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1 Introduction

Duality plays a significant role in understanding various aspects of string theory. T-duality

is one such example which relates low energy effective actions of various string theories

among each other [1, 2]. One of the most familiar description of T-duality widely used in

the literature concerns with U(1) isometry. In this case the duality is not merely relating

the low energy theories among each other but manifests as a symmetry of the full string

theory [3]. A non-trivial generalization of this duality exists for isometries admitting the

structure of a non-Abelian group [4]. However, unlike their Abelian counterparts, these

non-Abelian T-dualities are not extended to full string theory [5]. Instead, they are used

to relate the low energy theories among each other.

Several aspects of the non-Abelian T-duality have been investigated in recent years.

An important development in this area was to generalize this formalism in the presence

of RR fields [6]. This in turn was used as a solution generating technique in supergravity

to obtain new backgrounds. To demonstrate the applicability of this formalism, a SU(2)

sub-group of isometry in the near horizon limit of coincident D3 branes as well as D1−D5

system has been used to generate a new background in massive type IIA supergravity [6].

An immediate generalization of this construction for non-Abelian T-duals in coset geome-

tries has been carried out [7]. Non-Abelian T-duality for the Plich-Warner background has

been carried out in [8] where the transformation rules for the background RR fields were

derived from Fourier-Mukai transform. These techniques have been applied over and again

– 1 –



J
H
E
P
1
1
(
2
0
1
9
)
1
2
5

to generate several new backgrounds, as well as to relate known backgrounds among each

other [9]. Moreover, the role of non-Abelian T-duality in the context of AdS/CFT corre-

spondence has been explored [10–15]. Interesting connections of these dual geometries with

the Penrose limit [16] of some well known supergravity backgrounds has been established

in this context [17–19].

For a large class of supergravity backgrounds the Penrose limit gives rise to pp-wave

geometry. There has been immense study of the field theory duals for various pp-wave

backgrounds during the last two decades [20]. It has been proven that the pp-wave solutions

provide exact backgrounds to all orders in α′ and gs in string theory [21, 22]. Thus they have

become instrumental in the context of AdS/CFT correspondence to construct interacting

string states from the perturbative gauge theory [23]. More recently, the Penrose limits of

non-Abelian T-dual for the orbifolds of AdS5 × S5 have been studied in detail [24]. Plane

wave geometry has been obtained by considering the Penrose limit along appropriate null

geodesic and quantization of string theory in the background of this plane wave geometry

has been carried out and the corresponding field theory dual has been constructed.

Blowing up the singularities of orbifolds of S5 gives rise to smooth geometries. One

such geometry which has played an interesting role in understanding the AdS/CFT duality

is T 1,1. This geometry arises as the near horizon limit of coincident D3 branes placed on

a conifold singularity [25]. The field theory dual for AdS5 × T 1,1 background was first

constructed by Klebanov and Witten to obtain N = 1 SYM theory [26]. Penrose limit

for this background and its field theory dual were also analysed in detail [27–29]. In

the present work, we extend the aforementioned results about the non-Abelian T-duality,

for the Klebanov-Witten background. We consider both Abelian as well as non-Abelian

T-dual geometries and analyze Penrose limits for various null geodesics. We show that

these backgrounds give rise to pp-wave geometries for suitably chosen geodesics. We dis-

cuss quantization of closed strings propagating in some of these pp-wave backgrounds and

comment on the resulting field theory duals. In the following we will first summarise the im-

portant results discussing Penrose limits of the dual backgrounds obtained from AdS5×S5.

We subsequently consider the generalisation of these results to the Klebanov-Witten back-

ground. Finally, we comment on the probable field theory duals for some of the resulting

pp-wave backgrounds.

2 Dual backgrounds from AdS5 × S5

We will first consider the Penrose limits from T-duals of AdS5 × S5 background. The

background metric is given as

ds2 = 4L2
(
− cosh2 rdt2 + dr2 + sinh2 rdΩ2

3 + dα2 + sin2 αdβ2
)

+ L2 cos2 α
(
dθ2 + dφ2 + dψ2 + 2 cos θdφdψ

)
. (2.1)

Here L is the AdS radius and dΩ3 is the round metric on S3. This background is sup-

ported by a self-dual five form field strength F5. The Penrose limit of this background has

been considered in the seminal paper [23]. The field theory dual of the resulting pp-wave

background corresponds to the BMN sector of N = 4 Super-Yang-Mills theory.

– 2 –



J
H
E
P
1
1
(
2
0
1
9
)
1
2
5

The Abelian T-duality along the ψ direction [17], after appropriate coordinate redefi-

nitions, gives rise to the metric

ds2 = 4L2ds2(AdS5) + 4L2 dΩ2
2(α, β) +

L2dψ2

cos2 α
+ L2 cos2 α dΩ2

2(χ, ξ) , (2.2)

along with a dilaton φ, B2 and a three form field C3. Here ds2(AdS5) is the metric on AdS5

and dΩ2
2(θ, φ) = dθ2 + sin2 θdφ2 is the metric on S2. In this background, for motion along

the ξ direction the null geodesics are {α = 0, χ = π/2} and {α = π, χ = π/2}. Focusing in

the vicinity of both these geodesics one gets a pp-wave geometry [24]. In addition, pp-waves

are also obtained by considering the geodesic {α = 0, χ = π/2} for motion along ψ and ξ

directions. The authors of [24] considered quantization of closed string propagating in this

background. However their main focus of discussion was the pp-wave solutions originating

from the non-Abelian T-duals.

After T-dualizing along an SU(2) direction [17], the geometry becomes

ds2 = 4L2ds2(AdS5) + 4L2dΩ2
2(α, β) +

α′2dρ̃2

L2 cos2 α
+

α′2L2ρ̃2 cos2 α

α′2ρ̃2 + L4 cos4 α
dΩ2

2(χ, ξ) . (2.3)

In this case, however, the motion along the ξ direction does not admit any pp-wave solution

in the vicinity of any of the null geodesics. To obtain pp-wave solution we need to focus on

motion along ρ(≡ α′ρ̃/L2) and ξ direction [24]. In this case, the null geodesic is located at

{χ = π/2, α = 0}. The Lagrangian for a massless particle moving on a null geodesic admits

two cyclic coordinates giving rise to the conservation of energy and angular momentum.

