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[1] The probabilistic analysis by Monte Carlo simulation method (MCSM) for the
transport of nonlinear reactive solutes in a three-dimensional heterogeneous porous
medium is a computationally prohibitive task. For linear transport problems, the
perturbation-based stochastic finite element method (SFEM) has been found to be
computationally efficient with acceptable accuracy. This provides a motivation to develop
the SFEM for the nonlinear reactive solute transport. In the present study, SFEM is
developed for the transport of equilibrium nonlinear sorbing solutes, which follow the
Langmuir-Freundlich isotherm. This method produces a second-order accurate mean and a
first-order accurate standard deviation of concentration. In this study, the governing
medium propertis viz. hydraulic conductivity, dispersivity, molecular diffusion, porosity,
sorption, and decay coefficients are considered to vary randomly in space. The
performance of SFEM is compared to MCSM for both one- and three-dimensional
transport problems. The mean and the standard deviation of concentration for various test
cases obtained with the SFEM compares well for the mild heterogeneity cases (standard
deviation of log hydraulic conductivity less than 0.85) tested. SFEM produces a sharp
front for the mean and the standard deviation of concentration while fronts obtained by
MCSM are found to be dispersive. The error associated with the results obtained by SFEM
is sensitive to the boundary conditions, the size of the domain, and the plume size.
For a higher nonlinearity of sorption isotherm, the prediction uncertainty is higher. The
pattern of the statistical moments of concentration is similar for cases with different
correlation lengths of the parameters.
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1. Introduction

[2] The random spatial variability in the physical and
chemical properties of the porous medium during the
transport of reactive solutes in a heterogeneous porous
medium result in (1) an uncertainty in the distribution of
concentration field [Tang and Pinder, 1979; Dagan, 1989;
Kapoor and Gelhar, 1994; Chaudhuri and Sekhar, 2005a]
and (2) the field scale effective properties being quite
different from the laboratory values [Dagan, 1989; Gelhar,
1993; Hu et al., 1997; Huang and Hu, 2000; Hassan, 2001;
Chaudhuri and Sekhar, 2005b]. Some of these studies have
looked into the discrepancy between effective properties
while modeling the system as heterogeneous medium
instead of a homogeneous medium with uniform properties.
Recently, Lichtner and Tartakovsky [2003] extended the
investigations on the same aspect and studied the transient
behavior of the theoretical effective reaction rate constant of
a sorbing solute in a batch reactor system, with a heteroge-
neous grain and mineral distribution, and found that the

behavior of the rate constant differs from that of a system
with uniform properties. Another alternate approach pur-
sued in the literature was to assess whether or not effective
transport properties can be defined at all for some hetero-
geneous systems [Guadagnini and Neuman, 2001]. This
aspect was addressed by the investigators for considering
the format that a transport equation would take in order to
be later solved consistently with the behavior of the system
within the framework of random porous media.
[3] The solution of the stochastic partial differential

equations (SPDE) governing the heterogeneous systems
are often solved using either analytical methods or numer-
ical methods [de Marsily, 1986]. When analytical methods
[Cushman, 1997] are not suitable because of the compli-
cated initial and boundary conditions, source/sink functions,
nonuniform flow fields, and nonstationary properties,
numerical methods are often used. The popular and simple
Monte Carlo simulation method (MCSM) is based on
generating a large number of equally likely random realiza-
tions for obtaining statistical moments of the dependent
variable while using a solution of the deterministic system
for each realization [Bosma and van der Zee, 1995; Hassan
et al., 1998]. This method is computationally exhaustive
when a few thousands of realizations are required especially
for a higher degree of medium heterogeneities along with a
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higher space-time grid resolution. To avoid this difficulty
associated with simulations involving multiple realizations,
alternate methods such as moment equation method
[Guadagnini and Neuman, 1999; Guadagnini and Neuman,
2001; Wu et al., 2004; Lu and Zhang, 2004] and stochastic
finite element method (SFEM) [Spanos and Ghanem, 1989]
were proposed. These methods combine perturbation theory
with numerical methods (for example, finite element, finite
difference), which have been developed for solving the
deterministic system. Some of these studies were aimed at
comparing solutions obtained through these alternate
approaches with that of the Monte Carlo simulations. The
accuracy of these moment equation methods has been tested
for consistency in the physical solution under transient
cases for higher variances of random parameters. Morales-
Casique et al. [2006] proposed an improved iterative
moment equation method, which was found to provide
good results for the nonreactive solute transport problem. It
was shown that for some cases, the second-order solutions for
the mean and the variance of concentration were inadequate
to describe the physics involved in the transport process.
Further, it was also shown that for higher variances of
log hydraulic conductivity (sfK

2 > 0.3), the comparison
deteriorates. Tartakovsky et al. [2002] showed that in spite
of using a higher order solution, the mean concentration
showed oscillations and its convergence rate diminished
with time even for small variances when analyzing a batch
heterogeneous system in the absence of flow and diffusion
processes.
[4] Stochastic finite element method, which is an alter-

nate perturbation-based approach, was found to be a com-
putationally attractive method for solving SPDEs. Recently,
SFEM was applied in the groundwater literature for study-
ing linear problems involving the flow and transport of
solutes in three-dimensional heterogeneous porous medium
[Osnes and Langtangen, 1998; Ghanem, 1998], and it was
demonstrated that the method was computationally efficient
in comparison with MCSM and was accurate even for a
time-dependent linear transport problem for higher varian-
ces close to sfK

