
through the conditional distribution of consecutive turnovers, which
we relate to measures of the single-enzyme network. This analysis
explains the counter-intuitive appearance of memory in a process
whose elementary steps, recalling that the CME describes a Markov
process, are memoryless.

In Sec. V, we discuss new statistical measures that, contrary to
existing measures,27–29 do not assume the statistical independence
of turnovers. Our measures, then, can be applied uniformly over
the entire duration of the catalytic process, both in the transient
state with memory and the steady-state in which the memory van-
ishes. We provide an expression for the enzymatic velocity in terms
of turnover times, which reduces to the classical expression in the
thermodynamic limit and elucidates how this limit is reached.

In Sec. VI, we compare our theory with the classic experiment
on β-galactosidase,10 a tetrameric enzyme with independent sites,
and find excellent agreement with four replicas of a single-enzyme
network with conformers and parallel pathways. Saliently, we do
not need to assume any ad hoc distribution of reaction rates:30,31 the
“dynamic disorder” implied by such a distribution is an emergent
feature of our theory.

We summarize our results in Sec. VII with a brief discussion on
how our theory compares with stochastic kinetic models that make
an a priori assumption of dynamic disorder in the reaction pathway.
We conclude, in Sec. VIII, with a discussion on how our theory can
be extended to non-replica networks corresponding to enzymes with
interacting binding sites.

II. STOCHASTIC ENZYMATIC NETWORKS

The stochastic description of chemical reactions begins with a
set of k non-negative integers n = (n1, . . ., nk) describing the number
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of molecules of the k-th species. Elementary reactions,

σ-th reaction step: n
t→σ⇌
t←σ

n + rσ , (1)

labeled by the index σ, take the state n to the state n + rσ , where rσ
is a vector representing the integer changes of each species, as deter-
mined by the reaction stoichiometry. The probability per unit time
that this reaction takes place is t→σ (n). The corresponding backward
reaction takes the state n + rσ to the state n at the rate t

←
σ (n+rσ). The

rates are combinatoric functions that follow from the law of mass
action. The probability P(n, t) of being in the state n at time t is
governed by the CME,19,25,32

∂tP(n) ≙∑
σ

t
→
σ (n − rσ)P(n − rσ) − t←σ (n)P(n)

+∑
σ

t
←
σ (n + rσ)P(n + rσ) − t→σ (n)P(n), (2)

which is a system of coupled ordinary differential equations, equal
in number to the number of distinct states of the network.

Here, we consider enzymatic networks that contain the
Michaelis–Menten mechanism Ei + S ⇌ ESi → Ei + P as a basic
motif while allowing for conformers i = α, β, . . . and parallel path-
ways to product formation.10,11 The state is described by the vector
n ≙ (nEα ,nESα ,nEβ ,nESβ , . . . ,n) of non-negative integers compris-
ing of, in obvious notation, the number of enzyme and complex, of
each conformational type, and of products. Examples of such net-
works for the simplest case of two conformers are shown in Fig. 1
for both parallel and off-pathway kinetics.33 The corresponding
rates are listed in Table I. The bimolecular complexation steps are
replaced by pseudo-unimolecular steps with effective rate constants
denoted by primes. All rates are then linear in the state vector n. It
is important to note that the rates do not depend on the number of
products.

TABLE I. Elementary reaction steps and their rates for the single-site network
labeled (a) in Fig. 1. The networks labeled (b) through (c) are obtained by set-
ting corresponding rate parameters to zero. The forward reaction takes the state
n ≙ (nEα ,nESα ,nEβ ,nESβ ,n) to the state n + rσ . The pseudo-first-order rate con-

stants for the forward reaction are k′α = kα[S] and k′β = kβ[S]. All rates are independent

of the number of products n.

Step rσ t→σ (n) t←σ (n)
Eα ⇌ Eβ (−1, 0, 1, 0, 0) γαβnEα γαβnEβ
ESα ⇌ ESβ (0, −1, 0, 1, 0) δαβnESα δαβnESβ
Eα ⇌ ESα (−1, 1, 0, 0, 0) k′αnEα k−αnESα
Eβ ⇌ ESβ (0, 0, −1, 1, 0) k′βnEβ k−βnESβ
ESα → P + Eα (1, −1, 0, 0, 1) kpαnESα 0
ESβ → P + Eβ (0, 0, 1, −1, 1) kpβnESβ 0

It is convenient to partition the state vector into n = (n⋆, n),
where n

⋆
≙ (nEα ,nESα ,nEβ ,nESβ , . . .) are “hidden” state compo-

nents unobserved in experiment and n is the “observed” product
state visible through fluorescence bursts. The hidden state vector
has 2l components in a network with l conformers. For a network
with ν enzymes, or one oligomeric enzyme with ν active sites, mass
conservation implies that the sum of the number of enzymes in
the uncomplexed and complexed states must sum to ν: nEα + nEβ
+⋯ + nESα + nESβ +⋯ ≙ ν. For a single enzyme (or active site), this
implies that nEα + nEβ +⋯ + nESα + nESβ +⋯ ≙ 1. Therefore, the com-
ponents of the hidden state vector in a single-enzyme network have
a “fermionic” character, where the components only take the val-
ues zero or one and only one component is non-zero at any point
in time. Mass conservation also implies that the number of hidden
states is finite and equal to the number of compositions of ν into l
parts. For a single enzyme with l conformers, this gives 2l states. We
shall return to this important property below.

FIG. 1. Enzymatic networks for a single catalytic site including conformational fluctuations and parallel pathways to product formation. The general network in (a) reduces to
the special cases in (b) through (f) when rate constants for the corresponding steps are set to zero.
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Unlike the hidden components, the number of products n can
take values from zero to infinity. The probability of their being
n products at time t is obtained by marginalizing the reactant
probability over the hidden states,

P(n, t) ≙∑
n⋆

P(n, t). (3)

This is the fundamental probability distribution in the counting pro-
cess description of turnovers. The expectation with respect to this
probability distribution of the mean and variance of n defines the
enzymatic velocity and Fano factor,34

V(t) ≙ d

dt
⟨n⟩, ρ(t) ≙ ⟨n

2⟩ − ⟨n⟩2
⟨n⟩ (t ≥ 0). (4)

Such quantities have been calculated for a variety of networks begin-
ning with the work of Bartholomay. However, as mentioned in the
Introduction, they are not directly relevant to single-enzyme exper-
iments, which record the times Tp at which turnovers occur, rather
than the number of turnovers at time t. Here, p = 1, 2, . . . is the
turnover number index. This motivates the study of the point pro-
cess of turnovers, for which we now introduce the fundamental
probability distributions.24

We define the turnover time for the p-th product, Tp, to be the
smallest value of t such that n ≥ p, or more precisely, Tp = inf{t > 0:
n(t) ≥ p}. The cumulative distribution of the p-th turnover time Tp is
denoted by P(Tp ≤ t). This defines the survival probability P(Tp > t)
= 1 − P(Tp ≤ t) and probability densitywTp

(t)dt ≙ P(t < Tp ≤ t+dt).
The expectation of Tp with respect to the probability density defines
the mean turnover time and the randomness parameter for the p-th
turnover,

μp ≙ ⟨Tp⟩, rp ≙ p
⟨T2

p ⟩ − ⟨Tp⟩2
⟨Tp⟩2

(p ≙ 1, 2, . . .). (5)

While the current definition of the randomness parameter is p inde-
pendent, r = ⟨τ2⟩ − ⟨τ⟩2/⟨τ⟩2,35,36 the factor of p in the above defini-
tion of the randomness parameter is introduced for reasons that will
become apparent in Sec. V. Higher moments can be studied but, to
the best of our knowledge, have not been measured in experiment.