Expanding around the null geodesic and making appropriate coordinate redefinition, one

can bring the resulting pp-wave metric to the standard Brinkmann form [24]:

ds2 = 2 du dv + dr̄2 + r̄2 dΩ2
3 + dx2 + x2 dβ2 + dz2 + dw2

−

[
r̄2

16
+
x2

16
(8J2 − 1) +

(ρ2 + 1)2

ρ4
J2z2 − Fz z2 − Fw w2

]
du2 ,

(2.4)

where

Fz =
4 J2

(
4 ρ2 + 1

)
+ 3

(
4 J2 − 1

)
ρ4

4 ρ4
(
ρ2 + 1

)2 , Fw = − 3

4
(
ρ2 + 1

)2 . (2.5)

The NS-NS three form H3 and RR four form F4 hold the following expressions upon taking

the Penrose limit:

H3 =
1

2

ρ2 + 3

ρ2 + 1
du ∧ dz ∧ dw , F4 =

2 J x
√
ρ2 + 1

˜̃gs
du ∧ dx ∧ dz ∧ dβ . (2.6)

The authors of [24] studied propagation of closed strings in this background. Solutions to

the equation of motion are constructed. Further, they have proposed a field theory dual

for this background.
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3 Abelian T-dual of Klebanov-Witten background

Our goal in the present work is to generalize these results for the background AdS5 ×
T 1,1. This geometry corresponds to the near horizon limit of parallel D3 branes at conical

singularities, and provides one of the earliest examples of the AdS/CFT correspondence.

The metric corresponding to the geometry has the form

ds2 = L2ds2
AdS5

+ L2ds2
T 1,1 , (3.1)

ds2
AdS5

= − cosh2 r dt2 + dr2 + sinh2 r dΩ2
3, (3.2)

ds2
T 1,1 = λ2

1 dΩ2
2

(
θ1, φ1

)
+ λ2

2 dΩ2
2

(
θ2, φ2

)
+ λ2

(
dψ + cos θ1dφ1 + cos θ2dφ2

)2
. (3.3)

Here L is the AdS5 radius, and the parameters λ, λ1, λ2 in the T 1,1 metric have the nu-

merical values λ2
1 = λ2

2 = 1
6 , λ

2 = 1
9 . In addition, the supergravity background contains a

constant dilation Φ, and a self-dual RR five form field strength

F5 =
4

gsL

[
Vol(AdS5)− L5Vol(T 1,1)

]
. (3.4)

We will study both Abelian as well as non-Abelian T-duals of this background. We will

first focus on the Abelian T-duality. The brane constructions for the corresponding dual

geometry was studied in detail [30, 31]. They correspond to various intersecting branes in

type IIA string theory. In the following we will consider the Penrose limits for the Abelian

T-duality of this background about some of the U(1) isometry directions.

The background has a manifest U(1) invariance along φ1, φ2 and ψ directions. First

focus on the azimuthal directions (φ1, φ2). There is a symmetry under the exchange of

(θ1, φ1) with (θ2, φ2). Thus, it would be sufficient to consider the duality along one of

these two directions. Here we will consider the Abelian T-duality along φ2 isometry. It

is straightforward to obtain the dual geometry using the standard rules of T-duality [32].

The duality preserves all the supersymmetries of the Klebanov-Witten background.The

field theory dual corresponding to this background has been analysed [33]. The metric

corresponding to the dual background is given by

L−2dŝ2 = ds2
AdS5

+λ2
1

[
dΩ2

2

(
θ1,φ1

)
+dθ2

2 +
λ2 sin2 θ2

P (θ2)

(
dψ+cosθ1dφ1

)2
+

dφ2
2

λ2
1P (θ2)

]
. (3.5)

Here we have used the notation P (θ2) = λ2 cos2 θ2 +λ2
2 sin2 θ2. The dilaton and the NS-NS

two form fields are given respectively by

e−2Φ̂ =
L2

g2
s

P (θ2) , (3.6)

and

B̂2 = −L
2λ2 cos θ2

P (θ2)

(
dφ2 ∧ dψ + cos θ1dφ2 ∧ dφ1

)
. (3.7)

The RR two form F2 vanishes, whereas the RR four form F4 has the expression

F̂4 =
4L4λλ4

1

gs
sin θ1 sin θ2 dθ1 ∧ dφ1 ∧ dθ2 ∧ dψ . (3.8)
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We will now focus on obtaining Penrose limits for this background. To this end,

consider the geodesic equation

d2xµ

du2
+ Γµνρ

dxν

du

dxρ

du
= 0 . (3.9)

Here {xµ} are the space-time coordinates and u denotes the affine parameter along the

geodesic. We will consider the motion along some isometry direction. If xµ0 is such an

isometry direction, then the velocity as well as acceleration along any xµ, µ 6= µ0 vanish:

dxµ

du
= 0 =

d2xµ

du2
, µ 6= µ0 . (3.10)

Substituting the above in (3.9), we find

∂µgµ0µ0 = 0 . (3.11)

To obtain the Penrose limit, we need to focus in the vicinity of null geodesics. Thus, in

addition to the above condition, we must require ds2 = 0.

We will now analyse the motion along various isometry directions of the T-dual ge-

ometry (3.5) and obtain the corresponding Penrose limits. Consider first the φ1 isometry.

The geodesic equation along this direction is ∂µgφ1φ1 = 0. The relevant component of the

metric is

gφ1φ1 = L2

[
λ2

1 sin2 θ1 +
λ2

1λ
2 sin2 θ2

λ2 cos2 θ2 + λ2
2 sin2 θ2

cos2 θ1

]
. (3.12)

The geodesic condition for µ=θ1 as well as for µ=θ2 can be solved to obtain θ1 =(0, π2 , π)

and θ2 = (0, π2 , π) respectively. This gives us four geodesics: {θ1 = 0, θ2 = π/2}, {θ1 = π,

θ2 =π/2}, {θ1 =π/2, θ2 =0} and {θ1 =π/2, θ2 =π}. We first consider the following large L

expansion around the geodesic {θ1 =0, θ2 = π
2 }:

r =
r̄

L
, θ1 =

z

L
, θ2 =

π

2
+
x

L
, t = ax+, φ1 = bx+ +

x−

L2
, φ2 =

φ2

L
, (3.13)

while keeping ψ unchanged. Here a and b are unknown parameters. Ignoring the subleading

terms in  L→∞ limit, we find the T-dual metric to have the following expression

ds2 = dr̄2 + r̄2dΩ2
3 + λ2

1dz
2 + λ2

1dx
2 −

[
r̄2a2 + b2z2

(
λ2 − λ2

1

)]
(dx+)2

− λ2
[
bz2dψdx+ − 2dψdx− − 2bdx+dx−

]
− λ4

λ2
2

x2
(
dψ + bdx+

)2
+

1

λ2
2

dφ2
2

− L2
[
a2(dx+)2 − λ2

(
dψ + bdx+

)2]
. (3.14)

Note that the metric diverges in the limit L → ∞ due to the presence of O(L2) terms.

This divergence occurs because, in this case we have not been able to impose the geodesic

to be null. This amounts to setting

a2(dx+)2 − λ2
(
dψ + bdx+

)2
= 0 .
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Clearly, this can’t be satisfied for any choice of the parameters a and b due to the presence

of the dψ term. A similar analysis can be carried out for the geodesic {θ1 = π, θ2 = π/2},
leading to a divergent metric in the large L expansion.