2 = 0.95 [Chaudhuri and Sekhar, 2005b]. The
formulation for applying SFEM to the nonlinear problems is
not similar to that of the linear case as equations for lower
order statistics involve the higher order statistics. The
SFEM formulation for the nonlinear problems involves a
different approach because of the type of the nonlinear
terms in the transport equation. In addition, as the nonlinear
problems would involve use of a suitable iterative scheme
(for example, Newton-Raphson) within the time step of the
numerical approach, it is required to assess the accuracy and
computational efficiency of the SFEM developed for the
nonlinear reactions, with respect to MCSM. Lie and Qui
[2000] applied SFEM for the nonlinear structural engineer-
ing problems while analyzing nonlinear dynamics of a
structure.
[5] Most of the reactive solutes follow a nonlinear

reaction during the mass transfer process between aqueous
and solid phase. Several studies have been made consider-
ing the coupled effects of nonlinear sorption and heteroge-
neity of medium properties. Berglund and Cvetkovic [1996]
developed an analytical solution in Lagrangian framework
for the displacement of purely advective and nonlinear
sorbing solutes in a three-dimensional heterogeneous aqui-

fer. Effect of the choice of isotherm equation representing
nonlinear sorption on the cleanup time was studied. Bosma
et al. [1996] modeled the average plume behavior in terms
of the first two spatial moments using Monte Carlo simu-
lations for physically and chemically heterogeneous porous
media. Using a particle-tracking random walk technique,
Abulaban and Nieber [2000] analyzed the transport of
nonlinear sorbing solutes in two-dimensional steady and
heterogeneous flow fields for various degrees of nonlinear-
ity in the Freundlich isotherm equation, and behavior of the
plume was quantified in terms of longitudinal spatial
moments of various orders. In the above studies, the results
were presented in terms of spatial moments of the plume.
But for reliability analysis of concentration distribution, the
mean and standard deviation of concentration are also quite
important. Xin and Zhang [1998] developed an analytical
solution of the mean and the standard deviation of concen-
tration front for the one-dimensional transport of biodegrad-
ing solutes in a heterogeneous porous media. The problem
setting uses simplified boundary conditions in order to
apply an analytical approach. A spatial variation of the
velocity due to random porosity field alone was considered
in their study, while treating that hydraulic conductivity is
not spatially varying random parameter. In the Lagrangian
framework, Severino et al. [2000] derived the flux-averaged
concentration of a nonlinearly sorbing solute, which was
transported in a heterogeneous aquifer without considering
the effects of pore-scale dispersion (pure advection case).
Comparing the temporal plume moments obtained using
stochastic analysis for a heterogeneous case with that of a
deterministic equation, they presented the equivalent retar-
dation coefficient and equivalent macrodispersivity at var-
ious spatial locations. It was observed that these increased
with the travel distance. They also showed that the nonlin-
earity has a significant influence on the macrodispersivity
and retardation.
[6] The objective of the present study is to develop a

SFEM for the transport of the nonlinear sorbing solutes in a
general three-dimensional heterogeneous porous media and
test its performance. The motivation is that SFEM per-
formed quite well for the linear transport problem, and
relatively few attempts were made in the literature for using
perturbation-based methods for the nonlinear problems
while analyzing solute transport in a porous medium. In
the proposed method, the nonlinear partial differential
equation is transformed to a set of algebraic equations for
each time step using the conventional finite element method
(FEM). Later, a perturbation approximation is applied to the
set of finite element equations. The SFEM formulation here
uses a computationally efficient approach for computing the
derivatives of concentration with respect to the random
parameters [Chaudhuri and Sekhar, 2005a]. The accuracy
and the computational efficiency of this method is com-
pared with the commonly used MCSM by applying it on
both one- and three-dimensional problems wherein the
hydraulic conductivity, dispersivity, molecular diffusion
coefficient, porosity, sorption coefficient, and first-order
decay coefficient are assumed as random fields. Various
cases are analyzed varying the coefficient of variation and
correlation length of the random properties, while testing
the computational efficiency. Results of spatial distribution
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of statistical moments of concentration at large time are
presented for the three-dimensional problem.

2. Problem Definition

[7] The governing equation for the transport of a non-
linearly sorbing and first-order decaying solute in a three-
dimensional heterogeneous porous medium can be given as,

n xð Þ
@c x; tð Þ

@t
þ rb

@s x; tð Þ

@t

þ
@

@xi
n xð Þvi xð Þc x; tð Þ � n xð ÞDij xð Þ

@c x; tð Þ

@xj

� �

þn xð Þgd xð Þc x; tð Þ þ rbgd xð Þs x; tð Þ ¼ 0;

ð1Þ

where c(x, t) and s(x, t) are concentration in the aqueous
phase and sorbed phase, respectively, at location x and
time t. The solute decay process in equation (1) is assumed
that the solute decay occurs both in the aqueous and sorbed
phases with the same rate. Also in equation (1), n(x) and
gd(x) are the spatially varying porosity and decay
coefficient, respectively. A nonlinear sorption isotherm is
assumed to be valid here for describing the sorption process.
In the literature, different isotherm equations are used to
model the nonlinear sorption on the basis of the data
obtained from the laboratory experiments. A general
Langmuir-Freundlich isotherm discussed by Berglund and
Cvetkovic [1996] that is applicable for various solutes is
considered in this study. This nonlinear Langmuir-Freundlich
isotherm is given by,

s x; tð Þ ¼ kd xð Þg c; x; tð Þ; ð2Þ

where rb and kd(x) are bulk density of soil and sorption
coefficient, respectively. Here the nonlinear reaction
function g(c, x, t) is chosen as,

g c; x; tð Þ ¼
Bc x; tð Þð Þm

1þ Bc x; tð Þð Þm
ð3Þ

The parameter B, which is used in the Langmuir-Freundlich
isotherm, is called affinity parameter. In equation (1), v(x) is
the pore water velocity vector, which is defined as v(x) = q(x)
/ n(x). The seepage flux vector q(x) is obtained using the
hydraulic conductivity tensor (K(x)) and the hydraulic head
(H(x)), on the basis of the Darcy equation as given by,

qi xð Þ ¼ �Kij xð Þ
@H xð Þ

@xj
: ð4Þ

Here D(x) is the hydrodynamic dispersion coefficient tensor,
which is represented combining with the effective molecular
diffusion coefficient in porous medium (Dm(x)) and is given
by,

Dij xð Þ ¼ a xð Þ 1� �ð Þ
vi xð Þvj xð Þ

v xð Þ
þ �v xð Þdij

� �
þ Dm xð Þdij: ð5Þ

In equation (5), a(x) is the longitudinal local dispersivity and
� is the ratio of transverse to longitudinal local dispersivity. In
the above expression [equation (5)], dij is Kronecker operator.