To quantify statistical dependences, it is convenient to define
the waiting time between turnovers,

τp ≙ Tp − Tp−1, (6)

and study their joint density distributions, w(τ1, τ2, . . .). The
marginal distributions w(τp) describe the statistics of individual
turnovers, while the joint distributions w(τp, τq) describe the statis-
tics of pairs of turnovers. It is convenient to write this joint distribu-
tion as

w(τp, τq) ≙ w(τp)g(τp, τq)w(τq) (7)

so that statistical dependences are contained in g(τp, τq). The pairs
of turnovers are statistically independent if and only if g(τp, τq) = 1
for all p and q. The correlation function

Cpq ≙ ⟨τpτq⟩ ≙ c(τp, τq)⟨τp⟩⟨τq⟩ (8)

serves as a second-order statistic for identifying statistical depen-
dences. The expectations are with respect to the joint distribution
w(τp, τq). Statistical dependences and molecular memory imply
c(τp, τq) ≠ 1.

The question naturally arises as to how the probability distri-
butions for the counting process, P(n, t), and the point process,
P(Tp ≤ t), together with their summary statistics, are related to each
other and to the underlying CME, which is the generative process
that underlies both distributions. We provide the answer below.

From the definitions of the random variables n andTp, it is clear
that at any time t,

Tp ≤ t⇐⇒ n(t) ≥ p, (9)

or in other words, these two events are equal in probability. Since the
event n(t) < p is their complement, we have

P(Tp ≤ t) ≙ P(n ≥ p, t) ≙ 1 − P(n < p, t). (10)

Since the product states are mutually exclusive, we have

P(n < p, t) ≙ ∑p−1
n≙0 P(n, t). Combining this with the marginal

expression for P(n, t), we obtain

P(Tp ≤ t) ≙ 1 −
p−1

∑
n≙0
∑
n⋆

P(n, t). (11)

This relation between the turnover time distribution and the solu-
tion of the CME is the central result of this section. It is applicable to
networks of arbitrary complexity and provides the sought-after con-
nection between the statistics of turnovers and reactionmechanisms.
The probability density follows upon differentiation,

wTp
(t) ≙ −

p−1

∑
n≙0
∑
n⋆

∂tP(n, t), (12)

and is often more convenient for comparison with experimental
data, when the latter is presented in the form of a probability density.
A special case of this relation was first obtained in Ref. 13.

We have not been able to find a relation of this generality
that relates the waiting time distributions w(τp) and w(τp, τq) to
the solution of the CME. However, in particular instances, where
the network is “fermionic” or has a “replica” character, relations to
the underlying CME can be found, as we show in Secs. III and IV,
respectively.

III. RENEWAL STATISTICS IN SINGLE-ENZYME
NETWORKS

As we noted above, hidden states in a single-enzyme network
have a “fermionic” character: the components of the hidden state
vector can only take the values zero or one, and only one component
can be non-zero at any time. This implies that immediately after the
conclusion of a turnover, say, the p-th, the network is in a state cor-
responding to a single uncomplexed enzyme. To elaborate, consider
the MM network with state vector n = (nE, nES, n) and hidden state
vector n⋆ = (nE, nES). The two allowed hidden states are (1, 0) and
(0, 1) corresponding to the uncomplexed and complexed enzyme.
Labeling these by E and ES, the allowed states of the network are
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(E, n) and (ES, n). At the conclusion of the p-th turnover at t = Tp,
the network is in the state (E, p), and so taking limits from above,

lim
t→T+

p

P(E, p, t) ≙ 1. (13)

For the two-conformer ppMM network with state vector
n ≙ (nEα ,nESα ,nEβ ,nESβ ,n) and hidden state vector n⋆ ≙ (nEα ,nESα ,
nEβ ,nESβ), the four allowed hidden states are (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), and (0, 0, 0, 1). Labeling these by Eα, ESα, Eβ, and ESβ, the
allowed states of the network are (Eα, n), (ESα, n), (Eβ, n), and (ESβ,
n). At the conclusion of the p-th turnover, the network is either in
the state (Eα, p) or in the state (Eβ, p), and so

lim
t→T+

p

P(Eα, p, t) + P(Eβ, p, t) ≙ 1. (14)

More generally, for any single-enzyme network, the states can be
labeled by the conformation of the enzyme and the number of prod-
ucts, and at the conclusion of a turnover, the network is surely
in one of the uncomplexed states with the total probability being
partitioned between those states. As we show below, this recur-
rent return to a fixed subset of the hidden states, together with the
structure of the CME for such networks, implies that condition-
ing on a turnover makes the future independent of the past. This
results in turnovers that are statistically independent, with wait-
ing time distributions that are identically distributed. Single-enzyme
turnovers, therefore, form a renewal process and cannot show
memory.26

In the absence of memory, attention can be focussed entirely
on the statistics of the waiting time, which, since it is identically dis-
tributed for all p, we simply denote by τ. We summarize our two
main results before providing explicit results for theMM and ppMM
networks. First, we show that for a model with l conformers, the
waiting time distribution is a sum of 2l exponentials whose time
constants are eigenvalues of a 2l × 2l matrix related to the CME.
The behavior of the waiting time distribution is related to the spac-
ing of these eigenvalues. For well-separated eigenvalues, the expo-
nential with the lowest time constant is dominant, but for closely
spaced eigenvalues, all the 2l exponentials contribute. This multi-
exponentiality leads to variances that are large compared to the
squared mean and, hence, to a randomness parameter that exceeds
unity. Our analysis thus transparently relates “dynamic disorder” to
reaction mechanisms with fixed rate constants, in contrast to fluc-
tuating rate parameters.30,31 Second, we show that the randomness
parameter for τ is a sensitive measure of network topology. It is
known that a Markov chain comprising of a linear network of arbi-
trary complexity always yields r ≤ 1, bounded below by the inverse
of the number of rate determining steps σ: r ≥ 1

σ
.37 The minimum

is attained for a linear sequence of states with equal rate constants,
first studied by Erlang.38 For a single step reaction or a linear net-
work with a single rate determining step, thus, r = 1. We find that a
branched topology is necessary, but not sufficient, to obtain r > 1.
Our explicit calculation for the ppMM network shows that r can
vary continuously from r < 1 to r > 1 as the substrate concentra-
tion is increased. Thus, networks can be rationally designed to yield
a desired value of the randomness parameter.

