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[1] A probabilistic study is attempted to analyze the flow and transport in a three-
dimensional (3-D) porous formation where the governing parameters are varying
randomly in space. It is assumed that the soil parameters, namely, hydraulic conductivity,
dispersivity, molecular diffusion, porosity, sorption coefficient, and decay rate, are random
fields. A stochastic finite element method (SFEM), which is based on perturbation
technique, is developed. The method developed here uses an alternate approach for
obtaining improved computational efficiency. The derivatives of the concentration with
respect to random parameters are obtained by using the derivatives of local matrices
instead of global matrices. This approach increases the computational efficiency of the
present method by several orders with respect to standard SFEM. Both accuracy and
computational efficiency of this method are compared with that of commonly used Monte
Carlo simulation method (MCSM). It is observed that for moderate values of coefficient of
variations of the random parameters the mean and standard deviation match
reasonably well with MCSM results. Using this method the excessive computational effort
required by MCSM can be avoided. In the present study both 1-D as well as 3-D problems
are solved to show the advantages of SFEM over MCSM. The correlation scale of
the random field is found to be an important parameter. For the range of this parameter
studied here it is found that as correlation scale increases, the standard deviation
increases. The results obtained for two particular problems in this study show that the
coefficient of variation of concentration is higher for the 1-D problem than the 3-D
problem.
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1. Introduction

[2] Uncertainty in the flow and transport in the ground-
water system arises due to the fact that spatial variability of
the physical and chemical properties of the system, bound-
ary conditions and source/sink terms are random functions.
To quantify the uncertainty, commonly a probabilistic
analysis is performed. In the context of flow and transport
in porous media such analyses were aimed at assessing the
effective medium properties, which are quite different from
the laboratory values [Dagan, 1989; Gelhar, 1993; Hu et
al., 1997; Huang and Hu, 2000; Hassan, 2001; Chaudhuri
and Sekhar, 2005] as well as on the variability of the head
and concentration distributions in terms of their mean and
standard deviation [Tang and Pinder, 1979; Dagan, 1989;
Kapoor and Gelhar, 1994].
[3] The stochastic partial differential equations (SPDE)

for transport, resulting from random properties of the
heterogeneous porous medium are either solved using
analytical methods [Dagan, 1989; Gelhar, 1993; Cushman,
1997] or numerical methods (Monte Carlo simulations,

moment equation method and stochastic finite element
method). Analytical methods are not always applicable in
real field conditions due to the complicated initial and
boundary conditions, source/sink functions, nonuniform
flow fields and nonstationary parameters. Under such cir-
cumstances, numerical methods are used which often are
based on Monte Carlo simulations (MCS). The MCS
method is based on generating a large number of equally
likely random realizations for obtaining statistical moments
of the dependent variable while using a solution of the
deterministic system for each realization [Bellin et al., 1992;
Chin and Wang, 1992; Osnes, 1998; Hassan et al., 1999;
Schwarze et al., 2001]. This method is computationally
exhaustive when a few thousands of realizations are
required especially for a higher degree of medium hetero-
geneities along with higher space-time grid resolution. To
avoid the difficulty associated with simulations involving
multiple realizations, alternate methods combining pertur-
bation theory with numerical methods (e.g., finite element,
finite difference) were developed. One such approach is
called stochastic finite element method (SFEM), which has
been used in the structural engineering literature [Kleiber
and Hien, 1992; Manohar and Ibrahim, 1999] and for
energy distribution modeling [Osmani, 2002]. Spanos and
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Ghanem [1989] used Karhunen-Loeve expansion to repre-
sent the random media and an improved Neumann expan-
sion method was employed for static analysis of a beam
with random rigidity. An alternate method called projection
on homogeneous chaos was proposed by Ghanem and
Spanos [1991] when the system parameters are varying
largely. Tang and Pinder [1979] used a perturbation ap-
proach with finite difference method for performing uncer-
tainty analysis of solute transport in a one-dimensional
porous medium. Osnes and Langtangen [1998] presented
a probabilistic finite element method for solving stochastic
porous media flow problems with a random conductivity
field. Jang et al. [1994] used reliability method (FORM and
SORM) for probabilistic analysis of contaminant transport
in 1-D and 2-D heterogeneous porous media. Zhang [1999]
presented a moment equation method where the dependent
variable and the system properties are expressed in terms of
an infinite series, which are substituted in the SPDE to solve
a flow problem in the vadose zone using a finite difference
method. An efficient moment equation method based on
Karhunen-Loeve expansions [Zhang and Lu, 2004; Lu and
Zhang, 2004] is proposed for solving flow in stochastic
medium. Zhang [2002] reviewed various stochastic meth-
ods of flow in heterogeneous porous medium.
[4] The objective of the present study is to develop an