Equation (1) is solved for a set of initial and boundary
conditions, which are written as,

c x; 0ð Þ ¼ c0 xð Þ; for x 2 W;

c x; tð Þ ¼ cb x; tð Þ for x 2 G1;

and n xð Þvi xð Þc x; tð Þ�n xð ÞDij xð Þ
@c x; tð Þ

@xj

� �
nxi ¼ fb x; tð Þ for x 2 G2:

ð6Þ

Here c0(x) is initial distribution of concentration while cb(x, t)
and fb(x, t) are the time-dependent specified concentration
and solute flux at the boundaries, respectively. Further, nxi is
the direction cosine of the normal to the boundary surface
along the xi axis.
[8] The equation for the steady state flow in the domain

with spatially varying hydraulic conductivity field is given
by,

@

@xi
Kij xð Þ

@H xð Þ

@xj

� �
¼ 0: ð7Þ

Further, the specified boundary conditions governing the
flow in the domain are given by,

H xð Þ ¼ Hb xð Þ for x 2 G
h
1

and Kij xð Þ
@H xð Þ

@xj
nxi ¼ qb xð Þ for x 2 G

h
2:

ð8Þ

Equation (1) can be solved in the time domain by using the
finite difference method. In the present study, the spatial
part of equation (1) is solved using FEM. The Laplace
domain FEM used in the SFEM [Chaudhuri and Sekhar,
2005a] is not suitable for the solution of the nonlinear
reactive transport problem. The iterative approach involving
the forward and inverse numerical Laplace transform cannot
assure the convergence of the solution. Because of such
difficulty, the SFEM in the time domain has to be derived.
In the present study, the flow and solute transport equations
are not coupled since the reactions do not alter the flow
parameters (for example, hydraulic conductivity), and hence
it is assumed that the flow remains unchanged. However,
the flow and solute transport would be coupled and required
to be solved simultaneously for a case such as hydraulic
conductivity reduction occurring because of clogging or
density-dependent fluid flow. Here, prior to solving
equation (1), the velocity field is obtained by solving the
governing flow equation (7).

3. Time Domain FEM Formulation for
Nonlinearly Sorbing Solutes

[9] The governing nonlinear coupled partial differential
equations (1), (2), and (3) can be solved using finite element
method in a deterministic fashion, if the information per-
taining to the spatially varying properties are available. The
FEM approach for such a deterministic system is described
below. For the sake of convenience in the finite element
formulation, equation (2) is substituted in equation (1). For
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any element (say pth), the finite element equation (FE)
resulting from equation (1) is obtained as,
Z

W
e

npNk xð ÞNl xð Þdx
dCl tð Þ

dt
þ

Z

W
e

rbkdpNk xð ÞNl xð Þdx
dGl tð Þ

dt

þ

Z

W
e

@Nk xð Þ

@xi
np �vipNl xð Þ þ Dijp

@Nl xð Þ

@xj

� ��

þnpgdpNk xð ÞNl xð Þ
�
dxCl tð Þ þ

Z

W
e

rbkdpgdpNk xð ÞNl xð ÞdxGl tð Þ

þ

I

dWe

Nk xð Þ npvipNl xð Þ � npDijp

@Nl xð Þ

@xj

� �
nxidACl tð Þ ¼ 0;

ð9Þ

where Nk(x) is the kth shape function, Ck(t) and Gk(t) are the
concentration in aqueous phase and sorption component,
respectively, at the kth node of any element. Equation (9)
can be written as,

) Rc½ 	p
_C tð Þ

� �
þ Rg

� 	
p

_G tð Þ
� �

þ Dc½ 	p C tð Þf g

þ Dg

� 	
p
G tð Þf g ¼ Cb tð Þf gp:

ð10Þ

Here the subscript ‘p’ corresponds to the property as well as
the local matrix of pth element, and N is the number of
elements used to discretize the domain. Assembling the
local FE equations of each element, the global FE equation
is obtained and expressed as,

Rc½ 	 _C tð Þ
� �

þ Rg

� 	
_G tð Þ

� �
þ Dc½ 	 C tð Þf g þ Dg

� 	
G tð Þf g ¼ Cb tð Þf g:

ð11Þ

Using the Crank-Nicholson formulation for the first-order
time derivative, the global FE equation (11) can be further
simplified as,

D1½ 	 Ctþ1
� �

þ R1½ 	 Gtþ1
� �

¼ D2½ 	 Ctf g þ R2½ 	 Gtf g

þq Ctþ1
b

� �
þ 1� qð Þ Ct

b

� �
;

ð12Þ

where [D1] =
1
Dt
[Rc] + q[Dc], [D2] =

1
Dt
[Rc] � (1 � q)[Dc],

[R1] =
1
Dt
[Rg] + q[Dg], and [R2] =

1
Dt
[Rg]� (1� q) [Dg]. Here

Dt is the time interval. In the present study, q is taken as 0.5
to obtain a second-order accurate solution in time. These
global transport matrices ([D1], [D2], [R1], and [R2]) as well

as the source vectors ({Cb
t }, {Cb

t+1}) are obtained for the
given boundary conditions of the solute concentration in
aqueous phase. Isotherm equation (3) at each node and at
each time step is expressed as,

Gtþ1
i ¼

BCtþ1
i


 �m

1þ BCtþ1
i


 �m : ð13Þ

The solution of the coupled nonlinear algebraic equations (12)
and (13) can be solved by using either the Picard’s iterative
approach or the Newton-Raphson method.

4. SFEM Formulation for Nonlinearly Sorbing
Solutes

[10] To use any numerical method of solution to a
stochastic PDE, the random vectors of the uncertain gov-
erning parameters are formed by discretizing the random
fields. In a perturbation-based SFEM, the random parameter
of each element is decomposed into a mean part and a zero

mean random part. From equations (9), (10), (11), and (12),
it may be noted that the matrices derived in the previous
section ([D1], [D2], [R1], and [R2]) are functions of dis-
cretized random parameters. One can also note that the
product of the two different random parameters is also
appearing in the finite element formulation [equation (9)].
Similar to the discretized governing random parameters,
these matrices are also decomposed into mean ([D1], [D2],
[R1], and [R2]) and zero mean random perturbed matrices
([D1]

0, [D2]
0, [R1]

0, and [R2]
0). The mean of the matrices is

computed by taking the expectation over the expression.
This results in these matrices ([D1], [D2], [R1], and [R2])
being functions of individual random parameters as well as
their product as given in equation (9). Under the approxi-
mation that the difference of the product of any two random
variables and its ensemble average is negligible, the zero
mean random perturbed part of the transport matrices ([D1]

