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Abstract

Motivation: Thermodynamic analysis of biological reaction networks requires the availability of accurate

and consistent values of Gibbs free energies of reaction and formation. These Gibbs energies can be

measured directly via the careful design of experiments or can be computed from the curated Gibbs free

energy databases. However, the computed Gibbs free energies of reactions and formations do not satisfy

the thermodynamic constraints due to the compounding effect of measurement errors in the experimental

data. The propagation of these errors can lead to a false prediction of pathway feasibility and uncertainty

in the estimation of thermodynamic parameters.

Results: This work proposes a data reconciliation framework for thermodynamically consistent estimation

of Gibbs free energies of reaction, formation and group contributions from experimental data. In this

framework, we formulate constrained optimization problems that reduce measurement errors and their

effects on the estimation of Gibbs energies such that the thermodynamic constraints are satisfied. When

a subset of Gibbs free energies of formations is unavailable, it is shown that the accuracy of their resulting

estimates is better than that of existing empirical prediction methods. Moreover, we also show that the

estimation of group contributions can be improved using this approach. Further, we provide guidelines

based on this approach for performing systematic experiments to estimate unknown Gibbs formation

energies.

Availability: The MATLAB code for the executing the proposed algorithm is available for free on the

GitHub repository: https://github.com/samansalike/DR-thermo

Contact: niravbhatt@iitm.ac.in

1 Introduction

Thermodynamic analysis of biochemical reaction systems provides

a means to analyze the equilibrium states of the reactions.

Further, a thermodynamic analysis is useful to assign directionalities,

evaluate feasible pathways, and to integrate metabolomics data into

mathematical models (Ataman and Hatzimanikatis, 2015). Applications

of biothermodynamics to evaluate pathway feasibility have been explored

in several areas of systems biology (Donnelly and Wolfe, 1986;Eaton and

Chapman, 1992;Dolfing, 2000). For instance, thermodynamic properties

have been coupled with the metabolic flux analysis (MFA) to limit fluxes

through futile cycles while still allowing fluxes through feasible pathways

(Henry et al., 2007). Incorporation of thermodynamic properties has

broadened the applicability of MFA methods without adversely affecting

their accuracy (Garg et al., 2010). The use of such tools has helped elucidate

genotype-phenotype relationships. Further, it has aided metabolic and

genetic engineering efforts to produce commercially desirable compounds

via heterologous routes (Long et al., 2015).
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Among the thermodynamic properties, the Gibbs free energy of a

reaction is of primary importance because it permits the quantification of

the degree of thermodynamic favorability of the given reaction (Goldberg,

2014). Since biochemical reactions occur in aqueous solutions and

involve the release or uptake of protons, the standard ‘transformed’

Gibbs energy of a reaction depends on the ionic interactions and can

be calculated from the apparent equilibrium constant, K
′

. Currently,

empirical data on apparent equilibrium constants can be obtained from

databases such as the National Institute of Standards and Technology

(NIST)’s Thermodynamics of Enzyme-Catalyzed Reactions Database

(TECRDB) (also labelled as NIST-TECRDB) (Goldberg et al., 2004,

2007) which contains a comprehensive list of K
′

values for over four

hundred reactions under different conditions. Moreover, since Gibbs

energies of a reaction can also be computed from individual formation

energies, several studies have also been dedicated to determine formation

energies and have generated commendable data banks (Alberty, 1998,

2005; Thauer et al., 1977; Thauer, 1998; Wagman et al., 1982). However,

thermodynamic analysis based entirely on such experimental databases is

limited to small-scale systems or a subsections of genome-scale systems

(Jankowski et al., 2008). Consequently, several estimation methods have

been formulated over the years to bridge this gap, the most prevalent of

which is the group contribution method developed by Mavrovouniotis

(Mavrovouniotis, 1990, 1991). This method in due course was greatly

improved upon by several researchers (Jankowski et al., 2008;Noor et al.,

2012, 2013;Du et al., 2018). The group contribution method is based

on the idea that the overall formation energy of a compound can be

approximated as a linear function of the ’contributions’ of its functional

groups. The values of these group contributions are estimated using by a

linear regression on the data set consisting of experimentally determined

standard Gibbs free energies of reaction and formation. Such empirical

prediction methods have successfully been used to study aromatic amino

acid pathways (Hatzimanikatis et al., 2005), glycolysis (Maskow and von

Stockar, 2005), genome-scale model of E. Coli (Feist et al., 2007; Henry

et al., 2006, 2007) biodegradation pathways (Finley et al., 2009), and the

metabolic network of G. sulfurreducens (Garg et al., 2010).