efficient stochastic finite element method (SFEM) for flow
and transport in a general 3-D heterogeneous porous media.
The proposed SFEM uses a Laplace transform finite ele-
ment method, which is found to be efficient for solving the
transport equations [Sudicky and McLaren, 1992; Li et al.,
1992; Ren and Zhang, 1999]. In order to improve the
computational efficiency of the SFEM by several orders,
an approach is proposed wherein the derivatives of the
concentration with respect to random parameters are
obtained by using the derivatives of local matrices instead
of global matrices. The accuracy and the computational
efficiency of this method is compared with commonly used
Monte Carlo simulation method (MCSM) by applying it on
two test problems involving one and three dimensional
situations wherein the hydraulic conductivity, dispersivity,
molecular diffusion coefficient, porosity, sorption coeffi-
cient and first-order decay rate are assumed as random
fields. The one dimensional problem uses a time varying
boundary condition while the three dimensional problem
uses a nonuniform flow field in the domain requiring the
use of numerical models. Several cases are analyzed
varying the coefficient of variation and correlation scale
of the random parameters, while testing the computational
efficiency.

2. Formulation

[5] The governing equation for transport of a linearly
sorbing and decaying solute in 3-D porous media is

n xð Þ þ rbkd xð Þð Þ @c x; tð Þ
@t

þ @

@xi

�
n xð Þvi xð Þc x; tð Þ

� n xð ÞDij xð Þ @c x; tð Þ
@xj

!
þ gd xð Þc x; tð Þ ¼ 0; ð1Þ

where c(x, t) is the concentration at location x and time t.
Here n(x), kd(x) and gd(x) are respectively spatially varying
porosity, sorption and decay coefficient. v(x) is velocity

vector which is obtained using hydraulic conductivity tensor
(K(x)) and head (H(x)), based on,

vi xð Þ ¼ �Kij xð Þ @H xð Þ
@xj

; ð2Þ

It is to be noted that for the equations, the summation over
double indices is implied unless otherwise specified. D(x) is
the hydrodynamic dispersion coefficient tensor, which is
combined with molecular diffusion coefficient (Dm(x)). It
is given as

Dijx ¼ a xð Þ 1� �ð Þ vi xð Þvj xð Þ
v xð Þ þ �v xð Þdij

� �
þ Dm xð Þdij; ð3Þ

where a(x) is the longitudinal local dispersivity and e is the
ratio of transverse to longitudinal local dispersivity. The
general initial and boundary conditions are given as

c x; 0ð Þ ¼ c0 xð Þ; for x 2 W; c x; tð Þ ¼ cb x; tð Þ for x 2 dW1

and

n xð Þvi xð Þc x; tð Þ � n xð ÞDij xð Þ @c x; tð Þ
@xj

� �
nxi ¼ fb x; tð Þ for x 2 dW2

ð4Þ

c0(x) is initial distribution of concentration. cb(x, t) and
fb(x, t) are respectively the time-dependent specified
concentration and flux at the boundaries. Here nxi is the
direction cosine of the normal to the boundary surface
along xi axis. The Darcy’s equation for steady state flow
with spatially varying hydraulic conductivity field is given
by

@

@xi
Kij xð Þ @H xð Þ

@xj

� �
¼ 0 ð5Þ

and specified boundary conditions governing the flow in
the domain,

H xð Þ ¼ Hb xð Þ for x 2 dW1:

and

Kij xð Þ @H xð Þ
@xj

nxi ¼ qb xð Þ for x 2 dW2: ð6Þ

The equation (1) can be solved in the time domain by
applying integration or by using the finite difference
method. The use of Laplace transform for time is a
popular approach to avoid time domain integration. The
solution that is obtained in Laplace domain is later
transformed to time domain using numerical inverse
Laplace transform. In the Laplace space the governing
transport equation (1) is given by

s n xð Þ þ rbkd xð Þð Þ þ gd xð Þð Þbc x; sð Þ

þ @

@xi
n xð Þvi xð Þbc x; sð Þ � n xð ÞDij xð Þ @bc x; sð Þ

@xj

� �
¼ c0 xð Þ; ð7Þ

where s is the Laplace parameter. In the present study
equation (7) is solved using FEM after applying Laplace
transform to the boundary conditions. Prior to solving
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equation (7) with FEM the velocity field is obtained by
solving equation (5).

3. Deterministic FEM Formulation

[6] In FEM the concentration inside an element is

expressed as bc(x, s) =
Pn

k¼1

Nk(x)bCk(s), where n is the number

of nodes per element. Nk(x) and bCk(s) are respectively kth
shape function and concentration at kth node. For pth
element the equation is obtained as
Z

We

�
s np þ rbkdp
� 	

þ gdp


 �
Nk xð ÞNl xð Þ

� @Nk xð Þ
@xi

npvipNl xð Þ � npDijp

@Nl xð Þ
@xj

� ��
dxbCl sð Þ

þ
I

dWe

Nk xð Þ npvipNl xð Þ � npDijp

@Nl xð Þ
@xj

� �
nxidS

bCl sð Þ

¼
Z

We

Nk xð Þc0 xð Þdx; ð8Þ

) D sð Þ½ 	p bC sð Þ
n o

p
¼ C0 sð Þf gp ð9Þ

Here the suffix ‘p’ corresponds to the property of pth
element. The domain is discretized with N elements. The
global equations for the transport and flow are obtained as