0,
[D2]

0, [R1]
0, and [R2]

0) becomes a linear functions of the
random variables r0p [Chaudhuri and Sekhar, 2005a]. Here
the random components (r0p, p = 1, 2,   , Nr) correspond to
the three components of velocity, local dispersivity, molec-
ular diffusion, porosity, sorption coefficient, and decay
coefficient of each element. Nr is the total number of
random variables (Nr = 8N). The matrices [D1], [D2],
[R1], and [R2] are expanded using the Taylor series about
the mean value of the random parameters (r0p, p = 1, 2,   ,
Nr). Since the second and higher order derivatives of these
matrices drop out being a linear case, the equations for the
matrices can be further simplified and expressed as,

D1½ 	 ¼ D1

� 	
þ D1½ 	0¼ D1

� 	
þ
XNr

p¼1

D1½ 	 Ið Þ
rp
r0p

and D2½ 	 ¼ D2

� 	
þ D2½ 	0¼ D2

� 	
þ
XNr

p¼1

D2½ 	 Ið Þ
rp
r0p;

ð14Þ

R1½ 	 ¼ R1

� 	
þ R1½ 	0¼ R1

� 	
þ
XNr

p¼1

R1½ 	 Ið Þ
rp
r0p

and R2½ 	 ¼ R2

� 	
þ R2½ 	0¼ R2

� 	
þ
XNr

p¼1

R2½ 	 Ið Þ
rp
r0p:

ð15Þ

In the present formulation, Qrp

(I) = @�
@rp

and Qrprq

(II) = @2
Q

@rp@rq
, where

Q may be any scalar, vector, or matrix. The output variables,
i.e., the concentration of the aqueous and the sorbed phases,
are unknown nonlinear functions of the random system
parameters (r0p, p = 1, 2,   , Nr). These output variables are
expanded in the Taylor series as shown below,

Ctþ1
� �

¼ Ctþ1
� � 0ð Þ

þ
XNr

p¼1

Ctþ1
� � Ið Þ

rp
r0p

þ
1

2

XNr

p¼1

XNr

q¼1

Ctþ1
� � IIð Þ

rprq
r0pr

0
q    ; ð16Þ

Gtþ1
� �

¼ Gtþ1
� � 0ð Þ

þ
XNr

p¼1

Gtþ1
� � Ið Þ

rp
r0p

þ
1

2

XNr

p¼1

XNr

q¼1

Gtþ1
� � IIð Þ

rprq
r0pr

0
q    : ð17Þ
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In the present study, derivatives higher than second-order
derivatives in the Taylor series expansion of concentrations
are neglected. By taking the expectation of equation (16), the
mean of the aqueous concentration is obtained and expressed
as,

C
tþ1

n o
¼ Ctþ1
� � 0ð Þ

þ
1

2

XNr

p¼1

XNr

q¼1

C tþ1
� � IIð Þ

rprq
r0pr

0
q: ð18Þ

Since the expression of mean of concentration includes the
second-order derivatives and the covariance of the random
parameters, the present study provides the second-order
accurate mean concentration [Kleiber and Hien, 1992].
The equation for the random perturbed component of
aqueous concentration ({Ct+1}0) is obtained by subtracting
equation (18) from equation (16) and approximating r0pr

0
q �

r0pr
0
q as negligible, resulting in the expression,

Ctþ1
� �0

¼
XNr

p¼1

Ctþ1
� � Ið Þ

rp
r0p: ð19Þ

Since ({Ct+1}0) contains only first-order derivatives, the first-
order accurate covariance matrix of the aqueous concentra-
tion at any two different times instances (t1 and t2) is written
as,

CV½ 	cc¼
XNr

p¼1

XNr

q¼1

Ct1f g
Ið Þ
rp

Ct2f g Ið Þ
rq

T
r0pr

0
q: ð20Þ

In a similar way, the mean and the covariance matrix for the
sorbed phase component ({Gt+1}) can also be expressed.
[11] In the next part of this section, the derivatives of

{Ct+1} and {Gt+1} are derived by substituting equations (14),
(15), (16), and (17) into equations (12) and (13). Putting r0p =
0 for p = 1, 2,   , Nr into equations (12) and (13), the
zeroth-order derivatives ({Ct+1}(0) and {Gt+1}(0)) are
obtained and expressed as,

D1

� 	
Ctþ1
� � 0ð Þ

þ R1

� 	
Gtþ1
� � 0ð Þ

¼ D2

� 	
Ctf g 0ð Þ

þ R2

� 	
Gtf g 0ð Þþq Ctþ1

b

� �
þ 1� qð Þ Ct

b

� � ð21Þ

G
tþ1; 0ð Þ
i ¼

BC
tþ1; 0ð Þ
i

� �m

1þ BC
tþ1; 0ð Þ
i

� �m : ð22Þ

To compute the zeroth-order derivatives, the coupled
nonlinear algebraic equations (21) and (22) have to be
solved. The solution of these nonlinear equations can be
performed by the Picard’s iteration approach. But this
approach may generate a periodic solution in some cases
instead of the fixed-point solution for the nonlinear
dynamical systems [Strogatz, 1994]. Hence, in the present
study, the Newton-Raphson method is adopted. To solve by

the Newton-Raphson method, a new vector ({Et+1}) for
equation (21) is defined as,

Etþ1
� �

¼ D1

� 	
Ctþ1
� � 0ð Þ

þ R1

� 	
Gtþ1
� � 0ð Þ

� D2

� 	
Ctf g 0ð Þ

� R2

� 	
Gtf g 0ð Þ�q Ctþ1

b

� �
� 1� qð Þ Ct

b

� �
:

ð23Þ

In a more explicit way, this equation with ith index can be
rewritten as,

Etþ1
i ¼

XM

j¼1

D1ijC
tþ1; 0ð Þ
j þ R1ijG

tþ1; 0ð Þ
j � D2 ijC

t; 0ð Þ
j

�
�R2 ijG

t; 0ð Þ
j

�

� qCb
tþ1
i � 1� qð ÞCb

t
i; ð24Þ

where M is the number of nodes with unknown concen-
tration. This vector, {Et+1}, converges to zero when solu-
tion converges to the exact solution. The ijth element
of the Jacobian matrix [DEt+1], which is obtained from
equation (24) using the expression in equation (22), is
expressed as,