In contrast, expanding the T-dual metric around the remaining two geodesics gives

rise to pp-wave geometry as we will show currently. Consider first the following expansion

about the geodesic {θ1 = π/2, θ2 = 0}:

r =
r̄

L
, θ1 =

π

2
+
z

L
, θ2 =

x

L
, t = ax+, φ1 = bx+ +

x−

L2
, φ2 =

φ2

L
, (3.15)

keeping the ψ-coordinate unchanged. Here, as before a and b are unknown parameters to

be chosen suitable1 in order to obtain

ds2
pp = 2dx+dx−+dr̄2 + r̄2dΩ2

3 +dz2 +dx2 +x2dψ2 +dφ2
2−6

(
r̄2 +6z2−6x2

)
(dx+)2 . (3.16)

Clearly, the background geometry is a pp-wave solution in the standard Brinkmann form.

The background dilaton has the expression

e−2Φ̂ =
1

g̃2
s

λ2 , (3.17)

and NS-NS two-form field

B̂2 = 2
√

6z dφ2 ∧ dx+ , (3.18)

with corresponding field strength

Ĥ3 = 2
√

6 dz ∧ dφ2 ∧ dx+ . (3.19)

The RR fields in this limit has the expression

F̂2 = 0 , F̂4 =
4
√

6

3g̃s
x dz ∧ dx+ ∧ dx ∧ dψ . (3.20)

Taking Penrose limit for the geodesic {θ1 = π/2, θ2 = π} also leads to a pp wave geom-

etry with the same metric as (3.16). The expressions for the background fields are also

quite similar. We omit the details because the analysis is identical to the aforementioned

discussion.

Now consider motion along the φ2 direction. To obtain the geodesics along this isom-

etry, consider the metric component

gφ2φ2 =
L2

λ2 cos2 θ2 + λ2
2 sin2 θ2

. (3.21)

From the geodesic condition, ∂θ2gφ2φ2 = 0 we find θ2 =
(
0, π/2, π

)
. Consider the following

expansion around the geodesic {θ1 = 0, θ2 = 0}:

r =
r̄

L
, θ1 =

z

L
, θ2 =

x

L
, t = ax+, φ2 = bx+ +

x−

L2
, (3.22)

1To get the metric in standard from, we set a = 1/λ1, b = 1/λ2
1 and, in addition, we rescale some of the

coordinates as x→
√
6x, z →

√
6z, φ2 → 1

3
φ2.

– 6 –
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keeping φ1 and ψ unchanged. To remove the O(L2) divergent piece in the metric, we need

to choose a = λ, b = λ2. This choice leads to a null geodesic. With appropriate redefinition

of the x and z coordinates, we find the T-dual metric as

ds2 = 2dx+dx−+dr̄2+r̄2dΩ2
3+dz2+z2dφ2

1+dx2+x2(dψ+dφ1)2−1

9

(
r̄2+3x2

)
(dx+)2. (3.23)

Though the metric is now finite, the scalar curvature for this solution is non-zero and

hence it does not correspond to a pp-wave geometry. This is due to the fact that the

geodesic is placed on a singular location. The metric component gφ1φ1 vanishes for the

values {θ1 = 0, θ2 = 0}. This is a generic feature and hence we will no longer consider such

singular geodesics from now on.

Finally, consider the ψ-isometry direction. The null geodesics can be obtained by

considering the gψψ component of the metric, which is given by

gψψ = L2 λ2
1λ

2 sin2 θ2

λ2 cos2 θ2 + λ2
2 sin2 θ2

. (3.24)

Solving the geodesic condition one obtains θ2 =
(
0, π/2, π

)
. For the values θ2 = (0, π)

the above metric component vanishes and hence, we do not consider these values here.

Consider the following expansion around the geodesic θ1 = 0 and θ2 = π
2 :

r =
r̄

L
, θ1 =

x

L
, θ2 =

π

2
+
z

L
, t = ax+, ψ = bx+ +

x−

L2
, φ2 =

φ2

L
, (3.25)

while keeping the φ1 coordinate unchanged. The leading terms of T-dual metric in the

limit L→∞ are given by

ds2 = dr̄2 + r̄2dΩ2
3 + λ2

1dx
2 + λ2

1dz
2 +

[(
λ2

1 − λ2
)
x2 − λ4

λ2
2

z2

]
dφ2

1 +
1

λ2
2

dφ2
2

−
[
r̄2a2 +

λ4

λ2
2

b2z2

]
(dx+)2 + λ2

[
2bdx+dx− − b

(
x2 +

λ2

λ2
2

2z2

)
dx+dφ1 + 2dx−dφ1

]
− L2

[
a2(dx+)2 − λ2

(
bdx+ + dφ1

)2]
. (3.26)

This contains a divergent term which can’t be removed by any choice of the parameters a

and b. This is because, in this case too, we do not have a null geodesic for any choice of

the parameters a and b. Hence motion along the isometry direction ψ does not lead to any

pp-wave geometry.

In the above, we have considered the Abelian T-duality along φ2 direction and analysed

all the geodesics admitted by this geometry. Some of these geodesics are singular and taking

Penrose limit does not lead to any interesting solution in such cases. Only two of these

geodesics are null. Taking Penrose limit in the vicinity of these two null geodesics leads

to pp wave geometries. An identical result will hold for T-duality along φ1 direction.

We will now focus on the remaining isometry direction ψ. Using the standard rules of

T-duality [32], we obtain

dŝ2 = L2ds2
AdS5

+ L2

[
λ2

1dΩ2
2

(
θ1, φ1

)
+ λ2

2dΩ2
2

(
θ2, φ2

)
+

1

λ2
dψ2

]
. (3.27)
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Here we have rescaled ψ → L2

α′ ψ in order to get L2 as a common factor in the metric and

set α′ = 1 for convenience. The resulting T-dual geometry has the well known product

form AdS5×S2×S2×S1. Unlike the previous case, the background is non-supersymmetric

in this case. The NS-NS sector also contains a constant dilaton

e−2Φ̂ =
λ2L2

g2
s

, (3.28)

and a two-form field

B̂2 = −L2
[

cos θ1dφ1 + cos θ2dφ2

]
∧ dψ , (3.29)

with field strength

Ĥ3 = L2
[

sin θ1dθ1 ∧ dφ1 + sin θ2dθ2 ∧ dφ2

]
∧ dψ . (3.30)

The RR sector of the resulting background consists of a non-vanishing four-form flux

F̂4 =
4L4λλ2

1λ
2
2

gs
sin θ1 sin θ2 dφ1 ∧ dθ1 ∧ dφ2 ∧ dθ2 . (3.31)

We will now focus on the metric (3.27). Clearly φ1, φ2 and ψ are the isometry direc-

tions. Motion along the ψ direction does not give any non-trivial constraint. Since the

analysis is identical for both φ1 and φ2, it will be sufficient to consider geodesics along one

of these directions. For the φ1 isometry direction the condition (3.11) gives θ1 = (0, π2 , π).

