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SZEGÖ AND WIDOM THEOREMS FOR THE NEIL ALGEBRA

SRIRAM BALASUBRAMANIAN1 , SCOTT MCCULLOUGH2, AND UDENI WIJESOORIYA

In appreciation for his profound influence on operator theory and our mathematical lives, we dedicate

this article to Joe Ball.

Abstract. Versions of well known function theoretic operator theory results of Szegö

and Widom are established for the Neil algebra. The Neil algebra is the subalgebra of

the algebra of bounded analytic functions on the unit disc consisting of those functions

whose derivative vanishes at the origin.

1. Introduction

Let C denote the complex numbers, D = {|z| < 1} ⊆ C denote the unit disk with

its boundary T = {|z| = 1}. Denote by H2 = H2(D) and H∞ = H∞(D) the standard

Hardy spaces of functions analytic in D with square summable power series coefficients

and bounded analytic functions on D respectively. Let Lp denote the Lp spaces for the

T (identified with the corresponding Lp spaces for [0, 2π] with respect to the measure
dt
2π
). Let P denote the set of analytic polynomials that vanish at 0. Thus a p ∈ P has

the form,

p(z) =
n

∑

j=1

pjz
j

for some positive integer n and p1, . . . , pn ∈ C. Given a non-negative function ρ on T

with log(ρ) ∈ L1 a (special case of a) well known result of Szegö (see for instance [14]

page 219) identifies the L2(ρ) distance from the constant function 1 to P.

Theorem 1.1 (of Szegö).

inf{
∫

2π

0

|p− 1|2 ρ dt
2π

: p ∈ P} = exp(

∫

2π

0

log(ρ)
dt

2π
).

A theorem of Widom characterizes those unimodular functions φ ∈ L∞ whose dis-

tance to H∞ is less than one in terms of Toeplitz operators. A φ ∈ L∞ induces a
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multiplication operator Mφ : L2 → L2 defined by Mφf = φf. Let V : H2 → L2 denote

the inclusion. The operator Tφ = V ∗MφV is the Toeplitz operator with symbol φ.

Theorem 1.2 (Widom’s invertibility criteria [11, Theorem 7.30]). Suppose φ ∈ L∞ is

unimodular. There exists an f ∈ H∞ such that ‖f − φ‖ < 1 if and only if Tφ is left

invertible.

Sarason [18] established a version of Theorem 1.1 for the annulus and Abrahamse

[1, Theorems 4.1 and 4.6] established a version of Theorem 1.2 for multiply connected

domains. In this paper we establish Szegö and Widom type theorems for the Neil

algebra. The Neil algebra A is the subalgebra of H∞(D) consisting of those functions

whose derivative vanishes at 0. It is perhaps the simplest example of a constrained

algebra. As with extending classical results from the unit disc to multiply connected

domains, here it is necessary to replace H2 with a family of Hilbert-Hardy spaces that

parameterize the distinction between harmonic functions and the real parts of analytic

functions in A either explicitly or implicitly in the statement of the results and their

proofs. In addition to the references already cited, see for instance [2, 3, 16, 8] for related

results on multiply connected domains, [5, 6, 7, 12, 10, 16, 17] for results on constrained

algebras, [4] for results in the context of uniform algebras and finally [13] for a Pick

interpolation theorem on distinguished varieties. Let A0 denote those functions in A

that vanish at 0. Hence A0 = z2H∞.

Theorem 1.3 (Szegö Theorem for A). 1 Suppose ρ > 0 is a continuous function on T

and let

Cρ =

∫

2π

0

log(ρ)
dt

2π
, λ =

∫

2π

0

ρ(t) exp(−it) dt
2π
.

With these notations,

inf{
∫

2π

0

|1− p|2 ρ dt
2π

: p ∈ A0} = exp(Cρ) + exp(−Cρ) |λ|2.

Remark 1.4. Note that λ = 0 if and only if 1 and eit are orthogonal in L2(ρ) and in this

case it is evident that the distance from 1 to P is the same as the distance from 1 to

the subspace A0 of P.