DEtþ1
ij ¼

@Etþ1
i

@C
tþ1; 0ð Þ
j

¼ D1ij þ R1ij

@G
tþ1; 0ð Þ
j

@C
tþ1; 0ð Þ
j

¼ D1ij þ R1ij

mBm C
tþ1; 0ð Þ
j

� �m�1

1þ BC
tþ1; 0ð Þ
j

� �m� �2 :

ð25Þ

In a more compact form, equation (25) can be rewritten as,

DEtþ1
� 	

¼ D1

� 	
þ R1

� 	
DRtþ1
� 	

; ð26Þ

where [DRt+1] is a diagonal matrix and its jth diagonal is
@G

tþ1; 0ð Þ
j

@C
tþ1; 0ð Þ
j

. The solution at kth iteration is expressed as,

k Ctþ1
� � 0ð Þ

¼k�1 Ctþ1
� � 0ð Þ

� k�1
DEtþ1
� 	� 	�1k�1 Etþ1

� �
: ð27Þ

Here k{Ct+1}(0) indicates the value of {Ct+1}(0) at kth
iteration. In this iterative method, the initial guess of the
solution (concentration at any time step) is taken as the
average value of the concentration obtained in the previous
time step of the nonlinear problem and that of the linear
sorption problem for the current time step. For the first time
step, however, the linear sorption problem is used as the
initial guess concentration. The convergence criteria is used
as,

XN

i¼1

kC
tþ1; 0ð Þ
i �k�1C

tþ1; 0ð Þ
i

k�1C
tþ1; 0ð Þ
i

 !2
0
@

1
A

1
2

� 0:0001: ð28Þ
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The equations for the first-order derivative of concentration
and sorption component with respect to any random
variable rp are obtained by equating the coefficients of
random variable (r0p) in both sides of equations (12) and
(13), respectively. These equations are expressed as,

D1½ 	 Ið Þ
rp

Ctþ1
� � 0ð Þ

þ D1

� 	
Ctþ1
� � Ið Þ

rp
þ R1½ 	 Ið Þ

rp
Gtþ1
� � 0ð Þ

þ R1

� 	
Gtþ1
� � Ið Þ

rp

¼ D2½ 	 Ið Þ
rp

Ctf g
0ð Þ
þ D2

� 	
Ctf g

Ið Þ
rp
þ R2½ 	 Ið Þ

rp
Gtf g

0ð Þ
þ R2

� 	
Gtf g

Ið Þ
rp

� �
;

ð29Þ

G
tþ1; Ið Þ
i;rp

¼
@G

tþ1; 0ð Þ
j

@C
tþ1; 0ð Þ
j

C
tþ1; Ið Þ
i;rp

¼
mBm C

tþ1; 0ð Þ
i

� �m�1

1þ BC
tþ1; 0ð Þ
i

� �m� �2 C
tþ1; Ið Þ
i;rp

:

ð30Þ

It is noted that equations (29) and (30) for the first-order
derivatives of the concentration and sorption component
are a coupled system of linear algebraic equations. Using
equations (26) and (30), the terms in equation (29), [D1]
{C t+1}rp

(I) + [R1]{G
t+1}rp

(I), can be replaced by [DE t+1]{C t+1}rp
(I)

to obtain {C t+1}rp
(I) and is given as,

Ctþ1
� � Ið Þ

rp
¼ DEtþ1
� 	�1

� D1½ 	 Ið Þ
rp

Ctþ1
� � 0ð Þ

� R1½ 	 Ið Þ
rp

Gtþ1
� � 0ð Þ

�

þ D2½ 	 Ið Þ
rp

Ctf g
0ð Þ
þ D2

� 	
Ctf g

Ið Þ
rp

þ R2½ 	 Ið Þ
rp

Gtf g
0ð Þ
þ R2

� 	
Gtf g

Ið Þ
rp

�
: ð31Þ

Using equation (30) along with equation (31), the

expression for the sorption component {Gt+1}rp
(I) can be

obtained. Similar to the first-order derivative, the equations
for the second-order derivative of aqueous concentration
({Ct+1}rprq

(II) ) is also obtained by equating the coefficients of
r0pr

0
q in equation (12) after substituting equations (14), (15),

(16), and (17). In terms of the first-order derivatives of
the current and previous time steps as well as second-
order derivatives at previous time step, the equation for
second-order derivatives of the concentration is written
as,

D1½ 	 Ið Þ
rp

Ctþ1
� � Ið Þ

rq
þ D1½ 	 Ið Þ

rq
Ctþ1
� � Ið Þ

rp
þ D1

� 	
Ctþ1
� � IIð Þ

rprq

þ R1½ 	 Ið Þ
rp

Gtþ1
� � Ið Þ

rq
þ R1½ 	 Ið Þ

rq
Gtþ1
� � Ið Þ

rp
þ R1

� 	
Gtþ1
� � IIð Þ

rprq

¼ D2½ 	 Ið Þ
rp

Ctf g
Ið Þ
rq
þ D2½ 	 Ið Þ

rq
Ctf g

Ið Þ
rp
þ D2

� 	
Ctf g

IIð Þ
rprq

þ R2½ 	 Ið Þ
rp

Gtf g
Ið Þ
rq
þ R2½ 	 Ið Þ

rq
Gtf g

Ið Þ
rp
þ R2

� 	
Gtf g

IIð Þ
rprq

;

ð32Þ

Because of the expansion of the matrices ([D1], [D2],
[R1], and [R2]) up to first-order terms, in equations (14)
and (15), the second-order derivatives of these matrices
are not appearing in equation (32). From equation (17), the

second-order derivative ({Ct+1}rprq
(II) ) can be directly obtained

and given by,

G
tþ1; IIð Þ
i;rprq

¼
mBm C

tþ1; 0ð Þ
i

� �m�1

1þ BC
tþ1; 0ð Þ
i

� �m� �2 C
tþ1; IIð Þ
i;rprq

þ
mBm C

tþ1; 0ð Þ
i

� �m�1

m� 1� mþ 1ð Þ BC
tþ1; 0ð Þ
i

� �m� �

1þ BC
tþ1; 0ð Þ
i

� �m� �3

�C
tþ1; Ið Þ
i;rp

C
tþ1; Ið Þ
i;rq

¼
mBm C

tþ1; 0ð Þ
i

� �m�1

1þ BC
tþ1; 0ð Þ
i

� �m� �2 C
tþ1; IIð Þ
i;rprq

þ G1i:

ð33Þ

Here the term G1i is computed from the known first-order
derivatives. Equations (32) and (33) are a system of coupled
linear equations, and substituting the expression of Gi,rprq

t+1,(II)

[equation (33)] in equation (32), the second-order derivative
of the aqueous concentration with respect to rp and rq are
given as,

Ctþ1
� � IIð Þ

rprq
¼ DEtþ1½ 	

�1
� D1½ 	 Ið Þ

rp
Ctþ1
� � Ið Þ

rq
� D1½ 	 Ið Þ

rq
Ctþ1
� � Ið Þ

rp

�

� R1½ 	 Ið Þ
rp

Gtþ1
� � Ið Þ

rq
� R1½ 	 Ið Þ

rq
Gtþ1
� � Ið Þ

rp
� R1

� 	
G1f g

þ D2½ 	 Ið Þ
rp

Ctf g Ið Þ
rq
þ D2½ 	 Ið Þ

rq
Ctf g Ið Þ

rp
þ D2

� 	
Ctf g IIð Þ

rprq

þ R2½ 	 Ið Þ
rp

Gtf g Ið Þ
rq
þ R2½ 	 Ið Þ

rq
Gtf g

Ið Þ
rp
þ R2

� 	
Gtf g

IIð Þ
rprq

�
:

ð34Þ

When the expectation of the third term in equation (17) is

taken, the second term of equation (33) for Gi,rprq

t+1,(II) results

in an additional term involving the variance of Gi
t+1. Thus

the mean of concentration becomes a function of variance
of concentration for nonlinear sorption problem.
[12] The proposed SFEM does not require the solution of

the linear equation for each second-order derivative of the
concentration ({Ct+1}rprq

(II) ). The double summation (i.e.,
second-order term) in equation (18) is calculated directly.
During computation of the double summation, the terms

like
PNr

q¼1

{Ct+1}rq
(I)r0pr

0
q is calculated by matrix multiplication of

covariance matrix of the parameters and matrix composed of
the first-order derivative of the concentration. Later premul-
tiplication by matrix [D1]rp

(I) with the above expression is
performed by taking advantage of the sparse nature of [D1]rp

(I).
This approach is carried out for all value of the index p and
other terms in equation (34). The efficient algorithm used for
the matrix multiplication was discussed in the work of
Chaudhuri and Sekhar [2005a].
[13] In equations (18) and (20), the mean aqueous con-

centration and covariance of aqueous concentration are
expressed in terms of the covariances of the element random
properties. The covariance matrix of the random properties
(which are piecewise linear inside an element) is derived
from the given variances and spatial correlation functions
for the random fields. In section 5, a brief description of
the random properties and the procedure to obtain the
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covariance matrix are provided. For solving the transport
problem, the mean and the covariance of velocity vectors
and the dispersion coefficient tensors are required to be
derived, which are obtained from the mean and the covari-
ance of the hydraulic conductivity and the local scale
dispersivity. The equations and the procedure for obtaining
these stochastic quantities of velocity and dispersion coef-
ficient are also separately given in Appendix A.

5. Descriptions of the Random Fields

[14] The computational cost of SFEM increases linearly
with the increase in the number of random parameters since
higher number of sensitivity equations have to be solved
with the increase in the random parameters. On the other
hand, the convergence rate of MCSM for a specified
number of realizations does not depend on the number of
random parameters. The modeling of multiple parameters as
a random function can also affect the accuracy of SFEM
when few of the random parameters appear as a product in
the governing equation. In this study, as for example, the
transport equation (1) consists of the product of porosity and
decay coefficient. The effect of perfect correlation among
parameters is inferior to the case with no correlation. In the
present study, in order to test the efficiency and accuracy of
the SFEM, multiple random parameters are considered. The
hydraulic conductivity is commonly assumed to follow a
lognormal distribution [Gelhar, 1993; Cushman, 1997].
Porosity is either modeled as a normal [Xin and Zhang,
1998] or a lognormal [Hassan, 2001] random spatial
function. The correlation between porosity and hydraulic
conductivity depends on the type of the aquifer materials
[Doyen, 1988; Gelhar et al., 1992; Hassan et al., 1998].
Any functional relation between them provides perfect
correlation. In the case of no correlation between hydraulic
conductivity and porosity, the correlation length of the two
need not be same [Hassan, 2001]. Similarly, the sorption
coefficient is also modeled either as a normal or a lognormal
distribution in the literature [Roberts et al., 1986; Hu et al.,
1997; Rajaram, 1997; Wu et al., 2004; Fernandez-Garcia
et al., 2005]. When sorption processes are completely linked
to grain surface areas, Garabedian et al. [1988] showed that
hydraulic conductivity has perfect negative correlation with
the sorption affinity parameter. When the correlation coeffi-
cient is negative, it was observed that the mixing of the
reactive solute transport is enhanced [Valocchi, 1989]. But
Robin et al. [1991] showed that the correlation between log
hydraulic conductivity and sorption coefficient depends on
the scale and direction because of the variation of mineral-
ogical, chemical, and physical characteristics of the aquifer.
For analyzing the solute transport problem in a radial flow
field using Monte Carlo simulation, Castillo-Cerda et al.
[2004] considered an imperfect correlation between the
sorption coefficient and the hydraulic conductivity, which
allowed choosing various variogram models with different
parameters. From the experiments of strontium transport in
the Borden aquifer, it was observed that the correlation length
of the sorption coefficient is smaller than that of the hydraulic
conductivity along horizontal direction but the opposite
along vertical direction. Using facies-based approach,
Allen-King et al. [1998] showed that the correlation between
these two parameters is not the same for different facies. An
empirical relationship between the local dispersivity and the

