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It is argued that the phase transition in low-Tc clean itinerant ferromagnets is
generically of first order, due to correlation effects that lead to a nonanalytic term
in the free energy. A tricritical point separates the line of first order transitions from
Heisenberg critical behavior at higher temperatures. Sufficiently strong quenched
disorder suppresses the first order transition via the appearance of a critical end-
point. A semi-quantitative discussion is given in terms of recent experiments on
MnSi and UGe2. It is then shown that the critical temperature for spin-triplet,
p-wave superconductivity mediated by spin fluctuations is generically much higher
in a Heisenberg ferromagnetic phase than in a paramagnetic one, due to the cou-
pling of magnons to the longitudinal magnetic susceptibility. This qualitatively
explains the phase diagram recently observed in UGe2 and ZrZn2.

1 Introduction

In this paper we convey two messages: In the first part we argue that in sufficiently
clean samples, and at sufficiently low temperatures, the ferromagnetic phase tran-
sition in itinerant electron sytems is generically of first order. In the second part,
we provide a physical explanation for the observed structure of the phase diagram
in UGe2 and ZrZn2, where superconductivity is observed to coexist with ferromag-
netism.

1.1 Multicritical points in Itinerant Ferromagnets

The thermal paramagnet-to-ferromagnet transition at the Curie temperature is usu-
ally regarded as a prime example of a continuous or second order phase transition:
Upon cooling, the magnetization increases continuously from zero above the Curie
temperature, to finite values below the Curie point. For materials with high Curie
temperatures this behavior is well established.

Recently there has been a considerable interest in the corresponding quantum
phase transition of itinerant electrons, that takes place at zero temperature as
a function of some non-thermal control parameter. Understanding the quantum
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Figure 1. Phase diagram of MnSi. The insets show the behavior of the susceptibility close to the
transition. (After Ref. 1).

phase transition is important, since it controls large parts of the critical behavior
that is observable in systems with nonzero, but low, Curie temperatures. There
is experimental evidence that in sufficiently clean itinerant ferromagnets the phase
transition is discontinuous, or of first order, provided that the Curie temperature is
low enough. Specific systems exhibiting this behavior include, MnSi1 and UGe2.

2 In
both of these systems the transition temperature can be tuned to zero by varying
the pressure. It is found that there is a critical pressure, pc, above which the
ferromagnetic phase transition is discontinuous. An example of a phase diagram is
shown in Fig. 1.

In the first part of this paper, Sec. 2, we review a general reason for why we
expect all sufficiently clean itinerant electron systems to have a discontinuous fer-
romagnetic transition, if the transition temperature is low enough.

1.2 Coexistence of Ferromagnetism and Superconductivity

At first glance, and according to conventional wisdom, ferromagnetism and su-
perconductivity seem incompatible with one another. For superconductivity with
conventional s-wave pairing, the large internal magnetic field inside a magnet would
make this singlet pairing energetically very costly. Triplet p-wave pairing, with the
spins aligned with the magnetism, is a possibility, but since superconductors tend
to expel magnetic flux, one is, again, naively led to the conclusion that supercon-
ductivity and ferromagnetism are likely incompatible.

Nevertheless, recent experiments indicate that in some very pure systems, and at
very low temperatures, ferromagnetism and superconductivity can coexist, with the
same electrons that cause the magnetism also responsible for the superconductivity.
So far this phenomenon has been observed in two systems, UGe2

2 and ZrZn2,
3 and

it is believed to be generic.
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Figure 2. Schematic phase diagram showing the paramagnetic (PM), ferromagnetic (FM), and
superconducting phases (SC) in a temperature (T) - control parameter (CP) plane. (a) shows
the qualitative prediction of paramagnon theory, Ref. 5, and (b) qualitatively shows the phase
diagram as observed in UGe2, Ref. 2.

These experiments raise a number of obvious questions. First, what is the
nature of the superconducting pairing? Does it have s-wave, p-wave, or some other
symmetry? What is the nature of the superconducting state? The Meissner effect
leads one to believe that the superconducting state must be inhomogeneous. On a
more microscopic level, what is the pairing mechanism? In analogy with the phonon
mechanism for conventional superconductivity, it was argued theoretically already
in the 1960’s that magnetic fluctuations could induce pairing.4 These theories led to
phase diagrams with superconducting phases that appeared more or less symmetric
around the ferromagnetic phase boundary.5 The basic idea behind these theories
was that the magnetic fluctuations are largest near a continuous magnetic phase
transition, and if a fluctuation induced superconducting state is to be obtained, then
it will most likely exist near the magnetic phase boundary. These old theories are in
conflict both with our suggestion that the low-temperature ferromagnetic transition
is discontinuous in the very pure systems needed to observe superconductivity, and
with the experimental observation that the superconducting state is observed only
on the ferromagnetic side of the magnetic phase boundary. A schematic phase
diagram is shown in Fig. 2.