D sð Þ½ 	 bC sð Þ
n o

¼ C0 sð Þf g and K½ 	 Hf g ¼ H0f g: ð10Þ

The global dynamic transport matrix [D(s)] and source
vector {C0(s)} are obtained using the given initial and
boundary conditions. Numerical inverse Laplace transform
[Brancik, 2000] is applied on the solution of equation (10).
For flow [K] is the global hydraulic conductivity matrix.
The ith component of velocity of pth element is obtained by
taking average of velocity at all Gauss points (xk, for k = 1,
. . ., NG, where NG is the number of Gauss points), and it is
given as

vip ¼ � 1

NG

Kijp

XNG

k¼1

@Nl xð Þ
@xj

����
xk

Hl ¼ � 1

NG

Kp

XNG

k¼1

@Nl xð Þ
@xi

����
xk

Hl:

ð11Þ

Here l implies summation over repeated indices. For iso-
tropic cases the hydraulic conductivity tensor becomes a
scalar quantity (Kp).

4. SFEM Formulation

[7] For a perturbation method, the properties which are
varying randomly in space are decomposed into a mean
component and a zero mean random component. In a
perturbation based SFEM, for each element, the properties
which are treated as random variables are also decomposed
as Kp = Kp + K0

p, ap = ap + a0
p, np = np + n0p, kdp = kdp + k0dp,

gdp
= gdp

+ g
0
dp

and Dmp
= Dmp

+ D0
mp
. The velocity and

dispersion coefficient can also be written as vip = vip + v0ip
and Dijp

= Dijp
+ D0

ijp
respectively. For statistically homoge-

neous random field, the mean of the properties for each
element remain same. Hence the matrices [K] and [D(s)] are
also decomposed into mean ([K] and [D(s)]) and zero mean

fluctuating components ([K]0 and [D(s)]0). The zero mean
random component of dynamic transport matrix [D(s)]0 is a
linear function of random variables r0p . Here r

0
p, (p = 1, 2, . . .,

Nr) are the velocity components, local dispersivity, molecular
diffusion, porosity, sorption coefficient and decay rate of
each element. Nr is the total number of random variables and
in this study Nr = 8Ne, where Ne is the total number of
elements. Expanding [D(s)] using Taylor series and noting
that 2nd and higher-order derivatives vanish being a linear
case,

D sð Þ½ 	 ¼ D sð Þ
� �

þ D sð Þ½ 	0¼ D sð Þ
� �

þ
XNr

p¼1

D sð Þ½ 	Irpr
0
p ð12Þ

where [D(s)]rp
I =

@ D sð Þ½ 	
@rp

. Thus the FE equation for transport
equation (10) is written as

D sð Þ
� �

þ
XNr

p¼1

D sð Þ	Irpr
0
p

h i !
bC sð Þ
n o

¼ C0 sð Þf g: ð13Þ

The concentration is obtained from equation (13) and after
decomposition it is written as

bC sð Þ
n o

þ bC sð Þ
n o0

¼ D sð Þ
� �

þ
XNr

p¼1

D sð Þ½ 	Irp r
0
p

i !�1

C0 sð Þf g

¼ I½ 	 �
XNr

p¼1

D sð Þ
� ��1

D sð Þ½ 	Irpr
0
p

 
þ
XNr

p¼1

XNr

q¼1

D sð Þ
� ��1

 D sð Þ½ 	Irp D sð Þ
� ��1

D sð Þ½ 	Irqr
0
pr

0
q þ   

!
D sð Þ
� ��1

C0 sð Þf g: ð14Þ

It may be noted that the local dynamic transport matrix
([D(s)]q) of qth element is only a function of random
variables (nq, kdq, gdq, v1q, v2q, v3q, aq and dmq). Hence the
derivative [D(s)]q,rp

I only exists if the random variable rp
corresponds to any one of the above mentioned random
variables and [D(s)]q,rp

I vanishes when rp corresponds to any
property of an element except qth element. Hence the
derivative of the global matrix, [D(s)]rp

I , has nonzero entry
in the position corresponding to qth element when rp is a
parameter of qth element. In this case the collection of all
nonzero entries in [D(s)]rp

I forms a matrix of the size same as
[D(s)]q. Using nodal connectivity matrix, the matrix multi-
plication of [D(s)]�1[D(s)]Irp in equation (14) can be
reduced to ((N � n) � (n � n)) from ((N � N) � (N �
N)), where N and n are respectively total number of nodes in
domain and number of nodes per element. Thus by
following this approach the computational efficiency
increases by the order of (N2/n2). For example using
the present approach in a 3-D problem with a brick element
(n = 8) and a total number of nodes N = 800, the above
factor results in a computational efficiency of 104, if
simplistic matrix multiplication algorithm is used. This
efficiency factor still remains quite significant (at least two
orders) even if better matrix multiplication algorithms (such
as used in commercial packages BLAS, LAPACK) are
employed. After taking the expectation for the equation (14),

the mean concentration ({bC(s)})is obtained as

bC sð Þ
n o

¼ I½ 	 þ
XNr

p¼1

XNr

q¼1

D sð Þ
� ��1

D sð Þ½ 	Irp

 
D sð Þ
� ��1

D sð Þ½ 	Irq r0pr0q þ   
!