However, the singular values θ1 = 0 and π correspond to points and not curves and hence

we do not have any corresponding geodesics. This leaves behind the choice θ1 = π/2. To

get the Penrose limit, we consider the following large L expansion of the dual metric (3.27)

retaining the leading terms:

r =
r̄

L
, θ1 =

π

2
+
z

L
, θ2 =

x

L
, t = ax+, φ1 = bx+ +

x−

L2
, ψ =

y

L
, φ2 = β, (3.32)

and redefine the string coupling as gs = L g̃s to ensure that the dilaton remains finite. To

obtain a null geodesic we must impose the condition a = λ1b. In addition, we set λ2
1b = 1

and make the co-ordinate redifinitions x+ = u, x− = v, z →
√

6z, x →
√

6x, y → 1
3y to

bring the resulting pp-wave metric to the standard form:

ds2 = 2dudv + dr̄2 + r̄2dΩ2
3 + dz2 + dx2 + x2dβ2 + dy2 − 6(r̄2 + 6z2)du2. (3.33)

The expressions for the dilaton and NS-NS three-form flux in this limit are given as:

e−2Φ̂ =
λ2

g̃2
s

, (3.34)

and

Ĥ3 = 2
√

6 dz ∧ du ∧ dy . (3.35)

Field strengths for the RR fluxes have the expression:

F̂2 = 0, F̂4 =
4
√

6

3g̃s
x du ∧ dz ∧ dβ ∧ dx . (3.36)

– 8 –
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The null geodesics can also carry angular momentum. To obtain such a geodesic,

we consider motion along φ1 and ψ directions. The geodesic equation now implies that

θ1 = π/2, θ2 = 0. Consider the Lagrangian for a massless particle moving along this

geodesic:

L =
1

2
gµνẊ

µẊν . (3.37)

Here we choose u to be the affine parameter and the dots denote derivative with respect

to it. Substituting the explicit expression for the background metric (3.27) in the above

Lagrangian we find

L =
L2

2

(
−ṫ2 +

1

6
φ̇2

1 + 9ψ̇2

)
. (3.38)

Clearly, the conjugate momenta corresponding to the generalized coordinates t, φ1 and ψ

are conserved. Suitably choosing the affine parameter u we set

∂L
∂ṫ

= −L2ṫ = −L2 .

Denoting J to be the conserved quantity associated with the variable φ1, we have

∂L
∂φ̇1

=
1

6
φ̇1L

2 = −JL2 .

The conserved momentum with respect to the variable ψ however can no longer be arbitrary.

It has to be determined by requiring the geodesic to be null, i.e., we set L = 0. We find

ψ̇2 =
1

9

(
1− 6J2

)
, (3.39)

which upon integration gives

ψ =
1

3

√
1− 6J2 u .

Here we set the constant of integration to zero. From the above expression we find that in

order to get a real value for ψ the angular momentum J must be bounded by

0 ≤ J ≤ 1√
6
. (3.40)

To obtain the Penrose limit for a null geodesic carrying angular momentum J on the

(ψ, φ1) plane around r = 0, θ1 = π
2 , θ2 = 0, we redefine the coordinates

r =
r̄

L
, θ1 =

π

2
+
z

L
, θ2 =

x

L
, (3.41)

and consider the following expansion in the limit  L →∞:

dt = c1du, dφ1 = c2du+ c3
dw

L
, dψ = c4du+ c5

dw

L
+ c6

dv

L2
. (3.42)

Requiring the geodesic to be null sets the constant coefficients c1, c2 and c4 the values

c1 = 1, c2 = −6J, c4 =
1

3

√
1− 6J2 . (3.43)
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The metric, in addition contains a O(L) which can be removed upon requiring

λ2
1c2c3 + 1

λ2
c4c5 = 0. Normalizing the coefficient of dw2 to unity gives the condition

λ2
1c

2
3 + 1

λ2
c2

5 = 1. Similarly, appropriate normalization of the cross term 2dudv gives
c4c6
λ2

= 1. These condition can be solved uniquely to obtain the remaining coefficients

c3, c5 and c6. We find

c3 =
√

6(1− 6J2), c5 = J

√
2

3
, c6 =

1

3

1√
1− 6J2

. (3.44)

The resulting pp-wave metric after a rescaling x→
√

6x, z →
√

6z has the expression

ds2
pp = 2dudv + dr̄2 + r̄2dΩ2

3 + dz2 + dx2 + x2dβ2 + dw2 −
(
r̄2 + 36J2z2

)
du2. (3.45)

The background dilaton and B2 field are found to be

e−2Φ̂ =
λ2

g̃2
s

, B̂2 = 2z dw ∧ du+ x2
√

1− 6J2 dβ ∧ du , (3.46)

with the corresponding three form flux

Ĥ3 = 2 dz ∧ dw ∧ du+ 2x
√

1− 6J2 dx ∧ dβ ∧ du . (3.47)

In addition, the RR fluxes have the limit

F̂2 = 0, F̂4 =
4
√

6

3g̃s
Jx du ∧ dz ∧ dx ∧ dβ . (3.48)

Before closing this section, we note that all the pp-wave backgrounds we have obtained

in this paper do indeed satisfy the supergravity equations. In the following, we demonstrate

this for the background specified by eqs. (3.45)–(3.48). For type-IIA supergravity, the

Bianchi identity and gauge field equation are given as

dH3 = 0 , dF2 = 0 , dF4 = H3 ∧ F2 ,

d
(
e−2Φ̂ ∗H

)
− F2 ∧ ∗F4 −

1

2
F4 ∧ F4 = 0 ,

d ∗ F2 +H3 ∧ ∗F4 = 0 ,

d ∗ F4 +H3 ∧ F4 = 0 . (3.49)

A quick inspection of the background shows that the Bianchi identities are indeed satisfied.

The equation of motion for B2 is satisfied for our background, because the dilaton is

constant, F2 = 0 and F4 ∧ F4 = 0. Further, the hodge dual of H3, given by

∗H3 = 2
(
dx ∧ dβ +

√
1− 6J2 dz ∧ dω

)
∧ du ∧ dΩ4

is closed. To verify the F2 equation of motion, note that F2 is zero and

∗F4 =
4
√

6

3g̃s
J du ∧ dΩ4 ,

and hence H3 ∧ ∗F4 = 0. The last equation holds because ∗F4 is closed and H3 ∧ F4 = 0.
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The equations of motion for metric and dilaton are given as

Rµν+2DµDνΦ̂ =
1

4
H2
µν+e2Φ

[
1

2
(F 2

2 )µν+
1

12
(F 2

4 )µν−
1

4
gµν

(
1

2
F 2

2 +
1

4!
F 2

4

)]
,

R+4D2Φ̂−4(∂Φ̂)2− 1

12
H2 = 0 . (3.50)

To verify these equations, note that Φ̂ = const, H2 = F 2
4 = 0 = R. A straightforward

computation shows that only the uu-components of Rµν , H
2
µν and (F 2

4 )µν are non-vanishing.