To state the analog of Theorem 1.2 for A some notations are needed. Let B
2 =

{(z, w) ∈ C2 : |z2| + |w|2 = 1} denote the unit ball in C2. To α = (a, b) ∈ B2 associate

the subspace H2

α ⊆ H2 consisting of those f ∈ H2 such that

f(0) b = f ′(0) a.

1[4, Theorem 5.1] covers the case λ = 0.
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Let Vα : H2

α → L2 denote the inclusion. Hence Pα = VαV
∗

α : L2 → H2

α is the projection

onto H2

α. Given φ ∈ L∞, define T αφ : H2

α → H2

α by

T αφ = V ∗

αMφVα.

It is the Toeplitz operator with symbol φ with respect to α [8]. In particular, if φ ∈ A and

f ∈ H2

α, then V
∗T αφ f = φf = T αφ f.

Remark 1.5. Given α = (a, b) and β = (c, d), if ad = bc, then H2

α = H2

β and likewise

T αφ = T βφ . Thus, P, complex projective space obtained by moding out B2 by the relation

(a, b) = (c, d), is a natural choice of parameter space. For ease of exposition we accept

the redundancy inherent in the use of B2.

Theorem 1.6 (Inversion for A). Suppose φ ∈ L∞ is unimodular. The distance from φ

to A is strictly less than one if and only if T αφ is left invertible for each α ∈ B2. Likewise,

the distance from φ to the invertible elements of A is strictly less than one if and only

if T αφ is invertible for each α ∈ B2.

Before turning to the proofs of Theorems 1.3 and 1.6, we pause to introduce some

conventions and basic background on the spaces H2

α. For p = 2,∞, the standard iden-

tification of Hp(D) with Hp(T), where the latter is viewed as the subspace of Lp(T)

consisting of those f with vanishing negative Fourier coefficients, will be used routinely

and without comment. Let H2

1
denote the subspace of H2 consisting of those f ∈ H2

whose Fourier coefficient

f̂(1) =

∫

2π

0

f e−it
dt

2π
= 0.

Evidently, H2

1
is the closure of A in H2. The following Lemma can be found in [10] for

instance. The first part follows from the easily verified fact that {a + bz, zn : n ≥ 2}
is an orthonormal basis for H2

α; and the moreover part, from a standard reproducing

kernel Hilbert space argument.

Lemma 1.7. For each α = (a, b) ∈ B2, the space H2

α has reproducing kernel,

kαw(z) = kα(z, w) = (a+ bz)(a + bw) +
z2w2

1− zw
, z, w ∈ D.

In particular,

‖kα
0
‖2 = kα(0, 0) = |a|2,

and thus kαw 6= 0 with the exception of α = (0, 1) and w = 0.

Moreover, if ψ ∈ A and w ∈ D, then (T αψ )
∗kαw = ψ(w)kαw.
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2. Proof of Theorem 1.3

As a first step, observe that it suffices to prove the theorem under the additional

hypothesis that Cρ = 0. Indeed, if not, let ρ̃ = exp(−Cρ) ρ, so that
∫

2π

0
log(ρ̃) dt

2π
= 0. In

particular, Cρ̃ = 0 and with

λ̃ =

∫

2π

0

ρ̃ exp(−it) dt
2π

= exp(−Cρ) λ,

if Theorem 1.3 holds for ρ̃, then

inf{
∫

2π

0

|p− 1|2 ρ̃ dt
2π

: p ∈ A0} = 1 + |λ̃|2.

Thus,

inf{
∫

2π

0

|p− 1|2 ρ dt
2π

: p ∈ A0} =exp(Cρ) inf{
∫

2π

0

|p− 1|2 ρ̃ dtn : p ∈ A0}

=exp(Cρ)(1 + |λ̃|2) = exp(Cρ) + exp(−Cρ) |λ|2

as claimed. Accordingly, for the remainder of the proof, assume Cρ = 0.

Let

σ =
1

√

1 + |λ|2
(1, λ) ∈ B

2.