 D sð Þ
� ��1

C0 sð Þf g: ð15Þ
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In the above expression the mean is second-order accurate.
The equation for the perturbed component ({bC0(s)}) is
obtained by subtracting equation (15) from equation (14).
When r0pr

0
q � r0pr

0
q is neglected, the equation reduces to,

bC sð Þ
n o0

¼
XNr

p¼1

bC sð Þ
n oI

rp
r0p;

bC sð Þ
n oI

rp
¼ � D sð Þ

� ��1
D sð Þ½ 	Irpr

0
p D sð Þ
� ��1

C0 sð Þf g:
ð16Þ

Using numerical inverse Laplace transform, the mean
concentration ({C(t)}) and the random component of
concentration ({C0(t)}) in time domain are obtained. The
covariance matrix is obtained after applying numerical
inverse Laplace transform to equation (16), which is
expressed as

C t1ð Þf g0 C t2ð Þf g0T ¼
XNr

p¼1

XNr

q¼1

L�1 bC s1ð Þ
n oI

rp

� �
L�1 bC s2ð Þ

n oI

rq

� �T
r0pr

0
q

¼ L�1 L�1
XNr

p¼1

XNr

q¼1

bC s1ð Þ
n oI

rp

""
bC s2ð Þ
n oIT

rq
r0pr

0
q

##
:

ð17Þ

The computational time required depends on the discretiza-
tion in the Laplace space and the number of finite elements.
When the number of elements used for discretization is
small, the last expression in equation (17) is computation-
ally faster. Similarly perturbation approach can be applied
on flow equation, to obtain the mean and perturbed
component of hydraulic head. For flow the random
properties are only the hydraulic conductivity of the
elements (Kp, p = 1, 2, . . ., Nk), here Nk = Ne. Therefore
the mean and perturbed component of hydraulic head are
expressed as

H
� �

¼ I½ 	 þ
XNk

p¼1

XNk

q¼1

K
� ��1

K½ 	IKp
K
� ��1

K½ 	IKq
K 0
pK

0
q þ   

 !

 K
� ��1

H0f g; ð18Þ

Hf g0¼
XNk

p¼1

Hf gIKp
K 0
p;

Hf gIKp
¼ � K

� ��1
K½ 	IKp

K
� ��1

H0f g:
ð19Þ

Using equations (18) and (19) the mean and random
component of vip are obtained as

vip ¼ � 1

NG

XNG

k¼1

@Nl xð Þ
@xi

����
xk

KpH l þ
XNk

q¼1

H I
l;Kq

K 0
pK

0
q

 !
ð20Þ

v0ip ¼ �
XNk

q¼1

1

NG

XNG

k¼1

@Nl xð Þ
@xi

�����
xk

H ldpq þ KpH
I
l;Kq


 �
K 0
q ¼

XNk

q¼1

vIip;Kq
K 0
q

ð21Þ

Here l implies summation over repeated indices. From the
expression of perturbed component of velocity one can

obtain the auto covariance of velocity and cross covariance
with any other random properties (r0j) using the auto
covariance of hydraulic conductivity and cross covariance
of hydraulic conductivity with r0j, which is expressed as

v0ip1 v
0
jp2

¼
XNk

q1¼1

XNk

q2¼1

vIip1 ;Kq1
vIjp2 ;Kq2

K 0
q1
K 0
q2
and v0ipr

0
j ¼

XNk

q¼1

vi
I
p;Kq

K 0
qr

0
j:

ð22Þ

Here the mean velocity is second-order accurate while the
covariance of velocity is first-order accurate as the term
(K0

pK
0
q � K 0

pK
0
q) is neglected. The mean of the resultant

velocity and its random component are expressed as

vp ¼ vp þ
1

vp

X3

i¼1

Cvip vip
� 1

v3p

X3

i¼1

X3

j¼1

vipvjpCvip vjp
and v0p ¼

1

vp

X3

i¼1

vipv
0
ip
:

ð23Þ

Here vp =
P3

i¼1

v2ip

� �
1/2. The effective mean hydrodynamic

dispersion coefficient and its random component are
obtained by using equation (3), which are given as

Dijp
¼ aLp

vipvjp þ Cvipvjp

v

��
�
vipCvjpvp

þ vjpCvi pvp

v2p
þ
vipvjpCvpvp

v3p

!