They are given by

H2
uu = 16− 48J2 , (F 2

4 )uu = 64J2/g̃2
s , and Ruu = 4 + 36J2 . (3.51)

Substitution the above we can see that the corresponding equations of motion are indeed

satisfied.

4 Quantization of closed strings propagating in the pp-wave geometry

In this section we will study the quantization of closed strings propagating in the pp-wave

background. We will focus on the pp-wave solution (3.45) carrying an angular momentum

which has been obtained from the dual geometry by performing an Abelian T-duality along

ψ-isometry. The string world sheet action is given by

S = − 1

4πα′

∫
dτdσ

[√
ggαβGµν∂αX

µ∂βX
ν + εαβBµν∂αX

µ∂βX
ν + α′

√
g R(2)Φ

]
. (4.1)

Here {α, β} denote the worldsheet coordinates (τ, σ) and {µ, ν} denote the spacetime coor-

dinates, Gµν is the background metric, Bµν and Φ are the background NS-NS two-form and

dilaton respectively. We choose the convention ετσ = −εστ = 1 and gauge fix the world-

sheet metric gαβ such that
√
ggαβ = ηαβ , with −ηττ = ησσ = 1. Further, we designate the

string coordinates in the manner

U = u, V = v,
(
X1, X2, X3, X4

)
∈ r̄,Ω3,

(
X5, X6

)
∈ x, β,

(
X7, X8

)
∈ z, w , (4.2)

and consider the light cone gauge U = τ with p+ = 1 in order to fix the residual dif-

feomorphism invariance. The worldsheet action for the pp wave background (3.45) then

becomes

S = − 1

4πα′

∫
dτdσ

[
8∑
i=1

∂X i. ∂X i +

4∑
i=1

(Xi)2 +X8∂σX
7 −X7∂σX

8

− (X5)2
√

1− 6J2 ∂σX
6 + 36J2(X7)2

]
. (4.3)
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In the above the inner product is defined with ηαβ . The corresponding Euler-Lagrange

equations are given as

�Xi −Xi = 0 , i = 1, 2, 3, 4, (4.4)

�X5 +
√

1− 6J2 X5 ∂σX
6 = 0 , (4.5)

�X6 −
√

1− 6J2 X5 ∂σX
5 = 0 , (4.6)

�X7 − 36J2X7 +
1

2
∂σX

8 = 0 , (4.7)

�X8 − 1

2
∂σX

7 = 0 . (4.8)

The first of the above equations, eq. (4.4) is a linear equation involving the uncoupled

fields Xi, i = 1, . . . , 4. Considering an ansatz of the form X ∼ e−iωt+inσ, it is straightfor-

ward to obtain the frequencies of the respective modes

ω2
n,i = n2 + 1, i = 1, . . . , 4. (4.9)

The last two equations involving X7 and X8 can be decoupled giving rise to two fourth

order linear partial differential equations with corresponding mode frequencies

ω2
n,i = n2 +

1

2

[
36J2 ±

√
(36J2)2 + n2

]
, i = 7, 8. (4.10)

These modes can be related to the fourth order Pais-Uhlenbeck oscillator as in the case of

the Pilch-Warner background [34]. The equations involving X5 and X6 can be combined

into a single complex differential equation. Defining Z = X6 + iX5, we find

�Z +
1

2

√
1− 6J2

(
Z − Z̄

)
∂σZ = 0 (4.11)

This corresponds to a non-linear complex harmonic oscillator for which the exact analytic

solutions can’t be obtained. However, for small value of
√

1− 6J2 we can use perturbation

theory to obtain the frequencies of the oscillating modes.

5 The non-Abelian T-dual of the Klebanov-Witten background

In this section, we will discuss the non-Abelian T-duality of AdS5 × T 1,1 background.

This background arises upon placing D3-branes at the tip of a conifold. The field theory

dual has been constructed by Klebanov and Witten [25, 26]. The non-Abelian T-duality

on a subgroup of the symmetry group of the internal manifold T 1,1 has been carried out

in [11–13].2 An extensive study of this T-dual background was carried out [14]. Unlike the

AdS5 × S5 case, here the non-Abelian T-duality preserves all the supersymmetries of the

original background [36–39].3 In the following we will briefly review the dual background.

2See also [35] for a detailed discussion on some classical sting solutions of the non-Abelian T-dual

background.
3We are grateful to N.T. Macpherson for explaining us the susy conditions along with providing us

appropriate references.
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Subsequently, we will discuss the Penrose limits along various null geodesics of the resulting

geometry.

The T-dual solution that we consider here has been studied in detail in [10–15]. The

background geometry is specified by the metric

dŝ2 = L2ds2
AdS5

+ L2dŝ2
T 1,1 , (5.1)

with

dŝ2
T 1,1 = λ2

1dΩ2
2

(
θ1, φ1

)
+
λ2

2λ
2

∆
x2

1σ
2
3̂

+
1

∆

[(
x2

1 + λ2λ2
2

)
dx2

1 +
(
x2

2 + λ4
2

)
dx2

2 + 2x1x2dx1dx2

]
,

(5.2)

and

∆ = λ2
2x

2
1 + λ2(x2

2 + λ4
2) , σ3̂ = dψ + cos θ1dφ1 . (5.3)

Here we have done appropriate rescaling of the coordinates x1 and x2 in order to get an

overall factor of L2 in the metric. The NS-NS two-form of the dual background is given by

the expression

B̂2 = −λ
2L2

∆

[
x1x2dx1 +

(
x2

2 + λ4
2

)
dx2

]
∧ σ3̂ , (5.4)

along with the dilaton

e−2Φ̂ =
8L6

g2
s

∆ . (5.5)

The corresponding NS-NS three form flux is given by

Ĥ3 =
λ2L2

∆2

[
λ2

2x
3
1 + λ2x1

(
x2

2 + λ4
2

)
− 2λ2x1x

2
2 + 2λ2

2x1

(
x2

2 + λ4
2

)]
dx1 ∧ dx2 ∧ σ3̂

− λ2L2

∆

[
x1x2dx1 +

(
x2

2 + λ4
2

)
dx2

]
sin θ1dθ1 ∧ dφ1 . (5.6)

The RR sector of the background is described by the field strengths

F̂2 =
8
√

2

gs
λλ4

1L
4 sin θ1dφ1 ∧ dθ1 , (5.7)

and

F̂4 = −8
√

2

gs
L6λλ4

1

x1

∆
sin θ1dφ1 ∧ dθ1 ∧ σ3̂ ∧

(
λ2

1x1dx2 − λ2x2dx1

)
. (5.8)

It has been shown that [10, 11] this background solves the type IIA supergravity equations

preserving N = 1 supersymmetry.