In the second part of this paper, Sec. 3, we review a general pairing mechanism
that leads to the conclusion that one should expect a p-wave paired superconducting
state to effectively exist only on the ferromagnetic side of the phase boundary,
consistent with the experimental observations.

2 Ferromagnetism in clean itinerant systems

On general grounds, Landau6 argued that as a function of the magnetization m,
the free energy for small m is of the form

F = tm2 + um4 +O(m6) . (1)

Within Landau theory, this holds independently of whether one deals with a magnet
at zero or finite temperature. In Eq. (1), t is some dimensionless distance from the
critical point, and u is assumed to be a positive constant. This equation implies a
continuous paramagnetic-to-ferromagnetic phase transition at t = 0 (t < 0 describes
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the ferromagnetic phase and t > 0 the paramagnetic one) with mean-field critical
exponents. It is well known that in general fluctuations effects modify this result
for systems whose spatial dimensionality is less than an critical upper dimension,
d+c , resulting in a continuous phase transition with critical exponents that depend
on the spatial dimension as well as the dimension of the order parameter.7 In effect,
Landau’s reasoning breaks down because the free energy is not an analytic function
of the magnetization at the critical point. Another well-known, but non-generic
mechanism that can invalidate Eq. (1) is that for some systems the coefficient u in
Eq. (1) can be negative. In that case one needs to keep the term of O(m6) in the
free energy, and the transition is discontinuous, or of first order. The point in the
phase diagram where u changes sign, as a function of some microscopic parameter,
is known as a tricritical point.

This general picture was not expected to be modified if the transition took place
at zero rather than finite temperatures. Indeed, the only expected change was
that the value d+c would be changed for a zero-temperature transition compared
to its thermal counterpart.8 This expectation turned out to be incorrect, at least
for itinerant ferromagnets. The basic reason for its breakdown is that, in a zero
temperature itinerant electron system, soft modes that are unrelated to the critical
order parameter (OP) or magnetization fluctuations couple to the latter. This leads
to an effective long-range interaction between the OP fluctuations, which in turn
leads to a nonanalytic magnetization dependence of the free energy, unrelated to the
nonanlyticities due to critical fluctuations.9 In disordered systems, the additional
soft modes are the same ‘diffusons’ that cause the so-called weak localization effects
in paramagnetic metals.10 In clean systems, they are ballistic modes that lead to
corrections to Fermi liquid theory.11

To see these effects we consider the functional form of the free energy of a bulk
itinerant ferromagnet at finite temperatures, in the absence of quenched disorder
(for a discussion including the effects of disorder, see Ref. 9). In Ref. 11 it was shown
that at T = 0 there is a contribution to the free energy from the additional soft
modes that is schematically given by an integral over a frequency ω and wavenumber
k,

f(m) = −m4

∫ Λ

0

dk kd−1

∫ ∞

0

dω
1

[(ω + k)2 +m2]2
. (2)

Here Λ is a cutoff, and the crucial sign of this contribution will be discussed below.
Equation (2) gives f(m → 0) ∝ −md+1 for 1 < d < 3, and f(m → 0) ∝ m4 lnm
in d = 3. From now on, we restrict ourselves to the d = 3 case. The leading effect
of a nonzero temperature is adequately represented by replacing ω → ω + T in the
integrand. The net result is that at low temperatures the Landau free energy given
by Eq. (1) is generalized to12

F = tm2 + vm4 ln(m2 + T 2) + um4 +O(m6) . (3)

The sign of the coefficient v in Eq. (3) warrants some attention. The derivation of
the term to leading order in the electron-electron interaction (O(Γ2

t ), with Γt a spin-
triplet interaction amplitude) yields v > 0.12 We further note that v > 0 indicates
a decrease in the tendency towards magnetism due to correlation effects. This
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can be seen by remembering that F can be related to the magnetic susceptibility.
It is well known that correlation effects in general decrease the tendency toward
ferromagnetism, so our perturbative results seems to be the generic one. In what
follows we therefore assume that v > 0.