þ
vipCvjpaLp

þ vjpCvi paLp

vp
�
vipvjpCvpaLp

v2p

!

 1� �ð Þ þ � aLpvp þ CvpaLp


 �
dij þ Dmpdij ð24Þ

D0
ijp

¼ aLp

vipv
0
jp
þ vjpv

0
ip

vp
�
vipvjpv

0
p

v2p

 ! 
þ a0

Lp

vipvjp

vp

�
1� �ð Þ

þ � aLpv
0
p þ a0

Lpvp


 �
dij þ D0

mp
dij: ð25Þ

To obtain the expression of D0
ijp
, the difference between the

product of two perturbed components and the mean of that
product, is neglected.

5. Description of the Random Fields

[8] The hydraulic conductivity which varies randomly in
space, is commonly modeled as a random field with a log
normal distribution since it takes positive values and varies
in several orders [Gelhar, 1993; Cushman, 1997]. Hassan
[2001] assumed that the porosity follows a log normal
distribution and studied the effect of its correlation with
hydraulic conductivity. The sorption coefficient on the other
hand has been modeled either as normal or log normal
distribution in the literature [Wu et al., 2004; Hu et al.,
1997]. Similarly decay rate can be considered to follow
either normal or log normal distribution [Miralles-Wilhelm
and Gelhar, 2000; Metzger et al., 1999]. Commonly, the
distribution of dispersion coefficient can be derived from
the input distribution of local dispersivity, hydraulic con-
ductivity and diffusion coefficient. Harleman et al. [1963]
gave an empirical relationship between dispersivity and
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hydraulic conductivity. This relationship results in a log
normal distribution for dispersivity when hydraulic conduc-
tivity is assumed to follow log normal distribution.
Haggerty and Gorelick [1995], suggested the use of either a
uniform or log normal distribution for diffusion coefficient.
On the basis of the above studies and absence of specific
experimental data pertaining to the choice of distributions, in
this study the flow and transport parameters, which are
considered as random fields, are assumed to follow a log
normal distribution since they take positive values and also
vary considerably. Hence the hydraulic conductivity, disper-
sion coefficient, porosity, sorption coefficient and decay
can be expressed as K(x) = KG exp( fK(x)), D(x) = DG

exp( fD(x)), n(x) = nG exp( fn(x)) kd(x) = kdG exp( fkd(x)),
gd(x) = gdG

exp( fg(x)) and Dm(x) = DmG
exp( fDm

(x)). The
standard deviation of log hydraulic conductivity and the
geometric mean of hydraulic conductivity are obtained as

sfK =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ s2

K

K
2


 �r
and KG = K � s2

fK

2
. The random fields

are assumed as statistically homogeneous and described
by a Gaussian (squared exponential) type correlation
function. However, it may be noted that for specific
applications experimentally derived correlations functions
can be applied in the SFEM. The correlation coefficient
between the properties of any two points is given as r(x) =
(� (x1

l1
)2 � (x2

l2
)2 � (x3

l3
)2). The covariance matrix for random

element properties is determined from the correlation
function using the local averaging method. For this corre-
lation function the closed form expression of correlation
coefficient of random properties of any two elements as
given by Vanmarcke [1983] is

rfp fq ¼
1

VpVq

Z

Vp

Z

Vq

r xp � xq
� 	

dxpdxq

¼ 1

8VpVq

X3

i¼0

X3

j¼0

X3

k¼0

�1ð Þ iþjþkð Þ
L1iL2jL3k
� 	2

g L1i; L2j; L3k
� 	

;

ð26Þ

where

g L1i; L2j; L3k
� 	

¼ 8

L1iL2jL3k

Z L3k

0

Z L2j

0

Z L1i

0

1� x1

L1i

� �
1� x2

L2j

� �

 1� x3

L3k

� �
� r x1; x2; x3ð Þdx1dx2dx3

¼ g1D L1ið Þg1D L2j
� 	

g1D L3kð Þ; ð27Þ

and g1D(Lij) = (li

Lij
)2 [

ffiffiffi
p

p Lij
li

erf (
Lij
li
) + exp (

Lij
li
) � 1]. The

various intervals are shown in Figure 1. The correlation
coefficient between Ki and kdj is determined as

rKikd j
¼ KGkdG

sKskd
exp

1

2
s2fK þ s2fkd


 �� �
exp rfKi fkd j

sfKsfkd


 �
� 1


 �
:

ð28Þ

In a similar fashion the correlation between any other two
random parameters can be obtained.

6. Results and Discussions

[9] The stochastic finite element method (SFEM) devel-
oped above is applied to study the migration of contaminant

from a waste dump. Both 1-D and 3-D problems are used
for modeling the system. The accuracy of SFEM is verified
by comparing with MCSM for both these problems. The
testing with both of these problems is made to assess
the accuracy and computational efficiency of the SFEM
affected by the dimension of the problem and to demon-
strate the use of relatively complicated time varying
boundary conditions. In both of these problems the studies
are carried out to show the effect of coefficient of variation
(COV) of the random parameters.