Consider, now, the CME for the MM network written in terms
of the labels E, ES, and n,

∂tP(E,n) ≙ −kaP(E,n) + k−1P(ES,n) + k2P(ES,n − 1),
∂tP(ES,n) ≙ +kaP(E,n) − k−1P(ES,n) − k2P(ES,n),

n ≙ 0, 1, 2, . . . . (15)

It is understood that states with n < 0 have zero probability.
This is an infinite system of autonomous linear differential equa-
tions whose solution can be obtained using the technique of gen-
erating functions. A great simplification results when we recognize
the following two features. First, conditioning the system on the
p-th turnover at t = Tp collapses the probability on the state (E, p)
so that P(E, p) = 1 and all other probabilities are zero. Since proba-
bilities only flow into states with increasing number of products, this
implies that probabilities of all states with n < p remain zero subse-
quently. The future is made conditionally independent of the past.
Second, the distribution of the (p + 1)th turnover Tp+1, conditioned
on the p-th turnover at Tp, is governed by the same set of equations
and initial conditions as the first turnover T1, conditioned on the
initial state at t = 0. This implies that T1 and Tp+1 − Tp are equal in
distribution for all p. Therefore, the waiting times τp are independent
and distributed identically to T1.

From Eq. (11), the cumulative distribution of T1 is

P(T1 < t) ≙ 1 − ∥P(E, 0, t) + P(ES, 0, t)∥, (16)

and from the CME, these two probabilities obey

[ ∂tP(E, 0, t)
∂tP(ES, , 0, t)] ≙ [−k

′
1 k−1

k′1 −(k−1 + k2)][ P(E, 0, t)P(ES, 0, t)]
with initial condition P(E, 0) = 1 and P(ES, 0) = 0 at t = 0. This is a
system of ordinary differential equations for the vector P(t) = [PE(t),
PES(t)], where P(E, 0, t) is abbreviated as PE(t), with the system
matrix

L ≙ [−k′1t k−1t
k′1t −(k−1 + k2)t].

The solution is obtained in terms of the matrix exponential as
P(t) = exp(Lt) ⋅P(0) with the explicit result,

PE(t) ≙ 1

2A
[(A + B − C)e−(B+A)t + (A − B + C)e−(B−A)t],
PES(t) ≙ k′1

2A
[e−(B−A)t − e−(B+A)t],

where k′1 = k1[S], 2A ≙

√(k′1 + k−1 + k2)2 − 4k′1k2 and

2B ≙ [k′1 + k−1 + k2], and C = k−1 + k2. From this, it is clear that
the cumulative distribution is a sum of two exponentials whose
time constants are determined by the eigenvalues of the 2 × 2
matrix L. The waiting time distribution follows on differentiating
the cumulative distribution,

w(τ) ≙ k2k
′
1

2A
[e(A−B)τ1 − e−(A+B)τ], (17)

and the corresponding mean and randomness parameter are

⟨τ⟩ ≙ 1

k2
+
k−1 + k2

k1

1∥S∥ , (18)
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r ≙
(k1∥S∥ + k−1)2 + 2k2k−1 + k22(k1∥S∥ + k−1 + k2)2 . (19)

The variation of these is shown in Fig. 2 as a function of sub-
strate concentration. The mean waiting time has a hyperbolic

dependent on the substrate concentration of the Michaelis–Menten
form, and the randomness parameter is always less than the unity, in
agreement with previous analysis.35,36

How, then, are these results altered when the network topol-
ogy is altered to allow for conformational fluctuations? The master
equation for the general network shown in Fig. 1(a) is

∂tP(Eα,n) ≙ k−αP(ESα,n) + γαβP(Eβ,n) − (k′α + γαβ)P(Eα,n) + kpαP(ESα,n − 1),
∂tP(Eβ,n) ≙ k−βP(ESβ,n) + γαβP(Eα,n) − (k′β + γαβ)P(Eβ,n) + kpβP(ESβ,n − 1),
∂tP(ESα,n) ≙ k′αP(Eα,n) + δαβP(ESβ,n) − (k−α + δαβ + kpα)P(ESα,n),
∂tP(ESβ,n) ≙ k′βP(Eβ,n) + δαβP(ESα,n) − (k−β + δαβ + kpβ)P(ESβ,n), n ≙ 0, 1, 2, . . . .

(20)

Conditioning on a turnover, as before, reduces the CME to a sys-
tem for four coupled differential equations for the components of
the vector,

P(t) ≙ ∥PEα(t),PESα(t),PEβ(t),PESβ(t)∥,

in the abbreviated notation introduced above. The solution is given
in terms of the exponential of the 4 × 4 matrix system matrix so that
the cumulative distribution is a sum of four exponential terms. The
expression for the waiting time distribution is obtained by differen-
tiation as before. The expressions, being unwieldy, are provided in

FIG. 2. Distinction between the summary statistics of branched and single-pathway stochastic networks as a function of substrate concentration. The top panel shows how
a parallel-pathway MM (ppMM) network reduces to a single-pathway MM network when conformational fluctuations are disallowed. The bottom left panel shows the single-
enzyme Lineweaver–Burk plot for the variation of inverse single-enzyme velocity, ⟨τ⟩, with 1/[S]. The plot is linear, and thus, the variation of single-enzyme velocity with [S]
is hyperbolic, irrespective of the network complexity. The bottom right panel shows how the variation of the randomness parameter r with [S] provides a quantitative measure
to discern single-enzyme network topologies. For the ppMM network, the rate constant conditions that favor parallel-pathway for product formation can yield r ≥ 1 (dynamic
disorder). The rate constant conditions that disallow the latter always yield r ≤ 1. For a linear MM network, irrespective of the rate parameter conditions, there is no dynamic
disorder as r does not exceed one.
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the supplementary material. The results are shown in Fig. 2 for the
general network for two sets of rate constants. The mean continues
to have a hyperbolic dependence on the substrate concentration, but
now the randomness parameter can yield values that are lesser or
greater than unity, depending on the choice of rate constants. We
find that rate constants that tend to suppress parallel pathways, i.e.,
to make the system matrix block diagonal, correspond to random-
ness parameters less than unity. In this limit, there is little to distin-
guish between linear and branched topologies. On the other hand,
the rate constants that promote parallel pathways, i.e., to make the
system matrix dense, correspond to randomness parameters greater
than unity. This is the regime of dynamic disorder, and our results
show that such effects can be obtained without imputing any ad hoc
fluctuations on the rate constants themselves, but by simply allowing
for a change in network topology.