However, inaccuracies in experimental data can lead to inconsistencies

when different databases are combined to calculate property values for a

given reaction (Goldberg, 2014). Such inconsistencies are also reflected in

the estimated values for missing Gibbs energies of reaction and formation

which are computed from the available measurements. Often, these

estimates, as well as the measurements of Gibbs energies, violate the first

law of thermodynamics because the overall Gibbs energy of a reaction

that takes place in more than one step does not correspond with the

sum of all standard Gibbs energies of intermediate steps under the same

conditions. As a result, futile cycles can have a nonzero change in Gibbs

energy (Noor et al., 2013). Moreover, the effects of ionic interactions

on the experimental data have to be normalized in order to obtain linear

relationships between all variables (Alberty, 2005). This involves using

the reported measurements of pH, ionic strengths and proton dissociation

constants, which are often erroneous or missing altogether. For example,

Maskow and von Stockar, 2005 found that feasible pathways can be falsely

labelled as infeasible and vice versa without careful consideration of ionic

strength of the solution, uncertainty in thermodynamic data and cell pH

in studying the thermodynamic feasibility of the lactic acid fermentation

pathway.

Such difficulties arising due to measurement errors are not unique to

systems biology. For instance, plant data obtained in chemical and bio-tech

industries are often corrupted by measurement errors which undermine the

quality of such data-driven methods. In such scenarios, data reconciliation

(DR) as a technique has been used for an accurate and consistent estimation

of process parameters and variables from measurements (Dabros et al.,

2009; Narasimhan and Jordache, 1999; Hodouin, 2010). The DR based

methods exploit the redundancies arising due to physical constraints such

as the closure of mass and energy balance equations to improve the

estimates of the underlying variables (Narasimhan and Jordache, 1999).

The aim of the DR methods is to obtain accurate estimates of the variables

from experimental data such that they are consistent with the physical

constraints imposed (Narasimhan and Jordache, 1999). Since physical

laws of mass conservation and thermodynamics also govern biosynthetic

transformations in biological systems (Lewis et al., 2012), we show that a

similar approach can be employed to obtain consistent estimates of Gibbs

free energies of reaction and formation.

In this work, we propose a framework that employs the data

reconciliation approach to adjust available measurements such that

thermodynamic laws are satisfied. It will be shown that the proposed

DR approach can be used to reconcile all measured Gibbs energies and

estimate the missing Gibbs energies under certain conditions when a subset

of measurements is available. Further, the DR framework is extended to

estimate group contributions. Moreover, we also provide guidelines for

the curation of the reconciled data and the design of new experiments

for an improved estimation of missing Gibbs free energies. To illustrate

the applicability of the framework, we use a subset of reactions from

the NIST-TECR database that only contain compounds whose formation

energy value is available from the Alberty (2005) table .

2 Approach

The DR framework is shown in Figure 1 for estimating Gibbs free energies.

In the reconciliation step, the DR framework requires three inputs: (i)

measured variables (the standard ’transformed’ Gibbs free energies of

reaction and formation), (ii) a priori information such as stoichiometric

matrix, group definitions, and (iii) constraints between all the variables.

The experimental standard ’transformed’ Gibbs energies are converted

to standard Gibbs energies by applying the inverse Legendre transform,

using the proton dissociation constants and the values of the controlled

variables such as temperature, pH and ionic strength. The reconciled

Gibbs free energies are then estimated by minimizing the sum squared

difference between each measurement and the corresponding estimate,

subject to thermodynamic constraints. The missing Gibbs energies of

reaction and formation are estimated by using the reconciled estimates

of the measurements and the constraint equations representing their

relationships. Since the thermodynamic constraints are linear, this leads to

a linear DR problem which can be solved analytically. The DR framework

provides thermodynamically consistent estimates of Gibbs free energies.