6.1. One-Dimensional Problem

[10] A 1-D model may be acceptable [Rowe and Booker,
1986] for analyzing the transport of pollutant in the soil
liner underlying a landfill, when the velocity of flow is
essentially vertical and uniform. For describing the system
conveniently, the parameters and the variables are made
dimensionless with respect to thickness of the soil liner (h)
and vertical velocity of flow for the deterministic problem
(vd). In this problem the time varying boundary conditions
for concentration [Rowe and Booker, 1986] are used, which
are given as

c x3; tð Þ ¼ 1þ 1

hf

Z t

0

n x3ð Þ
�
v x3ð Þc x3; tð Þ � D x3ð Þ @c x3; tð Þ

@x3

�
dt

at x3 ¼ 0;

c x3; tð Þ ¼ 1

nbhb

Z t

0

n x3ð Þ
�
v x3ð Þc x3; tð Þ ð29Þ

� D x3ð Þ @c x3; tð Þ
@x3

�
dt� vb

nbL

Z t

0

c x3; tð Þdt

at x3 ¼ 1:

Here c(x3, t) = ~c(~x3, ~t)/c0 is the dimensionless concentration
of the pollutant at dimensionless depth (x3 = ~x3/h) and
dimensionless time (t = vd ~t/h). Further, v(x3) = ~v(~x3)/vd,
D(x3) = eD(~x3)/(vdh) and gd(x3) = ~gd(~x3)h/vd are respectively

Figure 1. Definition of various distances characterizing
the relative position of two elements.
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the dimensionless vertical velocity of flow in the soil liner,
the dispersion coefficient, the decay coefficient. The
equivalent dimensionless height of the landfill is given by
hf = ehf/h. In addition hb = ~hb/h, vb = ~vb/vd and nb are
respectively the height of the permeable layer (or sandy
aquifer), the horizontal velocity of flow and porosity of the
sandy aquifer and L = eL/h is the dimensionless length of
the landfill as shown in Figure 2. Hereˆ corresponds to the
dimensional quantity. Hydraulic conductivity, porosity,
dispersion coefficient and sorption coefficient are assumed
to vary randomly along the vertical direction. In the present
study, it is assumed that all of the random governing
parameters have the same covariance function. The problem
is solved using the following values of the parameters, kd =
1.0, gd = 2.0, vb = 1000, hf = 1.0, D = 1.0, n = 0.45, hb = 1.0,
nb = 0.3 and L = 40. The comparison between SFEM and
MCSM (with 10000 realizations) is made in terms of mean,
standard deviation and computational time as presented in
Table 1. The results are provided for various coefficient of
variations. The concentration is measured at the bottom of
the soil liner. The mean and standard deviation of the
concentration are shown in Figure 3. The accuracy of SFEM
is compared with MCSM for a range of coefficient of
variation of random parameters and correlation scales (l),

and the results are presented in Table 1. The mean
concentration behavior obtained from SFEM matches well
with that of MCSM (a maximum of 1.1% for all the cases
studied here). Coefficient of variation of random parameters
affects the arrival time (tcp) of peak of mean concentration
(cp). The SFEM estimates early arrival of the peak in
comparison to MCSM by a maximum of 6% for the cases.
The comparison between SFEM and MCSM for the
standard deviation of concentration (scp) indicates that the
results of SFEM are found to be less than 7.5% for various
cases studied. As expected higher errors are noted for higher
coefficient of variation. The SFEM is found to overestimate
the peak value of the standard deviation of concentration
(scp) and results in a later arrival (tscp

) of this peak. The
magnitude of the error in the arrival of peak values of the
mean and standard deviation of concentrations increases
with increase in correlation scale. The computations for all
the test cases of this problem are performed on COMPAQ
Alpha Server ES40 (a cluster of four CPUs with 667 MHz).

Figure 2. A schematic diagram of vertical leachate
transport to the soil from a landfill for the 1-D test case.

Table 1. Values of Statistical Parameters and Comparison of

Results for Different Cases in the 1-D Problema

Case

COV

l

Error, %

n kd K dm cp tcp scp tscp

1A1 0.025 0.02 0.05 0.02 0.5 �0.01 0.00 �0.20 0.24
1A2 0.100 0.10 0.25 0.10 0.5 �0.10 �0.16 1.50 3.50
1A3 0.250 0.20 0.50 0.20 0.5 �0.68 �1.40 7.50 15.80
1B1 0.025 0.02 0.05 0.02 1.0 0.02 0.00 �0.27 0.24
1B2 0.100 0.10 0.25 0.10 1.0 0.06 �0.16 0.37 5.90
1B3 0.250 0.20 0.50 0.20 1.0 0.12 �4.10 3.00 27.80
1C1 0.025 0.02 0.05 0.02 2.0 �0.01 0.00 0.02 0.24
1C2 0.100 0.10 0.25 0.10 2.0 �0.01 �0.16 0.05 6.70
1C3 0.250 0.20 0.50 0.20 2.0 1.11 �6.00 0.50 35.10

aCPU time is 0.02 s for SFEM and 37 s for MCSM.