In particular,

‖kσ
0
‖2 = 1

1 + |λ|2 .

Note that, as sets, L2(ρ) and L2 are the same and thus we may consider H2 as a

Hilbert space with the alternate inner product,

〈f, g〉ρ =
∫

2π

0

fg ρ
dt

2π
.

To keep the distinction clear, denote this latter space by H2(ρ). Since the closure of A0

in H2(ρ) is z2H2 = z2H2(ρ), the objective is to find the H2(ρ)-distance from 1 to z2H2.

That is, to show

inf{
∫

2π

0

|p− 1|2 ρ̃ dt
2π

: f ∈ z2H2} = 1 + |λ̃|2.

Since ρ is continuous and strictly positive, log(ρ) is continuous. It has Fourier series

expansion

log(ρ) =

∞
∑

j=−∞

cje
ijt,
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where, because it is real-valued, c−j = cj . Moreover, c0 = 0 and c1 = λ, since Cρ = 0

and by the very definitions of Cρ and λ. Letting γ denote the H2 function represented

by the series

γ =
∞
∑

j=1

cje
ijt,

it follows that log(ρ) = γ + γ∗ as elements of L2. Further, since

| exp(±γ)|2 = exp (±(γ + γ∗)) = ρ±1,

both exp(±γ) are in H∞. The mapping U : H2(ρ) → H2 defined by Uf = exp(γ)f is a

unitary map with inverse U∗f = exp(−γ)f . Moreover, U(z2H2) = z2H2. Thus, the aim

is to find the H2-distance from exp(γ) to z2H2.

Given f ∈ z2H2, let g = exp(γ)− f and estimate, using g(0) = 1 and the Cauchy-

Schwarz inequality,

‖ exp(γ)− f‖2 =‖g‖2

≥|〈g, kσ
0
〉|2

‖kσ
0
‖2

=|g(0)|2 (1 + |λ|2)
=1 + |λ|2.

(2.1)

Let

f = exp(γ)− (1 + |λ|2)kσ
0

and note f(0) = 0 and f ′(0) = γ′(0)−λ = 0. Thus f ∈ z2H2 and, with this choice of f ,

equality holds in the Cauchy-Schwarz inequality in equation (2.1).

3. Toeplitz operators on A

This section contains the proof of Theorem 1.6.

Lemma 3.1. If φ ∈ L∞, then ‖T αφ ‖ = ‖φ‖ and (T αφ )
∗ = T α

φ
.

Proof. SinceM∗

φ =Mφ, it follows that (T
α
φ )

∗ = V ∗

αM
∗

φVα = V ∗

αMφVα = T α
φ
. Since Vα is an

isometry, it follows that ‖T αφ ‖ ≤ ‖Mφ‖ = ‖φ‖. Now let V : H2 → L2 andW : z2H2 → L2

denote the inclusion maps. In particular, V ∗MφV is Tφ, the usual Toeplitz operator with

symbol φ. On the other hand, W ∗MφW = W ∗T αφW . With U : H2 → z2H2 given by

Uf = z2f , it follows that U is unitary and, for f, g ∈ H2,

〈MφWUf,WUg〉 = 〈z2φf, z2g〉 = 〈φf, g〉 = 〈Mφf, g〉 = 〈V ∗MφV f, g〉.
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Hence U∗W ∗MφWU = V ∗MφV = Tφ and consequently W ∗T αφW is unitarily equivalent

to Tφ. Hence ‖T αφ ‖ ≥ ‖Tφ‖. Since, as is well known that ‖Tφ‖ = ‖φ‖ ([15]), the result

follows.

Let B(L2) denote the bounded linear operators on L2.

Lemma 3.2. Giving B
2 its usual topology and B(L2) its norm topology, the mapping

B2 ∋ α→ Pα ∈ B(L2) is continuous.

Proof. Since {a + bz, zn : n ≥ 2} is an orthonormal basis for H2

α, if f =
∑

fnz
n ∈ H2

and α = (a, b) ∈ B2, then

Pαf = (af0 + bf1)(a+ bz) +
∞
∑

n=2

fnz
n.