The conditional independence of turnovers, due to the
“fermionic” nature of the states, implies that single-enzyme net-
works can never showmolecular memory.We now turn to networks
in which the “fermionic” nature is lost, in the simplest possible way,
by considering replicas of single-enzyme networks.

IV. REPLICA NETWORKS

Consider now a pair of sites on a single enzyme, as shown in
Fig. 3 in red and blue, each governed by identical ppMM mecha-
nisms and catalyzing substrates independently. It is neither possible
nor relevant to distinguish such products by their site of production,
and the observed process of turnover, shown in green, is a “pooling”
of the independent turnover processes at each site. The total number
of products in the pooled process at time t is the sum of the number
of products at each site. Since the latter are independent random
variables, the statistics of their sum can be simply obtained from
the individual statistics. Therefore, the counting process of pooled
turnovers is simple. However, the point process of pooled turnovers
has a less simple relation to the individual point processes, as we
explain below.

Returning to Fig. 3, assume that both sites start from identical
initial conditions of being in uncomplexed states and denote by τp

the p-th waiting time at any one of the identical sites and τ
(2)
p the

p-th waiting time of the pooled process, where the superscript indi-

cates that a pair of processes are pooled. Then, the waiting time τ
(2)
1

for the first product of the pooled process is the shorter of the first
waiting times τ1 at each of the sites. For the second and subsequent
turnovers, it is necessary to introduce the notion of the forward
recurrence time τ+, that is, the waiting time to the next product start-
ing at an arbitrary time t. The distribution of τ+, P(s < τ+ < s + ds|t)
≡w+(s|t)ds, is conditional on the time t, and this conditional depen-
dence is crucial in what follows. In terms of the forward recurrence
time, the waiting time τ

(2)
2 of the second product is the shorter of the

waiting time τ2 at the site that produced the first product and the for-
ward recurrence time τ+ of the site that did not. For the example in
Fig. 3, these are the first and second sites, respectively. Generalizing,
the waiting time τp of the p-th product is the shorter of the waiting
at one site and the forward recurrence time at the other site, where
the recurrence time is measured from the last turnover at t ≙ T

(2)
p−1.

Since a waiting time τ
(2)
p exceeding s implies that both the waiting

FIG. 3. The sequence of turnovers for a pair of active sites that process substrates
in parallel. The waiting times are denoted by τ and the forward recurrence times
(see text) are denoted by τ+. The observed turnovers cannot distinguish which of
the two active sites yielded the product, and hence, the turnover process is a pool-
ing of the two independent turnover processes for each site. The generalization to
more than two sites is obvious.

time τp and the recurrence time τ+ measured from the last turnover
exceed s, that is,

τ
(2)
p > s⇐⇒ (τp > s) AND (τ+ > s), (21)

we immediately obtain for the survival probability of τ
(2)
p the

relation

P(τ
(2)
p > s∣T

(2)
p−1) ≙ P(τ > s)P(τ+ > s∣T

(2)
p−1). (22)

This basic result shows that for a pooled process, the p-th waiting
time is, in general, conditionally dependent on the time at which the
(p − 1)th turnover takes place. Therefore, the very act of pooling
provides a mechanism by which a future waiting time can become
conditionally dependent on past waiting times or, in other words,
for the emergence of molecular memory.

It is desirable, if possible, to relate this conditional dependence
to properties of the renewal process at each site. We now show that
this is, indeed, possible. Defining the waiting time distribution of

the pooled process as P(s < τ
(2)
p < s + ds∣T

(2)
p−1) ≡ wπ(s∣T

(2)
p−1)ds and

differentiating both sides of the above, we obtain

wπ(s∣T
(2)
p−1) ≙ w(s)∥1 − P(τ+ < s∣T(2)p−1)∥

+ [1 −∫ s

0
w(s′)ds′]w+(s∣T(2)p−1). (23)

In the above, the distribution of waiting times w(s) is known
from the analysis of Sec. III and it only remains to determine the dis-
tribution w+(s|t) of the recurrence time. For a renewal process, the
distribution of the forward recurrence time is related to the waiting
time distribution and the enzymatic velocity by26

w+(s∣t) ≙ w(t + s) + ∫ t

0
V(t − s′)w(s + s

′)ds′, (24)
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and this determines the waiting time distribution of the pooled pro-
cess completely in terms of quantities that can be calculated from the
component renewal processes.

How does the conditional dependence of the waiting time vary
with the number of turnovers? Since the entire conditional depen-
dence derives from the distribution of the recurrence time, it is
sufficient to examine its conditional dependence. For large times
t ≫ T⋆, it is known from both deterministic and stochastic
analyses that the enzymatic velocity becomes a constant, that is,
limt→∞V(t) =V ss. As a consequence, limt→∞w+(s|t) =V ss[1−w(s)]
is independent of t. In this limit, each site is in “equilibrium,” and
the memory of the initial state of the process, which began with all
sites free, is erased. Thus, the conditioning of the recurrence time of
one site by the turnover time of another site, together with the deter-
ministic initial condition, provides a mechanism for the statistical
dependence between waiting times in the pooled process and of the
emergence of molecular memory.

Extending this argument to ν binding sites and denoting pooled
quantities with the superscript ν, it is clear that the waiting time

τ
(ν)
p for the p-th product is the shortest of a single waiting time and

ν − 1 recurrence times conditioned on t ≙ T
(ν)
p−1. Since τ

(ν)
p being

longer than s implies both the waiting time and the ν − 1 recurrence
times are longer than s, we have

P(τ
(ν)
p > s∣T

(ν)
p−1) ≙ P(τ > s)∥P(τ+ > s∣T(ν)p−1)∥ν−1, (25)

where the factorizations on the right-hand side follow from inde-
pendence and identity of the ν binding sites. Defining the waiting

time distribution of the pooled process as P(s < τ
(ν)
p < s + ds∣T(ν)p−1)

≡ wπ(s∣T(ν)p−1)ds and differentiating both sides of the above yield

an explicit expression for wπ(s∣T(ν)p−1) in terms of the key single-site

measures, the enzymatic velocity V(t), the waiting time distribution
w(τ), and the recurrence time distribution w+(s|t),

wπ(s∣T(ν)p−1) ≙ w(s)∥1 − P(τ+ < s∣T(ν)p−1)∥ν−1
+ (ν − 1)[1 −∫ s

0
w(s′)ds′]

× ∥1 − P(τ+ < s∣T(ν)p−1)∥ν−2w+(s∣T(ν)p−1). (26)

In this expression, τ
(ν)
p is conditionally dependent on T

(ν)
p−1

and, therefore, on the previous waiting times τ
(ν)
1 . . . τ

(ν)
p−1 as long

as w+(s|t) is dependent on t. Thus, the emergence of memory can
now be traced explicitly to the transient in the enzymatic veloc-
ity, starting from the deterministic initial condition. Evaluating

wπ(s∣T(ν)p−1) numerically for theMMmechanism for T
(ν)
p−1 in the tran-

sient, crossover, and steady-state regimes quantitatively confirms
this qualitative picture (Fig. 1 of the supplementary material).