We will now focus on the Penrose limits around various null geodesics of the above

dual geometry. We consider motion along the isometry directions φ1 and ψ. Let us first

focus on φ1-isometry. The relevant metric component is

gφ1φ1 = L2

[
λ2

1 sin2 θ1 +
λ2

2λ
2

∆
x2

1 cos2 θ1

]
. (5.9)

This component has non-trivial dependence on x1, x2 and θ1. The geodesic condition

∂µgφ1φ1 = 0 gives x1 = 0, θ1 = π/2 for µ = x1, and x1 = 0 = x2, θ1 = π/2 for µ = x2. For
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the choice µ = θ1 this gives rise to the values θ1 = (0, π/2, π). Clearly the only non-singular

choice for a geodesic is x1 = 0, x2 = 0 and θ1 = π/2. We will make the following large L

expansion around this geodesic:

r =
r̄

L
, x1 =

y1

L
, x2 =

y2

L
, θ1 =

π

2
+
z

L
, t = ax+, φ1 = bx+ +

x−

L2
, (5.10)

while keeping the ψ-coordinate unchanged. The parameters a and b are chosen to be 1/λ1

and 1/λ2
1 respectively. Further, we redefine the coordinates as x+ = u, x− = v and rescale

z →
√

6z, y1 → y1/
√

6, y2 → y2/3. The leading order terms of the metric in the limit

L→∞ gives

ds2 = 2dudv + dr̄2 + r̄2dΩ2
3 + dz2 + dy2

1 + y2
1dψ

2 + dy2
2 − 6

(
r̄2 + 6z2

)
du2. (5.11)

This is indeed a pp-wave solution in the standard Brinkmann form. Interestingly, the

pp-wave metric in the above is identical to the metric (3.33), we have obtained from the

Abelian T-dual background.

We will now focus on other background fields. In order to keep the dilaton finite, we

redefine the string coupling as

gs = L3g̃s . (5.12)

With this redefinition, the dilaton takes the form

e−2Φ̂ =
8

g̃2
s

λ2λ4
2 . (5.13)

In this limit, the NS-NS two-form field on the other hand becomes

B̂2 = 2
√

6z dy2 ∧ du , (5.14)

with the corresponding three-form flux

Ĥ3 = 2
√

6 du ∧ dz ∧ dy2 . (5.15)

The RR fields at Penrose limit are given as

F̂2 =
8

3
√

3g̃s
du ∧ dz, F̂4 = 0 . (5.16)

The motion on along the ψ-isometry however does not give pp-wave geometry as we

will see in the following. The relevant component of the metric is

gψψ = L2 λ2
2λ

2

∆
x2

1 . (5.17)

From the above we obtain the geodesic x2 = 0, θ1 = 0. Consider the following expansion

r =
r̄

L
, x2 =

y2

L
, θ1 =

z

L
, t = ax+, ψ = bx+ +

x−

L2
, (5.18)
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while keeping x1 and φ1 coordinates unchanged. The leading terms of the dual metric in

L→∞ becomes

ds2 =−r̄2a2(dx+)2+dr̄2+r̄2dΩ2
3+λ2

1dz
2+λ2

1z
2dφ2

1

+
λ2

2λ
2∑ [

2bx2
1 dx

+dx−+2x2
1dx
−dφ1−bx2

1z
2dx+dφ1−z2x2

1dφ
2
1

−λ
2y2

2x
2
1∑ (
bdx++dφ1

)2]− 1∑[
1∑λ2y2

2

(
x2

1+λ2
2λ

2
)
dx2

1−λ4
2dy

2
2−2x1y2dx1dy2

]
−L2a2(dx+)2+

L2∑[
λ2

2λ
2x2

1

{(
bdx++dφ1

)2
+2bdx+dφ1

}
+
(
x2

1+λ2
2λ

2
)
dx2

1

]
(5.19)

where, ∑
= λ2

2x
2
1 + λ2λ4

2 . (5.20)

In this case too the geodesic is not null for any choice of the parameters a and b. This is

reflected by the appearance of the divergent term in the metric. Hence the motion along

ψ-isometry does not give pp-wave geometry.

6 Closed string quantization on the PP wave

We will now study the quantization of a closed string propagating in the pp-wave back-

ground (5.11), derived in the last section. The worldsheet action is given by

S = − 1

4πα′

∫
dτdσ

[√
ggαβGµν∂αX

µ∂βX
ν + εαβBµν∂αX

µ∂βX
ν + α′

√
g R(2)Φ

]
. (6.1)

As before, we will use the notation ετσ = −εστ = 1 and gauge fix the metric as
√
ggαβ = ηαβ

with the convention −ηττ = ησσ = 1. We assign string coordinates as

U = u, V = v,
(
X1, X2, X3, X4

)
∈ r̄,Ω3,

(
X5, X6

)
∈ y1, ψ,

(
X7, X8

)
∈ z, y2 . (6.2)

Further, we fix the residual diffeomorphism invariance considering the light cone gauge

U = τ with p+ = 1. The worldsheet action for the pp-wave background (5.11) becomes

S = − 1

4πα′

∫
dτdσ

[
∂X i. ∂X i + 6

(
4∑
i=1

(Xi)2 + 6(X7)2

)
−
√

6X7∂σX
8 +
√

6X8∂σX
7

]
.

(6.3)

The equations of motion for the scalar fields in the above action are given by

�Xi − 6Xi = 0, i = 1, 2, 3, 4, (6.4)

�Xi = 0, i = 5, 6, (6.5)

�X7 − 36X7 +
1

2

√
6 ∂σX

8 = 0, (6.6)

�X8 − 1

2

√
6 ∂σX

7 = 0. (6.7)
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To obtain the oscillator frequencies we consider an ansatz of the form Xi ∼ e−iωt+inσ.

We find

ω2
n,i = n2 + 6, i = 1, 2, 3, 4, (6.8)

ω2
n,i = n2, i = 5, 6, (6.9)

ω2
n,i = n2 +

1

2

[
36±

√
(36)2 + 6n2

]
, i = 7, 8. (6.10)

7 Field theory duals

In the previous discussion we have seen that taking the Penrose limit gives rise to pp wave

geometries for smooth null geodesics, both in the case of Abelian as well as non-Abelian T-

dual backgrounds from AdS5×T 1,1. Here we will discuss the underlying field theory duals.