We next analyze the equation of state that follows from Eq. (3). At T = 0, the
transition is clearly of first order, since m4 lnm < 0 for small m. The transition
occurs at t = v exp[−(1 + u/v)] > 0, and the magnetization at the transition is
m = exp[−(1 + u/v)/2]. Since we have truncated the OP expansion in Eq. (3),
these results are exact only for u/v >> 1, but similar results are expected when
this inequality is not satisfied.

At nonzero T , the free energy is an analytic function of m, but for small T
the coefficients in an m-expansion become large. There is a tricritical point at
Ttc = exp(−u/2v), with a first order transition for T < Ttc, and a line of Heisenberg
critical points for T > Ttc. These results, at T = 0 and T > 0, lead to a phase
diagram as given in Fig. 1. We stress that, since the nonanalytic term in Eq. (3) is
due to the long-wavelength excitations in the itinerant electron system, the phase
diagram is expected to be generic.

If one adds a finite amount of quenched disorder, the predicted phase diagram
becomes quite complicated. Most importantly, a sufficient amount of quenched dis-
order causes the transition to become continuous. This behavior and the associated
critical endpoint (and multicritical points) as well as other features of the phase
diagram are discussed in Ref. 12.

3 Spin-fluctuation induced superconductivity in ferromagnets

In order to study ferromagnetic spin-fluctuation induced superconductivity, we
choose an OP field for the superconductivity as F(x, y) = ψ↑(x)ψ↑(y), assuming
that the magnetization in the ferromagnetically ordered phase is in the z-direction.
Here ψσ(x) is an electronic field with spin index σ and space-time index x. The
OP, i.e. the expectation value 〈F(x, y)〉 ≡ F (x − y), is the anomalous Green’s
function. At this point the orbital symmetry of the OP is unspecified, but we
eventually choose p-wave pairing. Note, that in choosing the above OP we have
assumed a particular form of triplet pairing which, as noted in the Introduction,
is the most likely superconducting state. For simplicity, and to get a first handle
on the theory, we will also assume that the superconducting state is homogeneous.
This assumption, as was also noted in the Introduction, is questionable, and its
consequences warrant further investigation. Finally, we will not be concerned that
ordinary classical critical phenomena might lead to nontrivial magnetic fluctuations
close to the magnetic phase boundary because, as pointed out in Sec. 2 above, we
expect a discontinuous magnetic phase transition at low temperatures. Further,
as we will see below, even if the predicted tricritical point was at inaccessibly low
temperatures, so that the transition were effectively always continuous, large scat-
tering very near the transition suppresses the superconducting state very close to
the continuous phase boundary anyway.5, 13, 14

Using a field theoretic approach, and working to leading order in magnetic
fluctuations, we have derived coupled equations of motion for F and the normal
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Green function, Gσ(x − y) = 〈ψ̄σ(x)ψσ(y)〉, that lead to an equation of state
for the superconducting OP. In an approximation analogous to Eliashberg theory
for conventional superconductivity, we obtain for the linearized gap equation that
determines the superconducting critical temperature Tc,

∆(p) = ΓtT
∑

k

χL(p− k)|G↑(k)|
2∆(k) , (4)

Gσ(p) = 1/ [iωn − ξp − Σσ(p)] , (5)

Σσ(p) = ΓtT
∑

k

[χL(p− k)Gσ(k) + 2χT (p− k)G−σ(k)] . (6)

Here we work in Fourier space, with p = (p, iωn) comprising the momentum and
the Matsubara frequency, and σ = +,− ≡↑, ↓. ξp = ǫp−µ is the bare quasiparticle
spectrum minus the chemical potential, Σ is the normal self-energy, Γt is the spin-
triplet interaction amplitude, χL,T are the longitudinal and transverse magnetic
susceptibilities, respectively, and ∆ is the anomalous self-energy. Note that in the
paramagnetic phase, χL = χT and G↑ = G↓.