The waiting times become independent and identically
distributed when the enzymatic velocity at each site reaches
the steady-state value. Then, inserting the asymptotic

form of the recurrence time distribution, we obtain w
(ν)
π (s)

≙ − d
ds
[P(τ > s){Vss∫

∞
s P(τ > s′)ds}ν−1], giving the waiting time

distribution in terms of survival probability and the steady-state
enzymatic velocity at each site. This is the enzymatic analog of a
well-known result in renewal theory.39

V. STATISTICAL MEASURES

In classical deterministic enzyme kinetics, the enzymatic veloc-
ity of N independent and identical enzymes, V(t) = d/dt⟨n⟩, is
a statistical measure of mean rate of product formation. The
approach to steady-state is then marked by the asymptotic limit,
V ss = limt→∞V(t), in which the enzymatic velocity reaches its
equilibrium value and becomes time-independent. For N ≫ 1,
this asymptotic limit is realized at the onset of the reaction.1 This
implies that the initial mean rate of product formation, i.e., the
counting process alone, is sufficient to yield the steady-state enzy-
matic velocity Vss ≙ dt⟨n⟩∣t→0, and the transient regime remains

unobserved.15

In stochastic enzyme kinetics, in contrast, the statistical mea-
sures of counting and point processes for means and fluctuations,
introduced in Sec. II, seem to provide an alternative description of
product turnover kinetics in the number and time domain, respec-
tively. It is pertinent to ask, then, how these seemingly unrelated
statistical measures can be formally linked to demarcate the transient
and steady-state regimes in enzyme kinetics at the molecular level,
and how these results can be reconciled with the classical results of
deterministic enzyme kinetics.

It is clear from Secs. III and IV that the turnover kinetics of
single-enzyme networks is a renewal stochastic process with statis-
tically independent waiting times and thus no memory. For replica
networks, there exist an initial transient regime with memory and a
terminal steady-state without it. The switch from a non-renewal to
renewal statistics in replica networks, with increasing turnover num-
ber, thusmarks a crossover from the transient to steady-state regime.
In the steady-state, since waiting times are statistically independent
and the governing statistics is renewal, below we use the results of
the renewal theorems to formally link the statistical measures of
counting and point processes.26,40,41

In the steady-state, statistical measures at each site are related
to a pooled output, comprising of independent and identically dis-
tributed (iid) random variables. For the counting process descrip-
tion, the iid random variables are the number of products formed
at each site, resulting in a pooled output n = n1 + n2 + ⋯ + nν of
n total number of products formed at ν sites. From this, it follows

that V
(ν)
ss ≙ νVss, where V ss = limt→∞d/dtt⟨ni⟩ with i = 1, 2, . . ., ν.

For the point process description, the iid random variables are the

waiting times τ
(ν)
p between consecutive turnovers for ν sites, the sum

of which T
(ν)
p ≙ τ

(ν)
1 + ⋯ + τ

(ν)
p yields a pooled output for the p-th

turnover time T
(ν)
p . Since ν sites are independent and identically

distributed, it follows that ⟨T(ν)p ⟩ ≙ p⟨τ(ν)⟩ and ⟨τ(ν)⟩ ≙ 1
ν
⟨τ⟩.

Furthermore, the renewal theorem guarantees that the single-
enzyme velocity asymptotes to the inverse mean waiting time,
limt→∞V(t) = V ss ≡ ⟨τ⟩−1.26 This relates the statistical measures of

means for counting and point processes, V
(ν)
ss ≡ ν⟨τ⟩−1, for replica

networks. From this, it follows that the inverse mean waiting time⟨τ⟩−1 in Eq. (18) can be identified as the single-enzyme velocity.
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In the absence of temporal correlations between turnovers, the
variance of the sum is the sum of variances, σ2

T
(ν)
p

≙ pσ2τ(ν) . The renewal theorem, then, dictates that the squared coeffi-

cient of variation, the randomness parameter, r(ν)

≙ ⟨(τ(ν) − ⟨τ(ν)⟩)2⟩/⟨τ(ν)⟩2 asymptotes to the Fano factor ρ
(ν)
ss

≙ limt→∞⟨(n
(ν) − ⟨n(ν)⟩)2⟩/⟨n(ν)⟩ for replica networks.26 A special

case of this for ν = 1 was first introduced by Block and Schnitzer27

in the context of molecular motors, where it has widespread appli-
cation.42,43

The above results show that for replica networks in the steady-
state, the description of turnovers in terms of counts, n, and waiting
times, τ, is asymptotically equivalent as renewal theorems guaran-

tee that V
(ν)
ss ≡ ν⟨τ⟩−1 and ρ

(ν)
ss ≡ r(ν).26,40,41 However, these results

are not valid for replica networks in the transient regime where the

governing statistics is non-renewal, ⟨T
(ν)
p ⟩ ≠ p⟨τ(ν)⟩, and depends

on the turnover number p through T
(ν)
p . Moreover, the presence

of correlations between waiting times clearly suggests that statisti-
cal measures in the transient regime should be redefined in terms of

T
(ν)
p , rather than τ

(ν)
p , as the former naturally contains correlations

between waiting times. This motivates the following definitions for
the turnover number dependent enzymatic velocity:14

V
(ν)
p ≙

p

⟨T
(ν)
p ⟩

(27)

and the randomness parameter associated with T
(ν)
p ,

r
(ν)
p ≙ p

⟨(T
(ν)
p − ⟨T

(ν)
p ⟩)

2⟩

⟨T
(ν)
p ⟩

2

≙ p
∑

p
i ⟨(δτ

(ν)
i )

2⟩ +∑
p
i≠j⟨δτ

(ν)
i δτ

(ν)
j ⟩

⟨∑
p
i τ
(ν)
i ⟩

2
, (28)

where δτi ≙ τi − ⟨τi⟩.