Then, these reconciled values of Gibbs free energies of reaction, formation

and groups can be curated in a database.

In the prediction step, the curated data can be used to estimate any

new unknown Gibbs free energies of reaction. If the Gibbs free energies of

formation for all the reactants taking part in a given reaction are available in

the curated database, the thermodynamic constraints can be directly used

to predict the Gibbs free energy of the given reaction, often labelled as the

standard method. On the other hand, if the Gibbs energies of formations

for only a subset of reactants are available in the curated database, the

component contribution method can be used to predict the reaction Gibbs

free energies using the available Gibbs energies of formation and the group

contributions (Noor et al., 2013). Further, the information of temperature

can also be incorporated (Du et al., 2018). This work deals with the first

step of data reconciliation formulation to obtain the thermodynamically

consistent estimates of Gibbs free energies.

3 Methods

In this section, we delineate the data reconciliation approach to consistently

estimate the Gibbs free energies of reaction, formation, and group

contributions from experimental data.
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Fig. 1. Data Reconciliation Framework consisting of two parts: (i) Reconciliation Step: Thermodynamically consistent estimates of Gibbs free energies of reaction, component formation

and groups are obtained and the reconciled estimates are curated for the prediction step, and (ii) Prediction step: The Gibbs free energies of unknown reactions are predicted using the

reconciled formation and/or Groups Gibbs free energies and standard method or component contribution method from the curated database.

3.1 Data reconciliation: Imposing thermodynamic

constraints for estimating standard Gibbs free energies

Consider a biochemical reaction network with n reactions between

m compounds. If the vectors ∆rG
◦ ∈ R

n×1 and ∆fG
◦ ∈

R
m×1 represent the standard Gibbs energies of reaction and formation,

respectively1. The stoichiometric matrix S ∈ R
m×n describes the

metabolic reactions taking place in the system. Each column in S

represents the stoichiometric coefficients of a reaction with negative and

positive values representing the reactants and products respectively. At

the standard conditions, the thermodynamic law leads to the following

relationship (Alberty, 2005):

∆rG
◦ = ST∆fG

◦

[

I −ST
]

[

∆rG
◦

∆fG
◦

]

= 0
(1)

Eq. (1) is violated due to the presence of measurement errors in the

measured Gibbs energies, ∆rG
◦
m and ∆fG

◦
m. Hence, the objective is

to estimate these energies such that they do not violate the thermodynamic

relationships in Eq. (1). Note that there are n relationships in Eq. (1) for

the n reactions. Often, it is assumed that the measurement errors follow a

multivariate normal distribution with zero mean and a co-variance matrix

Σ. Then, the DR problem can be formulated as a constrained weighted

least–squares optimization problem as follows:

min
ye

(ym − ye)Σ
−1(ym − ye)

T

s.t. Aye = 0

(2)

with ye =
[

∆rG
◦

e

∆fG◦

e

]

, ym =
[

∆rG
◦

m

∆fG◦

m

]

, A =
[

I −ST
]

, where the

subscripts m and e denote the experimental data and the corresponding

reconciled estimates, respectively. In the objective function, total (n+m)

Gibbs free energies are the reconciled (or estimated) such that they satisfy

the n thermodynamic constraints in Eq. (1). Each diagonal element of

Σ represents the variance of the measurement error in a variable. Thus,

1 The standard condition in biochemical systems corresponds to Pressure,

P = 1 bar, pH = 7, and pMg = 3, and the ionic strength, I = 0 or

I = 0.25 M. Often, I = 0.25 is defined as near physiological conditions

(Alberty, 1994)

higher weights are given to more accurate measurements. In practice,

these variance values can be estimated by repeated measurements or the

experimentalist can assign values based on their knowledge. Otherwise,

a weight of one can be assigned. It should be noted that the standard

transformed Gibbs energies∆rG
′
◦ (computed from apparent equilibrium

constants) include the potential of H+ as a natural variable. This is the

effect normalized by the inverse Legendre transform while converting

the standard ’transformed’ Gibbs energies to standard ’chemical’ Gibbs

energies that are used to impose thermodynamic constraints on estimates

using Eq. 1 (see Section 1 of the supplementary material for details on the

inverse Legendre transform).