Thus, letting Q denote the projection onto z2H2 and Fα = (a + bz) (a unit vector),

Pα = FαF
∗

α +Q,

where FαF
∗

α : L2 → L2 is the rank one projection operator,

FαF
∗

αf = 〈f, Fα〉Fα = (af0 + bf1)Fα.

Thus, if β = (c, d) ∈ B2, then

Pα − Pβ = FαF
∗

α − FβF
∗

β = Fα(Fα − Fβ)
∗ + (Fα − Fβ)F

∗

β .

Since ‖Fα − Fβ‖ = ‖α− β‖, the result follows.

Let M ⊆ L1 denote the subspace consisting of those L1 functions with Fourier series

of the form

(3.1) f̂(−1) exp(−it) +
∞
∑

j=1

f̂(j) exp(ijt).

The following lemma is the M version of the well known factorization theorem for H1

functions.

Lemma 3.3. If h ∈ M , then there exist

(i) α ∈ B2;

(ii) f ∈ H2

α; and

(iii) g ∈ L2

such that

(a) g ∈ (H2

α)
⊥;

(b) h = fg; and

(c) ‖h‖1 = ‖f‖2 ‖g‖2.
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Proof. The function ψ = zh is in H1 and therefore there exists F,G ∈ H2 such that

zh = FG and ‖h‖1 = ‖ψ‖1 = ‖F‖2 ‖G‖2 [11, Corollary 6.27]. Moreover, since ψ′(0) = 0,

it follows that F ′(0)G(0)+F (0)G′(0) = 0. There is an α = (a, b) ∈ B2 such that F ∈ H2

α.

(Indeed, simply choose α ∈ B2 such that aF ′(0) = bF (0).) Thus there is a constant c

and an H2 function F0 such that

F = c(a+ bz) + z2F0.

Hence, there is a constant d and H2 function G0 such that

G = d(a− bz) + z2G0.

Let g = zG, in which case h = Fg and ‖g‖2 = ‖G‖2. Moreover,

〈a+ bz, g〉 = d

∫

2π

0

(a+ bz) (d(az − b) + zG0)
dt

2π
= 0

and, for n ≥ 2,

〈zn, g〉 =
∫

2π

0

zn (d(az − b) + zG0)
dt

2π
= 0.

Hence g ∈ (H2

α)
⊥.

Recall (L1)∗ = L∞ with the equality interpreted as the isometric isomorphism de-

termined by the mapping that assigns to φ ∈ L∞ the linear functional λφ : L1 → C

given by

λφ(ψ) =

∫

2π

0

φψ
dt

2π
.

Moreover, letting

M
⊥ := {φ ∈ L∞ :

∫

2π

0

φψ
dt

2π
= 0, for all ψ ∈ M },

and π : L∞ → L∞/M⊥ denote the quotient mapping, the mapping Λ : L∞/M⊥ → M ∗

given by

Λ(π(λφ)) = (λφ)|M ,

is an isometric isomorphism. Finally, if φ ∈ M and ψ ∈ A, then
∫

2π

0

φψ
dt

2π
= 0.

Thus, A ⊆ M⊥. On the other hand, eijt ∈ M for j = −1, 1, 2, . . . and therefore if

ψ ∈ M⊥, then its Fourier series has the form

ψ = ψ̂(0) +

∞
∑

j=2

ψ̂(j)eijt.
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Hence ψ ∈ A and thus we may view Λ as having domain L∞/A. The following lemma

summarizes the discussion (see [9, page 88]).

Lemma 3.4. Λ : L∞/A → M ∗ defined by sending π(φ) to the linear functional λ̃φ :

M → C given by

λ̃φ(f) =

∫

2π

0

φ f
dt

2π

is an isometric isomorphism.

Lemma 3.5. If φ ∈ L∞ and ψ ∈ A, then

T α
ψφ

=T α
ψ
T αφ

T α
ψφ

=T α
φ
T αψ .