The turnover number dependent enzymatic velocity V
(ν)
p and

randomness parameter r
(ν)
p provide new statistical measures of

means and fluctuations for replica networks that can be used both
in transient and steady-state regimes, simply by increasing p. In

Eq. (27), the crossover from non-renewal ⟨T
(ν)
p ⟩ ≠ p⟨τ(ν)⟩ to

renewal ⟨T
(ν)
p ⟩ ≙ p⟨τ(ν)⟩ ≙

p

ν
⟨τ⟩ statistics with increasing p guar-

antees that the steady-state enzymatic velocity is asymptotically

recovered, limp→∞ V
(ν)
p ≙ ν⟨τ⟩−1 ≡ V

(ν)
ss . In Eq. (28), similarly,

the increase in p brings about a switch from non-renewal statis-

tics with statistically dependent waiting times ∑
p
i≠j⟨δτ

(ν)
i δτ

(ν)
j ⟩ ≠ 0

to renewal statistics with statistically independent waiting times,

∑
p
i≠j⟨δτ

(ν)
i δτ

(ν)
j ⟩ ≙ 0. In the asymptotic limit of large p, thus, r

(ν)
p

reduces to the steady-state definition, r(ν) ≙ ⟨(δτ(ν))2⟩/⟨τ(ν)⟩2,

which is equivalent to the steady-state Fano factor ρ
(ν)
ss , as expected

from the renewal theorem.23

Equations (27) and (28) are the key results of this work as they
provide the statistical measures of point process for single-enzyme
and replica networks in transient and steady-state regimes. Their
link to the counting process, as shown above, relies on the change

of statistics from non-renewal at lower p to renewal at higher p. This
naturally introduces a critical turnover number p∗, which demar-
cates the transient p ≪ p∗ from the steady-state p ≫ p∗ regime. In

the steady-state, V
(ν)
p asymptotes to

V
(ν)
p≫p∗ ≙ ν⟨τ⟩

−1 ≡ V
(ν)
ss . (29)

Similarly, r
(ν)
p in the steady-state asymptotes to

r
(ν)
p≫p∗ ≙ r

(ν) ≡ ρ
(ν)
ss . (30)

In the transient regime, p ≪ p∗, both these equivalences are neces-
sarily violated as the governing statistics is non-renewal.

Equations (29) and (30), while subsuming the results of renewal
theorems in the steady-state, provide an empirical test of non-
stationarity in experimental data and a diagnostic for the emergence
of memory in the transient regime. In Sec. VI, we show how these
equalities can be used to determine p∗.

VI. COMPARISON WITH DATA

We now apply the theory developed in Secs. II–V to analyze
the data from the landmark experiment in which the molecular
memory was first observed.10 In this experiment, the catalysis of
non-fluorescent substrates to fluorescent products by the tetrameric
enzyme β-galactosidase over a range of substrate concentrations was
monitored using fluorescence spectroscopy. It is to be noted that
β-galactosidase has four catalytic sites.44 It is known to obey the
MME in ensemble averaged measurements.45,46 This suggests that
the four well separated catalytic sites are independent of each
other.47

In this experiment, waiting times were obtained from the pri-
mary data of product turnovers as discrete fluorescence bursts, and
the distribution w(τ) and its first two moments were computed for
each substrate concentration. While the variation of mean waiting
timewith 1/[S] was linear at low substrate concentrations, themono-
tonic increase in the randomness parameter with [S], bounded below
by one, was a signature of dynamic disorder. The joint distribu-
tion, w(τp, τp+q) of the waiting times, q turnovers apart, revealed
that turnover events were not statistically independent, but that a
short (or long) first waiting time was more likely to be followed
by another short (or long) second waiting time. This was a sig-
nature of positive molecular memory. The correlation of waiting
times, Cq = ⟨δτpδτp+q⟩, remained appreciable and, when expressed
in terms of a scaled time t ≙ q⟨τ⟩, could be collapsed to a sin-

gle stretched-exponential C(t) ≙ exp∥−(t/t0)β∥ with β = 0.45 and
t0 = 0.018 s.

The experimental results reveal statistically dependent wait-
ing times and dynamic disorder in enzyme turnover kinetics of the
tetrameric enzyme β-galactosidase with four independent catalytic
sites.10 Following the analysis of Secs. III and IV, this motivates
us to select the ppMM network with four replicas as the minimal
model to understand the kinetics. For comparison, we also consider
a hypothetical single-enzyme ppMM network with identical param-
eters, but only a single binding site. We use the results of Sec. III
and the supplementary material to compute the marginal distribu-

tion w(T(ν)1 ), where the superscript to T
(ν)
p denotes the results for
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a single site (ν = 1) and quadruple sites (ν = 4). From w(T(ν)1 )
thus obtained, we analytically compute the mean first turnover time,

⟨T(ν)1 ⟩, and the randomness parameter, r
(ν)
1 , as functions of the eight

rate constants. A simultaneous least-squares fit to the experimental
data provides us with the maximum-likelihood parameters of each
model. These are listed in Table I of the supplementary material, and
the corresponding fits are shown in the top four panels of Fig. 4.

The excellent agreement between the model and data for both
single- and quadruple-site models leaves little to distinguish between
them. Since both models have the same number of parameters and
hence equal model complexity, they appear to be equally plausi-
ble models for data derived from the marginal distribution. This
degeneracy in model space is lifted by using data from the joint
distribution, as we now show.

Since we have not found a way to obtain the joint distributions
of the Markov chain analytically, we compute them numerically
from a time series of turnovers, sampled using the Doob–Gillespie
algorithm48 with chain parameters set to the above least-squares esti-

mates. The distribution of τ
(ν)
p and the correlation function C

(ν)
q are

shown in the bottom four panels of Fig. 4.

There is, now, a clear distinction between single-site and
quadruple-site models. The first distinction appears in the distri-
bution of waiting times τp. These are identically and independently
distributed for the single-site model [panels (c) and (d)], but nei-
ther identically nor independently distributed for the quadruple-
site model [panels (g) and (h)]. This confirms the results of

Secs. III and IV that a model with fermionic hidden states can only
yield a renewal process and that multiple binding sites are neces-
sary for molecular memory. Focussing on panel (h), the normalized
correlation function has an excellent fit to a stretched exponen-

tial function C
(4)
q ≙ exp∥−(q/q0)β∥ with parameters q0 = 0.25 and

β = 0.47, 0.42, 0.39 for the substrate concentrations [S] = 20 μM,
100 μM, 380 μM reported in the experiment. Continuing in Fig. 5,

we plot the normalized correlation function C(4)(t) in scaled time

t ≙ ⟨τ(4)1 ⟩q following experiment. There is a quantitative match
between experiment and theory with both following a stretched

exponential function C(4)(t) ≙ exp∥−(t/t0)β∥ with t0 = 0.018 s and
β = 0.45 for [S] = 100 μM. In addition, the pseudocolor plot of the

joint distribution of the first and second waiting times,w(τ(4)1 , τ
(4)
2 ),

shows that a short (or long) first waiting time is more likely to be fol-
lowed by a short (or long) second waiting time (inset), in agreement
with the molecular memory observed in experiment.