The constrained optimization problem in Eq. (2) is a quadratic

optimization problem. Hence, an analytical solution of the optimization

problem Eq. (2) for ye can be computed using the first order optimality

conditions as (Narasimhan and Jordache, 1999):

ŷe = [I−ΣAT (AΣAT )−1A]ym = Bym (3)

Then, the estimated ∆rĜ
◦

e and ∆f Ĝ
◦

e can be obtained in terms of the

measured values ∆rĜ
◦

m and ∆f Ĝ
◦

m as follows:

[

∆rĜ
◦

e

∆f Ĝ
◦

e

]

= B

[

∆rG
◦

m

∆fG
◦

m

]

(4)

Further, note that the estimates in Eq. (4) are normally distributed with the

expected value and co-variance matrix given as follows (Narasimhan and

Jordache, 1999):

E[ŷe] = ye

Cov[ŷe] = BΣBT .
(5)

The characteristics of the estimates in Eq. (5) are useful in providing bounds

in thermodynamics-based metabolic flux analysis or metabolic network

thermodynamics (Henry et al., 2007).

3.1.1 Partially measured reaction systems

Often, the Gibbs free energies of all reactions and compound formation in

a biochemical reaction network are not measured. Hence, a subset of Gibbs

free energies measurements is only available. In such cases, the linear DR

framework can be extended to reconcile the measured Gibbs free energies

and to estimate the unmeasured ones under certain conditions. In this

situation, this DR problem is decomposed into two sub-problems. In the
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first sub-problem, the approach mentioned based on the fully measured

Gibbs free energies (Section 3.1) has to be modified such that a reduced

set of constraints between the measured Gibbs free energies is obtained.

Then, the reconciled estimates of the measured Gibbs free energies are

obtained subject to the reduced set of constraints. In the second step, the

thermodynamic constraints are used to estimate the unmeasured Gibbs free

energies from the reconciled ones obtained in the first step. To obtain a

reduced set of constraints in the first sub-problem, the constraints in Eq. (1)

can be decomposed into the measured (∆G◦

m) and unmeasured Gibbs free

energies (∆G◦

u) as follows:

Am∆G◦

m + Au∆G◦

u = 0 (6)

where the matrix Am consists of the columns of [I −ST ] corresponding

to ∆G◦

m while the matrix Au consists of the columns of [I − ST ]

corresponding to ∆G◦

u. In practice, the Gibbs free energies of reactions

and a subset of the Gibbs free energies of formation are measured. For

a reaction system involving n reactions and m species, if only p Gibbs

free energies of formation (< m) are not measured. Then, Eq. (6) can be

written as follows

[

I −ST
m

]

[

∆rG
◦

m

∆fG
◦

m

]

+
[

−ST
u

] [

∆fG
◦

u

]

= 0

where ∆G◦

m =

[

∆rG
◦

m

∆fG
◦

m

]

∈ R
n+(m−p)×1 and ∆G◦

u = ∆fG
◦

u ∈

R
p×1 are vectors representing the measured reaction and formation

energies and the unmeasured formation energies. The formulation in

Eq. (6) is also applicable when the Gibbs energies of reactions are

not measured. Similarly, Sm and Su are the stoichiometric matrices

corresponding to the measured and unmeasured formation energies. The

contribution of the unmeasured Gibbs free energies can be eliminated

by constructing a projection matrix P of dimension (q × n) such that

PAu = 0. Then, by pre-multiplying the constraints in Eq. (6), the reduced

set of constraints corresponding to the measured Gibbs free energies are

obtained as follows:

PAm∆G◦

m = 0 (7)

Note that there are only q < n constraints in the reduced set. The

details for the computation of project matrix are given in Section 4 of

the supplementary material. The resulting DR problem can be formulated

as follows:

min
ye

(ym − ye)Σ
−1(ym − ye)

T

s.t. PAmye = 0

(8)

with ye = ∆G◦

m,e, ym = ∆G◦

m. The reconciled estimates, ∆Ĝ◦

m,e,

can be computed using the solution in Eq. (3) with A = PAm.