We will first consider the Abelian T-duals. The field theory duals for these backgrounds

has been constructed in [30] and [31]. They correspond to a system of intersecting D4 −
NS5 − NS5′ branes where the NS5 branes are rotated appropriately and the D4 branes

are stretched in between. Here we will study the field theory dual of the corresponding

pp-wave geometries.

In the limit of large F5 flux, the string coupling becomes weak and hence the pp-wave

background can be treated semi-classically. To show this, note that the type IIA and type

IIB string couplings gAs and gBs are related among each other as gBs = gAs L. In order to

get a finite dilaton in the Penrose limit we have rescaled the string coupling of the T-dual

geometry as g̃s = gAs /L. Hence, the IIB string coupling is related to g̃As as gBs = L2g̃s. For

the Klebanov-Witten background the size L of AdS5 space is quantized in terms of the F5

flux N3 as [33]:

L4 =
27

4
πgBs

2
N3 . (7.1)

Thus we find

g̃s ∼
1√
N3

. (7.2)

This shows that, in the limit of large N3 the string coupling g̃s becomes negligible. Thus,

it seems plausible to use semi-classical analysis to compute the spectrum for our purpose.

The construction of the field theory dual is as follows [30, 31]. It describes the dynamics

of massless strings arising from N -D4 branes stretched across two orthogonal NS5 branes

located on a circle. The spectrum consists of two chiral multiplets A1, A2 in the (N,N)

representation and two more chiral multiplets B1, B2 in the (N,N) representation of the

SU(N)× SU(N) gauge group, with superpotential

W =
1

2
εijεkl Tr

[
AiBkAjBl

]
, i, j, . . . = 1, 2. (7.3)

There is an underlying SU(2)A×SU(2)B×U(1)R global symmetry preserved by the theory.

The fields (A1, A2) form a doublet under the SU(2)A subgroup of the global symmetry and

similarly (B1, B2) form a doublet under SU(2)B. The R-symmetry U(1)R originates due

to a shift along the circle coordinate, and all the fields A1, A2, B1, B2 transform by the
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same phase under this symmetry. Let us denote J1 and J2 to be the Cartan generators of

SU(2)A and SU(2)B respectively and let J3 be the generator of U(1)R.

This field theory system is dual to the T-dual geometry specified by the metric (3.27):

dŝ2 = L2ds2
AdS5

+ L2

[
λ2

1dΩ2
2

(
θ1, φ1

)
+ λ2

2dΩ2
2

(
θ2, φ2

)
+

1

λ2
dψ2

]
.

The SU(2)A and SU(2)B are identified with the symmetries of the two spheres parametrized

by (θ1, φ1) and (θ2, φ2) and the R-symmetry U(1)R is identified with the shift along the ψ-

direction. The generators J1 and J2 correspond to the shift in the azimuthal coordinates φ1

and φ2 respectively and J3 corresponds to shift in ψ. The BMN sector for the field theory

dual has been constructed [29]. The state operator correspondence is naturally described in

terms of the conifold coordinates Z1 = A1B1, Z2 = A2B2, Z3 = A1B2, Z4 = A2B1. Setting

the light cone Hamiltonian H = ∆− (J1 + J2 + J3), it can be shown that the operator Z1

has H = 0 and corresponds to the ground state. The first excited state, with H = 1 is

described in terms of the operators Z3, Z4 and the covariant derivatives DiZ1.

This is in contrast to what we observe in closed string quantization of the pp-wave

geometry (3.45), corresponding to the Abelian T-dual background. From (4.10) we find

the frequencies corresponding to n = 0 modes as4

ω0,i = 1, i = 1, 2, 3, 4,

ω0,7+,8+ = 6J ,

ω0,7−,8− = 0 . (7.4)

This mismatch, however, is not surprising. Large effective interaction cause the energies of

the states to change. A similar phenomenon has been observed for the pp wave background

corresponding to the Abelian T-dual of AdS5 × S5 geometry [24].

For the non-Abelian T-dual background of AdS5×T 1,1, the field theory dual have been

first proposed in [11] and subsequently, with suitable modification, analysed extensively

in [33]. The dual theory is conjectured to arise from an intersecting D4 − NS5 − NS5′

brane configuration. Due to Myers effect, the D4 branes are blown into a stack of D6

branes on a sphere in the presence of B2 field. The NS5 and NS5′ branes are located at

various points on the radial direction and are transverse to two different S2s. One NS5′

brane is placed between two consecutive NS5 branes. Due to large gauge transformation,

the D4 brane charge changes by a fixed amount each time a NS5 brane is crossed. The dual

theory consists of a two tailed linear quiver with gauge groups of increasing rank at each

node and matter fields in the bifundamental of each pair of nodes with a suitably added

flavour group at the middle. The holographic dual corresponding to the pp-wave geometry

resulting from the non-Abelian T-dual background will correspond to a class of operators

in this quiver theory. Note that the construction of the field theory dual in [33] was mainly

based on the brane charges arising from the supergravity background and the scaling of

4We need not worry about the modes corresponding to the non-linear oscillators here. For small value

of
√
1− 6J2 it can be shown using perturbation theory that the lowest mode will correspond to n = 1 and

will have a higher frequency than the above modes.
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the central charge. The central charge corresponding to the quiver theory was computed

using a-maximisation and was shown to agree with the holographic entanglement entropy

computed from the background associated with the supergravity dual [33]. Naively one

might expect that a similar analysis can also be carried out for the corresponding pp-wave

background. However, care must be taken in the present case because the pp-wave geometry

is obtained in zooming a particular region and hence it is globally not complete [33]. In

this case, the holographic entanglement entropy can be computed, as in [15] by imposing a

hard cutoff on the non-compact directions. However the field theory interpretation of this

quantity is not clear. It might correspond to the entanglement entropy in some excited

state of the dual field theory.

8 Conclusion

In this paper we have studied the Abelian as well as non-Abelian T-dual geometries arising

from the Klebanov-Witten background. Though the Abelian T-duality is an exact sym-

metry of the string theory, the dual description is some times more convenient to study

the Penrose limits. The non-Abelian T-duality provides new supergravity solutions. We

considered various null geodesics of the resulting dual theories and obtained the Penrose

limits. Some of these geodesics are singular while the remaining admit pp-wave geometries.

We quantized closed strings propagating in these pp-wave backgrounds. We have briefly

analysed the corresponding field theory duals. For the non-Abelian case the holographic

dual of the pp-wave geometry corresponds to a sector of operators of a quiver theory with

gauge groups of increasing rank. Further investigation is required to identify this BNM

sector and to establish a precise mapping between holographically computed quantities and

field theory observables. It would also be interesting to explore the possibility of obtaining

pp-wave geometries for non-Abelian duals of string theory compactified on T p,q as well as

backgrounds with AdS3 factors. We hope to report on some of these issues in future.
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A Bulk modes

The bulk modes play an important role in obtaining the spectrum of the dual field theory.