For comparison, we repeat the above calculations for the MM
model and summarize our findings in Table II. The heat map of the
joint distribution of successive waiting times,w(τ1, τ2), shows nega-
tive correlations for the MMmodel, but positive correlations for the
ppMM model. In the stationary state, the randomness parameter is
negative for the MMmodel, but positive for the ppMMmodel. Only
the ppMM model, containing both multiple binding sites and con-
formational fluctuations, is in agreement with experiment, as sum-
marized in the last two rows of the table. While multiple sites alone
yield memory, conformational fluctuations are necessary for the

FIG. 4. Quantitative comparison of turnover statistics for single- and quadruple-site ppMM models. The rate constants are estimated by simultaneously fitting analytical

expressions for ⟨T
(ν)
1 ⟩ and r

(ν)
1 to experimental data. Exact numerical sampling with these parameters is used to generate distributions w(τp) and compute correlations Cq.

The renewal character of the single-site model and its lack of memory are confirmed in panels (c) and (d). The points are simulation data using best-fit rate parameters and

the solid lines are stretched-exponential fits C
(4)
q ≙ exp∥−(q/q0)β∥ with q0 = 0.25 and β = 0.47, 0.42, 0.39 for [S] = 20 μM, 100 μM, 380 μM, respectively.
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FIG. 5. Normalized correlation C(4)(t) for the quadruple-site PPMM mechanism
at [S] = 100 μM. The points are simulation data and the solid line is a stretched

exponential e−(t/t0)
β

with t0 = 0.018 s and β = 0.45. The inset is the joint probability

w(τ
(4)
1 , τ

(4)
2 ) of consecutive waiting times, which shows that a short (long) first

waiting time is more likely to be followed by a short (long) second waiting time, in
agreement with experiment.

correct sign of the correlation function and the correct magnitude of
the randomness parameter.

We now use Eqs. (29) and (30) of Sec. V to determine p∗

and thus demarcate the transient p ≪ p∗ and steady-state p ≫ p∗

regimes for the ppMM model. The variation of V
(ν)
p with sub-

strate concentration is shown in Fig. 2 of the supplementary

material. The enzymatic velocity in the transient regime, V
(ν)
p≪p∗ ,

deviates from the steady-state value ν⟨τ⟩−1, where ⟨τ⟩−1 is
the Michaelis–Menten-like (MML) equation [Eq. (8) of the

supplementary material]. In the steady-state, V
(ν)
p≫p∗ asymptotically

approaches both the single-enzyme MML equation and the classi-

cal steady-state enzymatic velocity V
(ν)
ss , in agreement with Eq. (29).

A similar analysis for the statistical measures of fluctuations is pre-

sented in Fig. 6, which shows the variation of r
(ν)
p with p and ρ(ν)(t)

with t for ν = 1, 4. The comparison shows that the equivalence
between the randomness parameter and the steady-state Fano factor

is violated in the transient regime, r
(ν)
p≪p∗ ≠ ρ

(ν)
ss , but is asymptoti-

cally recovered in the steady-state regime p≫ p∗, in agreement with
Eq. (30).

TABLE II. Qualitative comparison of turnover statistics for MM and ppMM models
for single and multiple binding sites. The ppMM model, with conformational fluctua-
tions and four binding sites, best agrees with the experimentally obtained turnovers of
β-galactosidase.

Mechanism Sites Memory Correlations r
(ν)
1 vs [S]

MM 1 Absent C
(1)
q ≙ 0 r

(1)
1 ≤ 1

ppMM 1 Absent C
(1)
q ≙ 0 r

(1)
1 ≥ 1

MM 4 Anti-correlated C
(4)
q ≤ 0 r

(4)
1 ≤ 1

ppMM 4 Correlated C
(4)
q ≥ 0 r

(4)
1 ≥ 1

β-galactosidase 4 Correlated Cq ≥ 0 r ≥ 1

FIG. 6. Randomness parameters and Fano factors for the ppMM obtained from
numerically computed trajectories of the single- and quadruple-site models. For the
quadruple-site model, these measures of counting and point processes are asymp-
totically equivalent in the (renewal) steady-state but differ in the (non-renewal)
transient state, in agreement with Eq. (30). The memory persists as long as the
equality is violated. For the memoryless single-site model, the duration of the tran-
sient is determined by the counting process description, i.e., the time required for
the Fano factor to reach its steady-state value. The parameter values are listed in
Table I of the supplementary material.

The fading of memory, the convergence of the waiting time dis-
tributions, and the equality of the statistical measures all occur at
roughly p⋆ ≈ 50 turnovers in this model.

VII. SUMMARY AND DISCUSSION

In summary, our statistical analysis for the discrete turnover
kinetics of an enzyme with independent active sites shows that in a
finite time domain, there always exists a transient regime in which
the number average is not equivalent to the time average. In the
steady-state, these equivalences are asymptotically recovered. The
statistical measures introduced in our work are valid for the Marko-
vian description of stochastic kinetics, described in terms of the
CME, with exponentially distributed lifetime of each kinetic state.
These measures retain the fundamental first-order character of each
elementary step in the mechanism. The dynamic disorder, captured
at timescales longer than the lifetime of each kinetic state, is thus an
emergent feature of intrinsic number and temporal fluctuations of
each kinetic state of the mechanism.

The new statistical measure of temporal fluctuations, the
turnover number-dependent randomness parameter rp, Eq. (28),
provides a mechanistic origin of dynamic disorder in the single-
molecule turnover data of β-galactosidase (Figs. 4 and 5) in the
transient and steady-state regimes. The enzyme β-galactosidase is
known to obey the MME in ensemble averaged measurements,45,46

signifying the absence of temporal correlations in the steady-state.
However, the same enzyme at the single-molecule level shows non-
hyperbolicity, waiting time correlations, and molecular memory
effect.10 Our work reconciles these seemingly disparate observa-
tions for an enzyme with independent sites, using beta-galactosidase
as an example, to show that the dynamic disorder (rp > 1) in the
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transient regime, withmemory, is characteristically distinct from the
steady-state regime without memory (Fig. 6).