In the second step, the unmeasured Gibbs free energies can be estimated

using a least-squares solution as follows:

∆G◦

u,e = −(AT
u Au)

−1Am∆G◦

m (9)

A sufficient number of Gibbs free energies have to be measured to apply the

approach mentioned based on the partial measurements. In construction

of P for this approach, it is assumed that the q rows of P are independent

and q = n − p. Hence, all the p unmeasured formation energies can be

estimated. However, even if the q rows are not independent, only a subset of

the unmeasured formation energies can be estimated. The analysis related

to solvability and estimability of the Gibbs free energies for a given set of

Gibbs free energies measurements is discussed in Section 3.3.

3.2 Estimating group contributions

Improving the accuracy of the group contribution methods is of prime

importance due to their high coverage and applicability to the majority of

biochemical reaction networks (Noor et al. (2013)). However, in addition

to the effect of measurement errors, inaccuracies in these estimates arise

due to the simplifying assumption that the group contributions are additive.

This is referred as modelling error due to result of the approximation

∆fG
◦ ≈ G∆grpG

◦, where G ∈ R
m×g is the group incidence matrix

in which each row represents the decomposition of each compound in

S into to a predefined set of g structural subgroups and the vector

∆grpG
◦ ∈ R

g×1 consists the Gibbs free energies of different groups

as its elements. Since the relationships between the Gibbs energies of

groups and species’ formation are empirical in nature, these relationships

cannot be included as constraints. However, an improved optimization

problem can be formulated such that measurement and modelling errors

are simultaneously minimized without violating the thermodynamic

constraints. This is achieved by using the reconciled estimates of formation

energies to estimate group contributions by modifying the optimization

problem. This optimization problem extends the formulation in Eq. (2)

to include the information of the group contribution method, with ym =






∆rG
◦

m

∆fG
◦

m

∆fG
◦

e






, ye =







∆rG
◦
e

∆fG
◦
e

G∆grpG
◦

e






, A =

[

I −ST 0

]

. Here, ∆fG
◦
e

is included in bothye as well asym. The estimation of group contributions

for a rank-deficient matrix G is given in Section 7 of the supporting

material.

3.3 Observability and redundancy analysis of

measurements

For a given set of measured Gibbs free energies of reaction and formation,

it is important to answer the following two questions: (Q1) Is it possible

to obtain thermodynamically consist reconciled estimates for the given

set of measurements? and (Q2) Is it possible to estimate unmeasured

missing Gibbs free energies from the measured ones in partially measured

systems? The DR framework can provide answers for these questions

using the concepts of redundancy (for Q1) and observability (for Q2).

The observabiity and redundancy analysis is performed as a part of the

DR approach. For a reaction system with n reactions and m compounds,

if an unmeasured Gibbs free energy can be estimated uniquely from the

measured Gibbs free energies and the constraints, then the unmeasured

Gibbs free energy is observable. On the other hand, if measurement of

a Gibbs free energy is removed from the measured ones, and it can be

still uniquely estimated from the rest of the measured energies, then the

measured one is redundant and this property is referred as redundancy

(See Section 5 of the supporting materials for details). For a partially

measured reaction systems, if the s rows of P are independent with s < q,

then the observability analysis allows us to find out which unmeasured

Gibbs free energies can be estimated from the measured ones. Let us

divide the unmeasured Gibbs free energies ∆G◦

u into two parts as follows:

∆G◦

u =

[

∆G◦

u,s

∆G◦

u,q−s

]

. Then, the following relationships can be derived

between∆G◦

u,s corresponding to the s independent rows of the projection

matrix P, ∆G◦

m and the remaining q−s unmeasured Gibbs free energies

∆G◦

u,q−s as follows:

∆G◦

u,s = −R−1
1 QT

1 Am∆G◦

m −C∆G◦

u,q−s (10)