In order to understand the holographic dual of the pp-wave geometry obtained from the

non-Abelian T-dual of AdS5×T 1,1 we will consider a non-interacting, massless scalar field

in this background and obtain the corresponding bulk modes. The pp-wave metric we are

interested in is

ds2
pp = 2dudv + dr̄2 + r̄2dΩ2

3 + dz2 + dy2
1 + y2

1dψ
2 + dy2

2 − 6
(
r̄2 + 6z2

)
du2 . (A.1)

In order to obtain the bulk modes we will rewrite the above metric in a convenient form.

We assign coordinates Xi, i = 1, . . . , 4 to parametrize the R4 part {r̄,Ω3}, relabel the R2
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factor parametrized by {y1, ψ} as {X5, X6} and the R2 factor in {z, y2} as {X7, X8} while

leaving the light cone coordinates {u, v} intact. The metric now takes the form

ds2
pp = 2dudv − 6

[
4∑
i=1

(Xi)2 + 6(X7)2

]
du2 +

8∑
i=1

(
dX i

)2
. (A.2)

The NS-NS and RR fields in this coordinate system are given by

B̂2 = 2
√

6X7 dX8 ∧ du , e−2Φ̂ =
8

g̃2
s

λ2λ4
2 , (A.3)

and

F̂2 =
8

3
√

3g̃s
du ∧ dX7 , F̂4 = 0 . (A.4)

This geometry preserves SO(4)×SO(2)×U(1) symmetry. Rotations in X1, X2, X3, X4

gives rise to the SO(4) factor and rotations in X5, X6 gives rise to the SO(2). There is

an additional translational symmetry giving rise to U(1) symmetry. Note that, in contrast

the background AdS5 × T 1,1 has SO(2, 4)× SU(2) × SU(2) × U(1) symmetry whereas the

non-Abelian T-dual geometry possesses SO(2, 4)×SU(2)×U(1). Taking Penrose limit this

symmetry reduces to SO(4) × SO(2)×U(1).

We consider a massless scalar field Φ in this background for which the equation of

motion is given by

�Φ = 0 , (A.5)

with the Laplacian

� = 2∂u∂v + 6

[
4∑
i=1

(Xi)2 + 6(X7)2

]
∂2
v +

8∑
i=1

∂2
Xi . (A.6)

To solve this wave equation, we use the method of separation of variables. Set

Φ(u, v,X i) = f(u, v)g(Xi) .

The wave equation gives

2∂u∂vf

f(u, v)
+ 6

[
4∑
i=1

(Xi)2 + 6(X7)2

]
∂2
vf

f(u, v)
+

�8g(Xi)

g(Xi)
= 0 . (A.7)

Setting the ansatz f(u, v) ∼ ei(pvv−puu), we obtain

�8g(Xi)− 6p2
v

[
4∑
i=1

(Xi)2 + 6(X7)2

]
g(Xi) + 2pupvg(Xi) = 0 . (A.8)

This equation now has a familiar Harmonic oscillator form whose solutions are given in

terms of well known Hermite polynomials. We find

Φ(u, v,X i) = ei
(
pvv−puu+c5X5+c6X6+c8X8

)
e−

βX2
7

2 Hn7

(√
βX7

) 4∏
j=1

e−
αX2

j
2 Hnj

(√
αXj

)
.

(A.9)

Here pu, pv are the conserved canonical momenta along u and v direction respectively.

For convenience we have used the notation α2 = 6p2
v, β

2 = 36p2
v,
∑8

i=1 c
2
i = 2pupv, and

ni = (c2
iα− 1)/2 in the above expression.
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[15] N.T. Macpherson, C. Núñez, L.A. Pando Zayas, V.G.J. Rodgers and C.A. Whiting, Type IIB

supergravity solutions with AdS5 from Abelian and non-Abelian T dualities, JHEP 02 (2015)

040 [arXiv:1410.2650] [INSPIRE].

[16] R. Penrose, Any Space-Time has a Plane Wave as a Limit, in Differential geometry and

relativity, Mathematical Physics and Applied Mathematics, vol. 3, Springer, pp. 271–275,

Dordrecht (1976) [DOI:10.1007/978-94-010-1508-0 23].

– 20 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(87)90769-6
https://doi.org/10.1016/0370-2693(87)90769-6
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B194,59%22
https://doi.org/10.1016/0370-2693(88)90602-8
https://doi.org/10.1016/0370-2693(88)90602-8
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B201,466%22
https://doi.org/10.1016/0550-3213(92)90269-H
https://arxiv.org/abs/hep-th/9110053
https://inspirehep.net/search?p=find+EPRINT+hep-th/9110053
https://doi.org/10.1016/0550-3213(93)90041-M
https://arxiv.org/abs/hep-th/9210021
https://inspirehep.net/search?p=find+EPRINT+hep-th/9210021
https://doi.org/10.1016/0550-3213(94)90230-5
https://arxiv.org/abs/hep-th/9308154
https://inspirehep.net/search?p=find+EPRINT+hep-th/9308154
https://doi.org/10.1016/j.nuclphysb.2010.12.013
https://arxiv.org/abs/1012.1320
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.1320
https://doi.org/10.1007/JHEP06(2011)106
https://arxiv.org/abs/1104.5196
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.5196
https://doi.org/10.1002/prop.201600032
https://arxiv.org/abs/1511.00269
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.00269
https://doi.org/10.17077/etd.qc6n8jma
https://doi.org/10.1016/j.physletb.2013.03.033
https://arxiv.org/abs/1212.4840
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4840
https://doi.org/10.1016/j.nuclphysb.2013.04.004
https://arxiv.org/abs/1301.6755
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.6755
https://doi.org/10.1007/JHEP08(2013)018
https://arxiv.org/abs/1305.7229
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7229
https://doi.org/10.1007/JHEP08(2015)143
https://arxiv.org/abs/1411.7433
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7433
https://doi.org/10.1103/PhysRevD.91.126015
https://arxiv.org/abs/1503.00553
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.00553
https://doi.org/10.1007/JHEP02(2015)040
https://doi.org/10.1007/JHEP02(2015)040
https://arxiv.org/abs/1410.2650
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.2650
https://doi.org/10.1007/978-94-010-1508-0_23


J
H
E
P
1
1
(
2
0
1
9
)
1
2
5
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[21] D. Amati and C. Klimč́ık, Nonperturbative Computation of the Weyl Anomaly for a Class of

Nontrivial Backgrounds, Phys. Lett. B 219 (1989) 443 [INSPIRE].

[22] G.T. Horowitz and A.R. Steif, Space-Time Singularities in String Theory, Phys. Rev. Lett.

64 (1990) 260 [INSPIRE].

[23] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from

N = 4 superYang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].
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