In particular, the rate parameter values listed in Table I of the
supplementary material allow us to make the following inference
about the two-state ppMMmechanism for β-galactosidase. The het-
erogeneity in product formation rates is a necessary condition for
the emergence of dynamic disorder in line with the distribution
of k2 captured in Fig. 2(a) of Ref. 10. In the transient regime, the
dynamic disorder arises from the correlated action of multiple sites,
where the catalytic conversion of substrates to products at each site
is governed by the slower rate of interconversion between enzyme–
substrate conformers compared to the (faster of the two) product
formation rate. For the same rate parameters in the steady-state
regime, where catalysis at one site becomes independent of another
site, the magnitude of dynamic disorder is mainly determined by
the slower rate of off-pathway conformational fluctuations in the
bound state of an enzyme compared to the (faster of the two) prod-
uct formation rate. This, then, opens an unexplored way to elicit
kinetic mechanisms frommolecular noise by combining the distinct
characteristics of intrinsic fluctuations in the transient and steady-
states.

For comparison, stochastic kinetic models that assume the
dynamic disorder in reaction steps make an a priori assumption
of non-Markovian dynamics in catalytic turnover cycles.49–52 These
models relax the constraint of exponentially distributed waiting
times in each kinetic state and replace them with an arbitrary
non-exponential distribution that fits data. At this level of coarse-
graining, aggregates of possible bound/intermediate kinetic states
are assumed to follow non-exponential kinetics.51,52 As a result, the
waiting time distribution is not an emergent feature of intrinsic
fluctuations of individual kinetic states of the reaction mechanism.
Inversely, thus, a “coarse-grained” reaction mechanism inferred
from such a distribution, and statistical measures such as the Poisson
indicator that quantify dynamic disorder from the moments of these
distributions, provides physical insights only within the confines of
a reduced subspace of variables. Moreover, the implicit assumption
of non-Markovian dynamics in these models can yield waiting times
correlations in single-site catalysis. This is in contrast to the predic-
tion of the Markovian model for single-site catalysis presented here,
where the dynamic disorder (Fig. 6) in the steady-state can arise in
the absence of waiting time correlations [Fig. 4(d)].

In general, theMME in the steady-state can be obtained directly
from the CME by defining macroscopic variables like the average
number of particles in a large N limit19 or by defining the inte-
grated probability flux in a long time limit.16,17 In the latter, Cao
and co-workers have used the flux-balance method to derive gen-
eralized expressions for the MME for stochastic enzymatic networks
of arbitrary complexity.16,17 Their work identifies detailed balance
as a sufficient condition for the hyperbolic substrate dependence of
the MME, similar to the fast-equilibrium condition in deterministic
enzymatic networks.6

VIII. CONCLUSION AND FUTURE WORK

The stochastic time-domain approach presented here, when
used in combination with the stochastic number-domain approach,
namely, CME, provides the most detailed information of enzymatic

reactions and can be used to extract mechanistic information that is
lost in classical deterministic theories of enzyme kinetics.

Our work shows that the mechanism for the emergence of
molecular memory will always be operative through the transient
phase in an enzyme withmultiple binding sites. It can thus be viewed
as a null model (in the sense of a null hypothesis) and should be
tested against before embarking on a search for more elaborate mod-
els of molecular memory that may require, for instance, interactions
between binding sites.

Our statistical analysis of multiple-site catalysis, based on
replica networks, assumes that active sites are identical and inde-
pendent. While single-site catalysis at independent sites is expected
to yield a hyperbolic relation between the mean catalytic rate and
substrate concentration, deviation from hyperbolicity in replica net-
works emerges from the concerted action of independent and,
hence, non-interacting, multiple binding sites. This form of “coop-
erativity” is dynamic in nature,53 which arises from temporal cor-
relations between enzymatic turnovers in the transient regime, and
vanishes in the steady-state regime. This contrasts the traditional
description of cooperativity in allosteric enzymes in which binding
of a substrate at one site affects substrate binding affinity at another
site.1 The allosteric effects manifest as a non-hyperbolic substrate
binding response and correlated action at equilibrium. The replica
approach presented here can be extended to include interactions
between binding sites by replicating, for instance, single enzyme
networks of either the concerted or sequential models of allosteric
enzymes as a basic motif.54,55 This, along with rate parameter con-
ditions in substrate binding steps of a replica network, can pave
the way for understanding the combined effect of stochasticity and
interaction in generating molecular cooperativity in the steady-state.

Our study extends beyond the simple homogeneous mech-
anisms presented here to more complex mechanisms including
inhibitors,12,56,57 hidden intermediate states58,59 in single-molecule
kinetics and single-molecule photon statistics,60 and heterogenous
catalysis of, for example, nano-particle clusters containing numer-
ous binding sites.61 In the latter case, the method presented here
can be used to estimate the catalytic rate from turnover time data
through a new kinetic measure, the heterogeneity index, which can
quantify fluctuations from non-identical binding sites.21–23 Addi-
tionally, in the presence of allosteric effects in a single nanoparti-
cle cluster,21–23 our statistical analysis can be extended to include
heterogeneity and allosteric effects, independently and in combina-
tion. While these effects can generate temporal correlations in the
steady-state, the magnitude of temporal correlations in the tran-
sient regime will be over and above the temporal correlations pre-
dicted by the present “null-model” for non-interacting multiple
sites.

In the context of molecular motors, the renewal theorems have
been known to link the mean and variance of the physical distance
moved by the motor with the corresponding mean and variance of
the number of products formed under the stationary condition.28,29

Both are linearly proportional to time with proportionality con-
stants being the enzymatic velocity for the measure of mean and
the diffusion coefficient for the measure of variance. The relations
between the statistical measures of counting and point processes,
for the mean and variance, presented here, and their dependence
on the turnover number can be used to generalize the correspond-
ing expressions for molecular motors to non-stationary conditions,
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where transport coefficients are expected to be turnover number
dependent.

Fluctuation statistics of mesoscopic quantum transport in
nanoscale devices analyzed in terms of fixed time (counting pro-
cess) or fluctuating time (point process) description using a mas-
ter equation framework.62,63 While the renewal theorems provide
formal relations between counting and point process statistics, the
violation of renewal statistics and the analysis of non-renewal fluc-
tuation statistics, in which temporal correlations between discrete
quantum events are accounted for, are a relatively new premise.64,65

The generality of our results, for both renewal and non-renewal fluc-
tuation statistics, suggests the search for a transient phase in meso-
scopic quantum transport66–69 and the estimation of the duration of
a transient phase in the photo emission statistics of an ensemble of
quantum dots.70,71

The sensitivity of the waiting time distributions to the reaction
mechanism, both in the transient and steady-states, invites the appli-
cation of the Bayesian probability to calculate the posterior proba-
bility P(M∣{τp}) of a model M given waiting time data {τp} and,
thereon, to machine learning reaction mechanisms from turnover
data.72–74

To conclude, our work shows that complex forms of molecular
memory can arise from the combined action of simple memoryless
steps, provides a theoretical framework within which such action
can be studied systematically, and suggests experiments to test the
validity of this generic mechanism.

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed solution of
the chemical master equations for single-site and multiple-sites
catalysis.
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