We have solved Eqs. (4) - (6) in a simple McMillan-type approximation. We
find for the superconducting transition temperature15

Tc = T0(t) exp
[

−(1 + dL0 + 2dT0 )/d
L
1

]

. (7)

Here T0(t) is some measure of the magnetic excitation energy. Following Ref. 5, we
use the prefactor of |t| in Eqs. (12) and (13) below,

T0(t) = T0 [Θ(t) t+Θ(−t) 5|t|/4] , (8)

with T0 a microscopic temperature scale that is related to the Fermi temperature
(for free electrons) or a band width (for band electrons). This qualitatively reflects
the suppression of the superconducting Tc near the FM transition due to effective
mass effects.13, 5, 14

Specializing to the p-wave case, the dL,T
0,1 read

dL1 =
(

ΓtN
↑
F /(k

↑
F )

2
)

∫ 2k
↑

F

0

dk k
(

1−
(

k2/2(k↑F )
2
))

DL(k, i0) , (9)

dL0 =
(

ΓtN
↑
F /(k

↑
F )

2
)

∫ 2k
↑

F

0

dk kDL(k, i0) , (10)

dT0 =
(

ΓtN
↑

F /(k
↑

F )
2
)

∫ k
↑

F
+k

↓

F

k
↑

F
−k

↓

F

dk k DT (k, i0) . (11)

k↑F (k
↓
F ) are the Fermi wavenumbers for the up (down)-spin Fermi surface, and N↑

F is

the density of states at the up-spin Fermi surface. In the paramagnetic phase, k↑F =

k↓F ≡ kF . DL,T (q) are the longitudinal and transverse (para)magnon propagators,
which are related to the electronic spin susceptibility χ viaDL,T (q) = χL,T (q)/2NF ,
with NF the density of states at the Fermi level in the paramagnetic phase. In
order to perform the integrals we need to specify the susceptibilities. We use the
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expressions that were derived in Ref. 16, with one crucial modification that we will
discuss below. In the paramagnetic phase, in the limit of small wavenumbers,

DL,T (q, i0) = 1/
[

t+ bL,T (q/2kF )
2
]

, (12)

with bL = bT and kF the Fermi wavenumber. In the Gaussian approximation of
Ref. 16, bL = bT = 1/3. However, more generally we note that Eq. (12) is expected
to be a generic form in the long wavelength limit with the b′s of O(1). Similarly,
in the long wavelength limit, in the ferromagnetic phase,

DL(q, i0) = 1/
[

5|t|/4 + bL(q/2kF )
2
]

, (13)

DT (q) =
∆/4ǫF
(1 − t)2

(

1

iΩ+ (∆/2ǫF ) bT (q/2kF )2
+ c.c.

)

, (14)

with ∆ the band splitting energy. The factor 5/4 in Eq. (13) can be traced back
to the fact that the particle number is typically held fixed in experiments. For
0 < ∆ < nΓt, ∆ is related to the magnetization by m = µB∆/Γt, with n the
electron density.

Let us discuss the propagators in the magnetic state. The form of the transverse
propagator, Eq. (14), is known to be asymptotically exact in the long-wavelength
limit, where the spectrum describes the spin-wave or magnon excitations. Equation
(13) for the longitudinal propagator, on the other hand, is an RPA or Landau-type
approximation that was used in previous theories of magnetic fluctuation induced
superconductivity.5 It is easy to see that this approximation leads to a supercon-
ducting phase diagram that is more or less symmetric with respect to the magnetic
phase boundary. First, the longitudinal susceptibilities are roughly the same one
either side of the transition. Second, the transverse propagators, which are funda-
mentally different in the two phases, only weakly couple to the superconducting gap
equation well inside the magnetic phase where m is not too small. The conclusion
is that apart from simple factors, the linearized gap equation is basically the same
on both sides of the magnetic phase transition.

We next consider the longitudinal propagator in the ferromagnetic phase in
more detail. In a Heisenberg ferromagnet (or in any magnet with a continuous
rotation symmetry in spin space), the transverse spin waves or magnons are mass-
less and couple to the longitudinal susceptibility χL.

17 This effect is most easily
illustrated within a nonlinear sigma-model description of the ferromagnet,18 which
treats the order parameter m as a vector of fixed length m, and parametrizes it
as m = m(π1(x), π2(x), σ(x)), with σ2 + π2

1 + π2
2 = 1, and m the magnetization.

The diagonal part of the transverse or π propagator, 〈πiπi〉 = (m2/2NF )DT , is
proportional to the transverse propagator DT , and the off-diagonal part has been
calculated in Ref. 19. The longitudinal propagator, DL = (m2/2NF ) 〈σ(x)σ(y)〉,
can be expanded in a series of π-correlation functions as,