grain size distribution was given byHarleman [1963], which
suggests a positive correlation between the local dispersivity
and the hydraulic conductivity. On the contrary, Perfect et al.
[2002] showed that the local dispersivity increased sequen-
tially moving from the coarser to finer textural classes. Since
the studies pertaining to this relationship are few, in this
study, a perfect correlation between them is used as a working
assumption. Decay rate can also be modeled as a lognormal
random field [Miralles-Wilhelm and Gelhar, 2000; Metzger
et al., 1999]. In the literature [Bodin et al., 2003;Ohlsson and
Neretnieks, 1995], the effective molecular diffusion coeffi-
cient was shown as a function of molecular diffusion coef-
ficient of the solute in free water and the formation factor. The
formation factor in turn is related to the porosity through a
power law relationship from experimental investigations
[Sato, 1999; Boving and Grathwohl, 2001]. Since porosity
varies spatially, the effective molecular diffusion can also be
considered as a spatially varying random field. Diffusion
coefficient was considered to follow either a uniform or a
lognormal distribution byHaggerty and Gorelick [1995]. On
the basis of these earlier works, in the present study, all the
flow and transport properties, which are considered as
random fields, are assumed to follow a lognormal distribu-
tion. However, this assumption is not a limitation for the
proposed SFEM. The random fields are assumed as statisti-
cally homogeneous and described by a Gaussian (squared
exponential) type correlation function. When the parameters
are perfectly either positively or negatively correlated they
follow the same correlation function and the correlation
length [Hu et al., 1997; Ghanem, 1998; Wu et al., 2004]. In
the literature, it is a common practice to use the same
correlation function and the same correlation length for
various random parameters during the testing of performance
of any numerical method. However, it may be noted that for
specific applications experimentally derived correlations
functions, if available, can also be used in the SFEM. The
correlation coefficient between the values of the parameters
at any two locations is given by, r(x) = exp(-(x1

l1
)2 � (x2

l2
)2 �

(x3
l3
)2). The covariance matrix for the random element prop-

erties is determined from the correlation function and their
variances using the local averaging method [Vanmarcke,
1983]. Using this method, the correlation coefficient of the
logarithm of the parameters ( fp and fq) is expressed as,

rfpfq ¼
1

VpVq

Z

Vp

Z

Vq

r xp � xq

 �

dxpdxq: ð35Þ

Further, the correlation coefficient between any two random
parameters can be determined from the correlation coefficient
between them. For example, between Kp and kdq this can be
given as,

rKpkdq
¼

KGkdG

sKskd

exp
1

2
s2
fK
þ s2

fkd

� �� �
exp rfKp fkd q

sfKsfkd

� �
� 1

� �
;

ð36Þ

where fKp
and fkdq are log of Kp and kdq, respectively. This

expression is derived theoretically without using any
physical basis. If the expressions based on physical
experiments are available, they can be directly incorporated
in the SFEM. In a similar fashion, the correlation coefficient
between any other two random parameters can also be
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obtained. In special cases, when the values of the random
parameters are known at a few locations, the variance
should be zero at those locations. In such circumstances, the
corresponding elements of the derived covariance matrix
conditioned to measurements should vanish. Since the
proposed SFEM uses directly the covariance matrix of the
random parameters, such a conditioned covariance matrix
can be used as an input to the SFEM.

6. Results and Discussion

[15] The SFEM developed in section (4) is applied for
studying the probabilistic analysis of the transport of an
equilibrium nonlinear sorbing solute in a heterogeneous
porous media. Both one- and three-dimensional problems
are analyzed for a set of parameters to study the effect on
the probabilistic behavior of solute concentration. The
accuracy of the SFEM is verified by comparing with the
MCSM for both the one- and three-dimensional problems.
The comparison between the methods is made while con-
sidering a set of coefficient of variation (COV) of the
random parameters.

6.1. One-Dimensional Problem

[16] The transport of equilibrium nonlinear sorbing solute
in a one-dimensional column is analyzed in this subsection.
A uniform specific discharge occurs in the one-dimensional
column even in the presence of spatially varying random
hydraulic conductivity. Theoretically, the velocity of flow
behaves as a random variable and its variance approaches
to zero as the length of the one-dimensional column
approaches infinity. For each realization of hydraulic con-
ductivity in the one-dimensional column, the velocity of
flow is constant and is given by the product of the
piezometric head gradient and conductivity harmonic mean.
In a finite domain, the harmonic mean depends on the
variation of hydraulic conductivity values. The scale of
variation of hydraulic conductivity further depends on the
ratio of length of the column and correlation length. The
harmonic mean of hydraulic conductivity may vary between
any two realizations. However, a finite variance in velocity
is obtained when using MCSM combined with a numerical
method for a column of finite length.
[17] Hence, in order to use a consistent solution of the

stochastic flow problem in the transport problem, the
hydraulic conductivity is assumed as a deterministic vari-
able for cases 1A to 1D (Table 1) while treating porosity,
local scale dispersivity, diffusion coefficient, and sorption
coefficient as spatially varying random functions. Further,
simulations are also made considering hydraulic conducti-
vity as a random parameter as well, which corresponds to
cases 1E and 1F. In all these cases, the random parameters
except the sorption coefficient are considered to be posi-
tively correlated, while the random sorption coefficient is
assumed to have negative correlation with the rest of the
other random parameters. However, there exists experimen-
tal evidences that in the case of solute undergoing linear
reversible instantaneous equilibrium in a saturated medium,
the sorption coefficient can be either positively or negatively
correlated with hydraulic conductivity. Since negative corre-
lation gives a higher uncertainty, this correlation behavior is
used here in all the cases. Further in this study, it is assumed
that all the random variables have the same covariance