0 = ÃP xm (11)

where R1, Q1, C = R−1
1 R2, and Ā = PAm = QT

2 Am are

the matrices obtained via the QR decomposition of Au. The details

of derivation and the matrices are given in Section 5 of the supporting
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materials. In Eq. (11), the matrices C and ÃP contain all the necessary

information to classify Gibbs free energies into the observable and

redundant variables. If a row of C has zero elements only, then the

corresponding unmeasured Gibbs free energies can be estimated uniquely

from ∆G◦

m and it is observable. On the other hand, if a row of C contains

at least one non-zero element, then the corresponding Gibbs free energy

is unobservable because its estimates depends on the values of the (q− s)

unmeasured Gibbs free energies as it can be seen in Eq. (11). Further,

the (q − s) unmeasured energies are also unobservable because their

values have to be specified. If a column of ÃP has zero elements only,

then the corresponding measured Gibbs free energy is not the redundant

variable. In other words, that energy can not be reconciled as it cannot be

indirectly estimated from the other measured energies and the reduced set

of constraints (Narasimhan and Jordache (1999)).

4 Results and Discussion

Published data: We consider a test set of 87 different metabolic

reactions from the NIST-TECR database to illustrate the data reconciliation

framework. The measured formation energies of the 84 compounds

involved were obtained from (Alberty, 2005). The relevant data are

provided in Section 9 of the supplementary material. The measurements of

the apparent equilibrium constants for many of these reactions are available

at different conditions. The inverse Legendre transformation was applied

to calculate the standard Gibbs free energies of these reactions.

Simulated data: To assess the accuracy of the DR approach, the

true values of the available thermodynamic data have to be known.

Thus, the standard reaction and formation energy estimates obtained after

reconciling the published values were assumed to be “true" parameter

values for the simulated data. Then, noisy Gibbs free energy measurements

were generated by adding the Gaussian errors with zero mean and variance

of α percentage of the “true" value of each measurement where α is a

positive constant. These simulated data were used to reconcile the Gibbs

free energies using the DR approach and the regression methods.

4.1 Comparison of data reconciliation with the linear

regression

The DR method and regression are applied to the published experimental

Gibbs free energy data. The results are shown in Figure 2. It can be

observed from Figure 2 a) that the published experimental Gibbs free

energy data are not thermodynamically consistent, i.e. they do not satisfy

constraints in Eq. (1). Thermodynamic consistency here is the deviation

of the ST∆fG
◦

m value from the corresponding measured ∆rG
◦

m value

(vertical distance from the 45◦ line). Since the erroneous experimental

data were combined from different sources, the average constraint error in

terms of the root-means-squares-error (RMSE) is 22.63 kJ mol−1. Under

the assumption that the uncertainty is only due to measurement errors in

apparent equilibrium constant data, and not in the normalization of ionic

effects, the DR method as applied to the published data. The resulting

reconciled Gibbs free energies after adjusting both ∆rG
◦

m and ∆fG
◦

m

were consistent, with zero constraint errors as shown in Figure 2 a).

The linear regression between the experimental data ∆rG
◦

m and

∆fG
◦

m with the model equations being the constraints (Eq. 1) is fitted

(see Section 2 for more details). In the linear regression, it is assumed

that the formation energy measurements do not contain any measurement

errors. However, due to the measurement errors in the experimental data

in the training data and only ∆rG
◦

m error is minimized without imposing

the thermodynamic constraints. This approach leads to thermodynamic

inconsistencies in the estimates which cannot be avoided. Hence, the

average constraint error in terms of the RMSE is 7.34 kJ mol−1 in the linear

regression estimates of the measured data. The accuracy of an estimation

method is determined by the deviations of the estimates from the true

values. In this study, this error is referred to as a prediction error (The

details on the constraint error and prediction error are provided in Section

8 of the supplementary material). To demonstrate the utility of the DR

approach, we have applied the DR and linear regression method to the

simulated data. As shown in Table 1, even for the α value as high as

30 %, the average deviations from the “true" values in the case of linear

DR estimates of the simulated measurements are nearly half of those of

the linear regression estimates. For the simulated data with α = 10%, the

estimates and confidence intervals are given in Section 10 of the supporting

information.