〈σ(x)σ(y)〉 = 1− 〈πi(x)πi(x)〉 +
1

4
〈πi(x)πi(x)πj(y)πj(y)〉+ . . . (15)

where the repeated indices are summed over. At one-loop order, the term of order
π4 yields the diagram shown in Fig. 3. Power counting shows that at nonzero
temperature, and for dimensions d < 4, this contribution causes the homogeneous
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Figure 3. Mode-mode coupling contribution to the longitudinal (L) propagator DL from the trans-
verse (T) ones.
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Figure 4. Superconducting Tc (solid curve, left scale) as a function of the distance from the critical
point t, and the magnetization M . The dashed line (right scale) shows Tc in the paramagnetic
phase scaled by a factor of 50, and the dotted curve (right scale) is the result in the ferromagnetic
phase without the mode-mode coupling effect. From Ref. 15.

longitudinal susceptibility to diverge everywhere in the ferromagnetic phase, so χL

is fundamentally different in the ferromagnetic phase than in the paramagnetic
one.17 Ultimately this implies the superconducting transition temperature can be
very different in the two phases, and it is this aspect that previous theories missed.

More generally, this one-loop contribution, together with the zero-loop one, Eq.
(13), yields a functional form for DL in the ferromagnetic phase that is asymptoti-
cally exact at small wavenumbers. This diagram has no analog in the paramagnetic
phase, while all other renormalizations of the propagators will give comparable con-
tributions in the ferromagnetic and paramagnetic phases. It is therefore reasonable
to calculate Tc based one this one-loop result in the ferromagnetic phase, and com-
pare it to the zero-loop calculation in the paramagnetic phase.

In the McMillan approximation noted above, two examples of the resulting phase
boundaries for superconductivity in the paramagnetic and ferromagnetic phases
are shown in Figs. 4 and 5. In both figures, the characteristic temperature T0 is
given by either the Fermi temperature or a band width, depending on the model
considered. The magnetization m has been scaled with µBn, with µB the Bohr
magneton. The solid line represents the superconductivity Tc in the ferromagnetic
phase as a function of the distance t from an assumed continuous ferromagnetic
critical point. Since the transition is discontinuous, the region very close to the
point t = 0 should be ignored. The dashed line shows the result in the paramagnetic
phase scaled by a factor of 50 (right hand scale), and the dotted curve in the
ferromagnetic phase (also scaled by a factor of 50, right-hand scale) represents
the result that is obtained in the ferromagnetic phase upon neglecting the mode
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Figure 5. Same as Fig. 2, but for different parameter values (see the text). From Ref. 15.

coupling contribution to χL given by Fig. 3. In Fig. 4 the values bL = 0.23 and
bT = 0.4 are used, while in Fig. 5 the values bL = bT = 1 are used. In both cases,
note that the maximum Tc in the ferromagnetic phase is 50 to 100 times higher
than in the paramagnetic phase.

We conclude that for reasonable parameter values, theoretically the effective
superconducting phase diagram is given by Fig. 2, consistent with current experi-
mental observations.

4 Discussion

We conclude with a summary of our results, and then briefly discuss several open
questions.

We have made two distinct general points. The first result was that clean itiner-
ant electronic systems will in general have a tricritical point for the ferromagnetic
phase transition at low temperatures. As a corollary, the zero temperature fer-
romagnetic transition in clean itinerant systems is generically of first order. This
result continues to hold for weakly disordered systems, but no quantitative results
are available for the amount of disorder that will destroy the first order phase tran-
sition. Once the tricritical point has been destroyed by the disorder, the critical
exponents at the second order phase transition at finite temperatures are the known
classical Heisenberg exponents,18 and at zero temperature, they have recently been
exactly determined in Ref. 9. The second result was that longitudinal fluctuations
are intrinsically larger in the ferromagnetic phase than in the paramagnetic phase.
This is a crucial point for magnetic fluctuation induced superconductivity. Simple
estimates show that the critical temperature for this type of superconductivity in
the ferromagnetic phase can easily be fifty times larger than in the paramagnetic
one. All of these results are consistent with current experimental observations.

The most intriguing open questions concern the nature of the magnetic fluctu-
ation induced superconducting state, and an understanding of the phase diagram
for all temperatures and magnetic fields. As already noted, one expects an inhomo-
geneous superconducting state. This point has not yet been discussed theoretically
for pairing mechanisms that are both electronic in origin, and sensitive to internal
magnetic field effects. Another interesting question is whether there are numer-
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ous superconducting phases as a function of temperature (and external magnetic
fields). Again, since the pairing mechanism is expected to be electronic in origin,
and itself sensitive to superconductivity, it is easy to imagine additional super-
conducting states appearing inside the superconducting phase, as the temperature
is lowered. Similarly, the concept of transverse and longitudinal critical external
magnetic fields needs to be worked out for these superconducting states.
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