Proof. Let f, g ∈ H2

α be given. Since ψg ∈ H2

α, it follows, using Lemma 3.1, that

〈T α
ψ
T αφ f, g〉 = 〈T αφ f, (T αψ )

∗g〉 = 〈T αφ f, T αψ g〉 = 〈V ∗

αφf, ψg〉 = 〈φf, Vαψg〉 = 〈φf, ψg〉 =

〈ψφf, g〉 = 〈ψφVαf, Vαg〉 = 〈T α
ψφ
f, g〉. Thus T α

ψφ
= T α

ψ
T αφ . Applying Lemma 3.1 to what

has already been proved, T α
ψφ

= (T α
ψφ
)∗ = (T α

ψ
T αφ )

∗ = T α
φ
T αψ .

An element ψ ∈ A is invertible in A if it does not vanish in D and ψ−1 = 1

ψ
∈ A.

Lemma 3.6. Suppose ψ ∈ A. The following are equivalent.

(i) ψ is invertible in A;

(ii) there is an α ∈ B2 such that T αψ is right invertible;

(iii) T αψ is invertible for each α ∈ B
2.

Moreover, in this case (T αψ )
−1 = T α

ψ−1.

Proof. Evidently item (i) implies item (iii) implies item (ii). Now suppose there is an α

such that T := T αψ is right invertible. The Hilbert space H2

α has a reproducing kernel

kαw(z) and further T ∗kαw = ψ(w)kαw by Lemma 1.7. Since T is right invertible, T ∗ is

bounded below; i.e., there is a δ > 0 such that ‖T ∗f‖ ≥ δ‖f‖ for all f ∈ H2

α. Hence,

|ψ(w)| ‖kαw‖ = ‖T ∗kαw‖ ≥ δ‖kαw‖.

Moreover, by Lemma 1.7 kαw 6= 0 for w 6= 0. Thus | 1
ψ
(w)| ≤ 1

δ
for w ∈ D r {0} and

therefore, as 1

ψ
is otherwise analytic, | 1

ψ
| is bounded by 1

δ
. Since ψ ∈ A it follows that

1

ψ
∈ A too; i.e., item (i) holds.

Lemma 3.7. Suppose φ ∈ L∞ is unimodular. If there exists ψ ∈ A such that ‖φ−ψ‖ <
1, then T α

φ
T αψ is invertible, and therefore T αφ is left invertible, for each α ∈ B2. Further,

if ψ is invertible in A, then T α
ψ
T αφ is invertible, and therefore T αφ is invertible, for each

α ∈ B2.
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Proof. Suppose there exists ψ ∈ A such that ‖φ − ψ‖ < 1. In this case ‖1 − ψφ‖ < 1,

since |φ| = 1 (unimodular). Hence, by Lemma 3.1, for a given α ∈ B2,

1 > ‖1− ψφ‖ = ‖T α
1−ψφ

‖ = ‖1− T α
ψφ
‖.

In particular, T α
ψφ

is invertible. Since ψ ∈ A, Lemma 3.5 applies to give, T α
ψφ

= T α
φ
T αψ .

Thus T α
φ
is right invertible. By Lemma 3.1, (T α

φ
)∗ = T αφ is left invertible.

Now, assuming ψ is invertible in A, by Lemma 3.6, T αψ is invertible. The invertibility

of T α
φ
follows. Thus, again using Lemma 3.1, T αφ is invertible.

Lemma 3.8. If φ ∈ L∞ and T αφ is left invertible for each α ∈ B2, then there exists an

ǫ ∈ (0, 1], such that for each α ∈ B2 and f ∈ H2

α,

‖T αφ f‖ ≥ ǫ‖f‖.

Proof. For α ∈ B2, defineXα : L2 → L2 byXα = PαMφPα+(I−Pα). Given α ∈ B2, since

T αφ is left invertible, there exists an ǫα ∈ (0, 1] such that ‖VαT αφ f‖ = ‖T αφ f‖ ≥ ǫα‖f‖ for

f ∈ H2

α. Hence, given F = f + g with f ∈ H2

α and g ∈ (H2

α)
⊥,

‖XαF‖2 = ‖VαT αφ f‖2 + ‖g‖2 ≥ ǫ2α‖F‖2.