The main use of the DR method is in estimating missing Gibbs

energies and reconciling estimates from measured Gibbs free energies

in partially measured systems. An observability analysis for the entire

set of reactions on the NIST-TECR database of nearly 4000 reactions

between 566 compounds. It was found that the formation energy estimates

of 77 compounds can be obtained entirely from the available experimental

data on the formation energies (of 117 compounds obtained from Alberty

(2005)) and the reaction equilibrium constants for 134 reactions. (See

the reconciled values for 77 compounds in Section 6 of the supporting

information.) To evaluate the regression and DR approach, we used sub-

sampling based cross-validation using the simulated data (with α = 10).

To ensure that only the observable Gibbs energies are sampled out, the

observability analysis was performed for the matrix [I − ST ] and the

87 observable Gibbs energies of reaction and formation were identified.

For generating a sample, thirty observable Gibbs energies were randomly

sampled out as a validation set. The remaining data was used to train

the regression model and the estimates for the validation set were then

determined. The method for linear DR for partially measured measured

reaction systems in Section 3.1.1 is applied to obtain the reconciled and

estimates of the unmeasured Gibbs free energies in a validation set. The

process of sub-sampling and estimation was repeated several times with

increasing number of sub-samples from 10 to 500. After each step of

sub-sampling and estimation, the average cross-validation error was then

computed as RMSE of the sub-samples for the estimates obtained by the

linear regression and DR method. The results are shown in Figure 3 as a

plot between the resulting RMSE of sub-samples and the number of sub-

samples. The average cross validation error for regression was higher than

that of the DR approach at the low number of sub-samples. In fact, this error

was initially very high, but approached that of reconciliation as the number

of iterations increased beyond 500. The validation error for reconciliation

remained roughly constant irrespective of the sub-sample being validated.

This suggests that regression is prone to over-fitting and the accuracy of

the method is sensitive to the quality of training data and the exact set of

Gibbs energies that are required to be estimated. The DR avoids this by

using reconciled estimates of measurements with zero constraint error to

estimate the missing Gibbs free energies.

Table 1. Comparison of linear data reconciliation and linear regression for simulated

data. The errors computed as an RMSE in kJ mol−1

α Average

constraint error

(Reconciliation)

Average

constraint error

(Regression)

Average

prediction error

(Reconciliation)

Average

prediction error

(Regression)

1% 2.86 × 10−12 1.4613 0.949 1.3327

5% 2.74 × 10−14 4.2721 1.9028 3.8284

10% 1.19 × 10−12 5.8771 2.947 4.639

20% 6.59 × 10−12 9.0241 3.4290 7.0352

30% 1.24 × 10−11 9.9850 4.3306 8.1603
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Fig. 2. (a) Comparison of the extent of violations of the thermodynamic constraints (Eq. (1))

in the published, regression estimates and the reconciled estimates for standard Gibbs free

energies. The average constraint error per reaction in terms of the RMSE values are 22.63

kJ mol−1 and 7.34 kJ mol−1 are for the published data and the regression estimates,

respectively. This error is virtually zero in the reconciled estimates. (b) Comparison of the

estimates for the simulated data with 10% noise with RMSE of 24.16 kJ mol−1 , similar

to published data. The resulting reconciled estimates are consistent and have an average

deviation of 2.94 kJ mol−1 from the "true" values in comparison to 4.64 kJ mol−1 in the

regression estimates.

4.2 Improved estimation of group contributions

The compounds in the data set considered were decomposed into thirty

groups and the group incidence matrix G was constructed. The group

decomposition was carried out based on the work of Noor et al., 2013 and

the same group definitions were used (see Section 10 of the supporting

material for details). For simulated measurements with α = 10, the group

contributions were estimated using the DR approach in Section 3.2. The

constraint error of the DR estimates quantified here by the average squared

difference between ∆rG
◦ and STG ·∆grpG

◦ was lower (RMSE of 3.77

kJ/mol) in comparison to the one obtained by the regression approach

(RMSE of 5.83 kJ/mol ) as shown in Figure 4. The residual inconsistency

present in the reconciled estimates can be attributed to the modelling error

due to the group additivity assumption. The group contribution estimates

of ∆rG
◦ also had slightly lesser prediction errors when the reconciliation

approach was used (RMSE of 5.35 kJ/mol compared to 6.05 kJ/mol using

regression). However, the thermodynamic constraints in (1) are satisfied.
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Fig. 3. The results of sub-sampling cross validation of 30 Gibbs energies. The validation