Figure 3. Comparison of results obtained by SFEM and
MCSM, for the 1-D test problem (a) Mean and (b) standard
deviation of concentration at the bottom of the soil liner for
l = 1.0.
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It is found that the computational time taken by SFEM is
approximately equal to 5 to 6 times that of the solution of
the deterministic FEM.

6.2. Three-Dimensional Problem

[11] The SFEM developed in section 4 is applied to study
the probabilistic behavior of concentration distribution in
the 3-D aquifer/permeable layer (Figure 4). The porosity,
decay coefficient, sorption coefficient, hydraulic conductiv-
ity, dispersivity and molecular diffusion are considered as
spatially varying random fields. In this study the correlation
scales along the horizontal plane is assumed to be same (i.e.,
l1 = l2 = lh). The horizontal correlation scale (lh) is
considered much larger in comparison to the vertical corre-

lation scale (l3). Here l3 is taken as one tenth of lh. The
flow field in this problem becomes nonuniform due to the
constant continuous recharge from the pollutant source
combined with lateral groundwater flow in the permeable
layer.
[12] The mean and covariance of the random flow field is

derived from the random hydraulic conductivity field.
Along with covariance matrices of the other random fields,
the covariance of velocity is also used for the probabilistic
analysis of contaminant transport. A square contaminant
source of dimension lx1 = lx2 = l is assumed to be located in
an aquifer. The governing equation (1), the boundary
conditions in Section 2 and the parameters are made
dimensionless with respect to the size of the source and
the horizontal velocity of flow. Here c(x, t) = ~c(~x,~t)/c0 is the
dimensionless concentration of the pollutant at a dimen-
sionless distance x = ~x/l, a dimensionless time (t = vd~t/l)
and c0 is the concentration at the top of the soil. Further,
v(x) = ~v(~x)/vd, a(x) = ~a(~x)/l, Dm(x) = eDm(~x)/(vdl), gd(x) =
~gd(~x)l/vd and q = ~q/vd are respectively the dimensionless
velocity of flow, dispersivity, molecular diffusion, decay
coefficient and recharge at the top. Here vd is the hori-
zontal velocity of flow, for a deterministic case without
any recharge. The following numerical values of parameters
are chosen for solving the 3-D problem: n = 0.4, kd = 0.5,
gd = 1.0, a = 0.5, Dm = 1.0 and q = 0.01.
[13] The comparison between SFEM and MCSM (with

10000 realizations) for different sets of coefficient of
variation and correlation scale of random parameters, is
made in terms of mean and standard deviation, which are
presented in Figures 5 and 6. The test cases comprise two
correlation scales lh = 2 and lh = 4 and a range of
coefficient of variations. Higher correlation scales are
avoided because of the smaller computational domain of
this problem used as well as due to relatively lesser
sensitivity of the results at higher value of correlation length
as demonstrated by Zhang and Lu [2004]. The maximum
coefficient of variation used is 125% for hydraulic conduc-

Figure 5. Comparison of results obtained by SFEM and MCSM for the 3-D test problem, (top) mean
and (bottom) standard deviation of concentration at the bottom of the soil liner for different cases.

Figure 4. A schematic diagram of 3-D problem with a
continuous source at the top.
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tivity and 50% for rest of the other random parameters.
Since the perturbation based method used here is first-order
accurate for standard deviation and second-order accurate
for the mean, it is expected that the results at higher
variances (greater than 1.0) may result in higher errors.
Figures 5 and 6 show the c and sc respectively for various
test cases (as listed in Table 2) obtained using both SFEM
and MCSM. These results are obtained in terms of evolution
of steady state concentration at the bottom of the permeable
layer at exactly below the center of the source (at point P
shown in Figure 4). Since at this location relatively higher
concentrations would result at the top of the impermeable
layer, the comparison between the two methods is made at
this location. The mean concentration (c) is found to
increase exponentially and shows an asymptotic behavior
while the sc of concentration shows a peak followed by a
lower steady state value. The finite value of standard
deviation of concentration at asymptotic time is due to the
presence of decay parameter and this finite value depends
on the decay coefficient and the distance from the source.
The shift in time of the peak values of sc between SFEM
and MCSM in the Figure 6 for higher correlation scale and
variance could be due to use of incorrect effective velocity
and covariance of random velocity field, which is likely the
case when domain size is not sufficiently larger than the
correlation scale. The size of the domain for flow problem is
required to be larger than that is required for solving the
transport problem. Here to avoid the large computational
cost, the domain is kept same for both flow and transport
simulations. (Lx/l = 10.0 and Ly/l = 8.6).
[14] The computational efficiency and the accuracy of