Thus, ‖XαF‖ ≥ ǫα‖F‖ for all F ∈ L2.

To show there is an ǫ > 0 such that ‖XαF‖ ≥ ǫ‖F‖ for all α ∈ B2 and F ∈ L2,

we argue by contradiction. Accordingly suppose no such ǫ > 0 exists. By compactness

of B2, there is a sequence αn = (an, bn) from B2, that, by passing to a subsequence if

needed, we may assume converges to some β = (a, b) ∈ B2 and a unit vectors Fn ∈ L2

such that (‖Xαn
Fn‖)n converges to 0. But then,

0 < ǫβ ≤ ‖XβFn‖ ≤ ‖Xαn
Fn‖+ ‖(Xβ −Xαn

)Fn‖.

By norm continuity (Lemma 3.2) the last term on the right hand side tends to 0 and by

assumption the first term on the right hand side tends to 0, a contradiction.

To complete the proof, simply observe if f ∈ H2

α ⊆ L2, then ‖φ‖‖f‖ ≥ ‖T αφ f‖ =

‖Xαf‖ ≥ ǫ‖f‖.

Lemma 3.9. Suppose φ ∈ L∞ is unimodular. The distance from φ to A is strictly less

than one if and only if T αφ is left invertible for each α ∈ B2.

Proof. Suppose T αφ is left invertible for each α ∈ B2. In this case, Lemma 3.8 applies

and thus there is an 1 ≥ ǫ > 0 such that for each α and f ∈ H2

α,

‖T αφ f‖ ≥ ǫ‖f‖.
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Now let h ∈ M be given. By Lemma 3.3 there is an α ∈ B2 and f ∈ H2

α and a

g ∈ L2 such that g ∈ (H2

α)
⊥ and both h = fg and ‖h‖1 = ‖f‖2 ‖g‖2. Thus,
∣

∣

∣

∣

∫

2π

0

φh
dt

2π

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

2π

0

φfg
dt

2π

∣

∣

∣

∣

= |〈φf, g〉|
= |〈φf, (I − Pα)g〉|
= |〈(I − Pα)φf, g〉|
≤‖(I − Pα)φf‖ ‖g‖.

On the other hand, using the unimodular hypothesis,

‖f‖2 = ‖φ f‖2 = ‖Pαφf‖2 + ‖(I − Pα)φ f‖2

= ‖T φαf‖2 + ‖(I − Pα)φ f‖2

≥ ǫ2‖f‖2 + ‖(I − Pα)φ f‖2.
Thus, (1− ǫ2)‖f‖2 ≥ ‖(I − Pα)φ f‖2. Therefore,

∣

∣

∣

∣

∫

2π

0

φh
dt

2π

∣

∣

∣

∣

≤
√
1− ǫ2 ‖f‖2 ‖g‖2 =

√
1− ǫ2 ‖h‖1.

By Lemma 3.4, it now follows that ‖π(φ)‖ < 1, where π : L∞ → L∞/A is the quotient

map; i.e., the distance from φ to A is less than one.

Conversely, if the distance from φ to A is less than one, then there exists a ψ ∈ A

such that ‖φ− ψ‖ < 1. It follows from Lemma 3.7 that T αφ is left invertible.

Proof of Theorem 1.6. All that remains to be shown is: T αφ is invertible for each α ∈ B2

if and only if the distance from φ to the invertible elements of A is at most one. If T αφ is

invertible for each α ∈ B2, then there exists a ψ ∈ A such that ‖φ− ψ‖ < 1 by Lemma

3.9. By Lemma 3.7, T α
φ
T αψ is invertible. By Lemma 3.1, T α

φ
is invertible and thus T αψ is

invertible. B Lemma 3.6 ψ is invertible in A.

The converse is contained in Lemma 3.7.
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