errors (RMSE) for the regression was higher than those of the DR approach.
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Fig. 4. Results of the modified group contribution showing that the reconciled estimates are

more thermodynamically consistent (constraint error of 3.77 kJ/mol) than the regression

estimates (constraint error of 5.83 kJ/mol). Morever, the reconciled estimates of group

contributions yield reaction energies that are closer to the "true" values. (RMSE of 5.35

kJ/mol compared to 6.05 kJ/mol for the Pseudoisomer group contribution (PGC)

5 Curation of data and Design of experiments

For an existing database, if new Gibbs free energy measurements are

available for a given reaction or species from the database, its redundancy is

increased. The DR framework can thus accommodate systematic revisions

of a large ’global’ database such as TECRDB based on the addition of

new experimental data replicates, contributing to increased accuracy of

the reconciled estimates. Moreover, in curating a ’global’ database, the

unobservable Gibbs energies of reaction and formation can be identified

and used as salient targets for designing new experiments. For instance,

for the 473 unique reactions on the NIST-TECR databse, experimental

thermodynamic data for formation energies is only available for 117 of

the 566 compounds involved in the reactions (from the (Alberty, 2005)

table ). Due to lack of observability, not all of the remaining formation

energies can be estimated. In fact, using the data-reconciliation framework,

it was found that formation energies of 77 compounds are observable and

can be estimated using the DR approach for partially measured systems

without requiring any additional information (see Section 6 for the details

of estimates). However, for 150 of the unmeasured compounds, their

formation energies are required to be specified to estimate the rest. Thus,

conducting experiments to find the formation energies of these compounds

can effectively ’complete’ the database. When experimental data is not

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted December 12, 2018. ; https://doi.org/10.1101/492819doi: bioRxiv preprint 



“output” — 2018/12/12 — page 7 — #7

Thermodynamically consistent estimation of Gibbs energies 7

available for unobservable Gibbs energies, the group contribution method

using the available measurements within the database can be can be used

to impute estimates for these variables, albeit at reduced accuracy. Other

non-empirical methods (e.g. Jinich et al. (2014)) can also be used for this

imputation.

While curating databases and adding new information, an important

distinction should be made between a ’global’ database and a new

experimental dataset. When a new set of reactions is considered, the data

should be collated with the ’global’ database when the size of the two sets

are comparable. This is because when the DR is performed on a collated

set of reactions, new reconciled estimates are obtained for both ’global’

and the new experimental data. If the new experimental data are not large

enough, modifying the values in the ’global’ database based on limited new

experimental data can lead to inaccuracies. The reconciled estimates from

the global set can only be used to predict missing information in the the

new set using the standard method or the component contribution method.

If the prediction set is partially measured, the available measurements can

only be reconciled using the constraints within the set. However, When the

size of the new set is large enough, the two sets can be collated to improve

estimation of new Gibbs energies and the coverage of the database.

6 Conclusion

In this study, the data reconciliation (DR) framework has been proposed for

obtaining thermodynamically consistent estimates of Gibbs free energies

from experimental data. The DR framework has been extended to estimate

group contributions. Further, for a partially measured system, using both

published and simulated Gibbs energies data, it has been shown that the

proposed methods can be used to reconcile available Gibbs free energy

measurements and provide consistent estimates for the missing ones that

have better accuracy than linear regression.

Given a set of reactions and all the available experimental

thermodynamic data on Gibbs energies, the DR framework can thus

be used to reduce experimental errors in the data by reconciling

all measurements, classify missing Gibbs energies as observable or

unobservable, and calculate consistent estimates for the observerable

Gibbs free energies. This a priori analysis can also aid in designing new

experiments in a systematic manner and help obtain thermondynamically

consistent estimates of all Gibbs free energies. The DR methods can also

improve the curation of data banks from different sources to increase

the scope of estimation and applicability of the available information,

potentially becoming an invaluable tool for the thermodynamic analysis

of biochemical systems.
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