SFEM is presented in Table 2 in terms of mean and standard
deviation of concentration at point P. The maximum error in
c among the various test cases is found to be less than 3.5%
while the error in standard deviation is found to be less than
8.0%. It is observed that in this case the errors in c and sc
are increasing with correlation scale. Since the present
method is first-order accurate for sc, in the case of 3-D
problem, apart from the error in sc at a particular node, it

may be required to compute the error in the steady state
value of sc at several grid points of interest. One such
scenario is to compute the error in sc at all the nodes in the
domain. However, the concentration far way from the
source for this problem is in general very low and the value
is sensitive to the size of the domain and grid size. Hence
one may consider only selected nodes where the mean
concentrations are above a threshold level of interest. On
the basis of this the error in sc can be defined as

Error ¼ 1

Nc

XNc

i¼1

jsciSFEM � sciMCSMj
sciMCSM

ð30Þ

where Nc is the number of nodes which are considered for
error analysis. Four values of Nc are considered for
calculation of the errors, which are as follows: (1) nodes
in the computational domain, (2) nodes where c > 0.001,
(3) where c > 0.01, and (iv) only one specific node at P as
shown in Figure 4 is considered. Figure 7 shows the error
in sc with respect to a range of values of coefficient of
variation for two correlation scales. It is observed that the

Table 2. Values of Statistical Parameters and Comparison of

Results for Different Cases in the 3-D Problema

Case

COV

lh

Error, %

n kd gd K a dm civ sciv

3A1 0.1 0.1 0.1 0.25 0.1 0.1 2.0 0.0 0.2
3A2 0.2 0.2 0.2 0.50 0.2 0.2 2.0 0.2 0.9
3A3 0.3 0.3 0.3 0.75 0.3 0.3 2.0 0.3 1.2
3A4 0.4 0.4 0.4 1.00 0.4 0.4 2.0 0.6 2.2
3A5 0.5 0.5 0.5 1.25 0.5 0.5 2.0 1.9 3.4
3B1 0.1 0.1 0.1 0.25 0.1 0.1 4.0 0.0 1.2
3B2 0.2 0.2 0.2 0.50 0.2 0.2 4.0 0.1 2.9
3B3 0.3 0.3 0.3 0.75 0.3 0.3 4.0 0.4 4.5
3B4 0.4 0.4 0.4 1.00 0.4 0.4 4.0 0.9 6.2
3B5 0.5 0.5 0.5 1.25 0.5 0.5 4.0 3.4 7.6

aCPU time is 175 s for SFEM and 334,200 s for MCSM.

Figure 6. Comparison of results obtained by SFEM and MCSM for the 3-D test problem, (top) mean
and (bottom) standard deviation of concentration at the bottom of the soil liner for different cases.
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error in sc is the highest when all the nodes are considered
while it is the least when error is computed at one point P
(i.e., case iv). It is shown in Table 2 that computational
time required for SFEM is approximately equal to 5 to 6
times that of the solution of the deterministic 3-D problem.
This means the MCSM with 10000 realizations for this
case is approximately 1800 times more computationally
expensive. The higher efficiency (at least two orders) here
is essentially due to the approach used in the SFEM for
computing the derivatives of the concentration with respect
to random parameters. It is interesting to note that the ratio
of computational time is not much affected significantly
between 1-D and 3-D problems, indicating the usefulness
of this method for solving higher-dimension problems.

7. Conclusions

[15] Alternate approaches which are computationally ef-
ficient to MCSM and reasonably accurate are of interest for

solution of stochastic partial differential equation in the case
of flow and transport in heterogeneous porous medium. The
present study proposes an efficient approach using SFEM,
which is second-order accurate in mean and first-order
accurate in the standard deviation. Comparison of SFEM
is made with MCSM while estimating the mean and
standard deviation of concentration for flow and transport
in a porous medium with random hydraulic conductivity,
porosity, dispersivity, molecular diffusion, sorption coeffi-
cient and first-order decay rate. Accuracy and computa-
tional efficiency of SFEM is compared with MCSM for
one and three dimensional problems for various test cases
with different coefficient of variation and correlation scale
of the system parameters.
[16] The results with SFEM are obtained for moderate

values of coefficient of variation (less than 125% for
hydraulic conductivity and 50% for the rest of the random
parameters) and are found to be good. The computational
efficiency of SFEM is found to be significantly higher
(several orders) than that of MCSM. The efficient perfor-
mance of the present SFEM in comparison with standard
SFEM is essentially due to use of derivatives of local
matrices instead of global matrices while computing the
derivatives of the concentration with respect to random
parameters.
[17] The computational efficiency obtained using SFEM

for one and three dimensional problems is nearly similar.
For the range of correlation scale studied in the 3-D
problem, it is found that the error associated with mean
and standard deviation increases with correlation scale. It is
noted that the coefficient of variation of concentration is
higher for the 1-D problem than the 3-D problem for the
examples selected here. This may be due to the higher level
of mixing in the 3-D case due to the reduction in the effects
of medium heterogeneity.
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