function. The spatial correlation function and the correlation
length for each of the random fields are chosen same for
testing the SFEM rather than looking into their field charac-
teristics as discussed in section 5. However, it may be noted
that the SFEM proposed as such can take any specified
correlation function and correlation length for a random field.
For numerical simulation, all variables are made dimension-
less with respect to the height of the column (h) and pore
water velocity (v). The dimensionless concentration of the
pollutant at dimensionless depth (x3 = ~x3 / h) and dimen-
sionless time (t = v~t / h) is defined as c(x3, t) = ~c(~x3, ~t)/c0.
Further, a = ~a / h, Dm(x3) = eD(~x3) / (vh), and gd(x3) =
~gd(~x3)h / v are the dimensionless local scale dispersivity,
diffusion coefficient, and the decay coefficient, respectively.
Here ‘~’ corresponds to the dimensional quantity. The one-
dimensional problem has been analyzed using the following
values of the properties, n = 0.4, gd = 0.005, kdrb = 0.2, a =
0.01, Dm = 0.01, m = 0.8, and B = 67.9. For the one-
dimensional random field, the correlation length l is chosen
as 0.02 (cases 1A–1D). For these cases, the ratio of the
length of the column to the correlation length is 50. The
domain is discretized into 150 elements for a unit dimen-
sionless length. The transport problem is dispersion domi-
nated and the numerical grid Peclet number is close to 0.5.
The accuracy and efficiency of SFEM is compared with the
Monte Carlo simulation method (with 2000 realizations)
using results obtained for various cases, which pertain to
various values of coefficient of variation of random para-
meters as listed in Table 2. The comparison of the mean and
the standard deviation of the concentration obtained by
SFEM and MCSM is shown in Figures 1b, 1c, 2b, 2c,
3b, 3c, 4b, 4c, 5b, 5c, 6b, and 6c for the six cases (cases 1A–
1F). Many experimental investigations, which were reported
in the literature, show that the COV of the pore scale
parameters (such as porosity, sorption coefficient, decay
coefficients, etc.) do not vary much. The maximum value
of the COV of the pore scale parameters, which is consid-
ered in case 1D is 1.0 (which corresponds to a sfn = 0.83).
The plots are presented in terms of the dimensionless
mean and standard deviation of concentration along the
length of the column at various time steps. The mean
concentration breakthrough curves at various time steps
computed using SFEM are found to have sharp fronts, and
their spread does not increase with time as expected for
the case of a nonlinear sorption problem. On the other
hand, in general, the results obtained using MCSM show
that the mean concentration follows a dispersive front
behavior which increases with time. This pattern gets
amplified for a higher coefficient of variation of system
parameters as shown in Figures 1b, 2b, 3b, and 4b. It is

Table 1. Coefficients of Variation of Random Properties for

Various Cases

Case

{n, kd, a, Dm,gd} K

COV l COV l

1A 0.30 0.02 – –
1B 0.50 0.02 – –
1C 0.75 0.02 – –
1D 1.00 0.02 – –
1E 0.50 0.02 0.50 0.02
1F 0.50 0.02 0.50 0.20
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also observed that the deviation between mean concentration
obtained using SFEM and MCSM increases with time near
the end of the front location. However, in the rest of the
locations, the mean concentration is computed accurately
using SFEM. It may be noted here that mean concentration
is computed in SFEM with second-order accuracy. The
standard deviations of concentration in all of the cases are
observed to be the highest at the concentration front
location. Further, the peak of the standard deviation
obtained by MCSM is lower and shows a longer tail in
comparison to that obtained by SFEM. The results of
standard deviation of concentration obtained using SFEM
compares well with that of MCSM much better prior to the
front location, which suggests that SFEM is able to compute
the steady state values of the standard deviation accurately.
[18] The additional effect of uncertainty due to random

variation of hydraulic conductivity can be observed from
Figure 5 for case 1E, which uses the same correlation length
as used for cases 1A–1D. When the hydraulic conductivity

is a random parameter, for the reasons discussed earlier, the
flow problem dimension used is four times higher than the
transport problem in order to have a better representation of
the flow field in the transport problem for various realiza-
tions of MCSM and to be consistent, the same is adopted for
SFEM as well. Hence the ratio of the length of the column to
the correlation length used for case 1E is 200. Figure 5a
shows the spreading of the concentration front for different
realizations increases because of the variation in the flow
velocity influenced mainly by the hydraulic conductivity in
spite of using a larger domain. A comparison of case 1E
with case 1B (equivalent case in all aspects except variance
in hydraulic conductivity) indicates that the mean concen-
tration fronts (Figure 5b) for case 1E have a lesser spread
for SFEM simulations. The prediction uncertainty of the
concentration is relatively higher for case 1E with respect to
case 1B for the SFEM simulations. The MCSM results, on
the other hand, give comparatively similar values between
the two cases. In order to test the effects of hydraulic

Figure 1. Concentration plot for case 1A. (a) Realizations
generated using MCSM for time t = 1.0, (b) comparison of
mean concentration between SFEM and MCSM at different
time, and (c) comparison standard deviation of concentra-
tion between SFEM and MCSM.

Figure 2. Concentration plot for case 1B. (a) Realizations
generated using MCSM for time t = 1.0, (b) comparison of
mean concentration between SFEM and MCSM at different
time, and (c) comparison standard deviation of concentra-
tion between SFEM and MCSM.

W07442 CHAUDHURI AND SEKHAR: STOCHASTIC FINITE ELEMENT METHOD

9 of 20

W07442



conductivity further, simulations are made with case 1F,
which uses the same variances of all parameters as in case
1E while the correlation length of the hydraulic conductivity
being one order higher than case 1E. Here the ratio of the
length of the column to the correlation length reduces to 20.
The comparison with MCSM, shows that the results further
deteriorate for the case 1F (Figure 6), relative to cases 1E
and 1B. In this case, the uncertainty obtained by both SFEM
and MCSM are higher than that of case 1E but SFEM
produces significantly higher values. In the case 1F, the
variation of flow velocity is higher than that of case 1E.
This can be observed by comparing the travel distance of
the solute plume in the Figure 6a. Since the velocity which
is the input for the transport problem has a higher variation,
the prediction uncertainty of concentration is high and the
performance of SFEM is poor. For cases 1E and 1F, the
results indicate that the mean front is moving at a lower
velocity than that of cases 1A–1D. This is due to a lower

effective flow velocity resulting from the randomness in the
hydraulic conductivity field in the one-dimensional prob-
lem. In the present study, the dimensionless arithmetic mean
of hydraulic conductivity is taken as unity. For the deter-
ministic and homogeneous case, the value of hydraulic
conductivity is also taken as unity. For cases 1E and 1F
the effective value hydraulic conductivity become less than
unity. For flow through one-dimensional column with
heterogeneous hydraulic conductivity field, the effective
value of hydraulic conductivity is essentially the harmonic
mean [Gelhar, 1993, p. 110], which is lesser than the
arithmetic mean. It can be shown analytically that the
effective flow velocity and its standard deviation are func-
tions of the mean and variance of the hydraulic conduc-
tivity as well as the ratio of the length of the column to
the correlation length. The uncertainty of flow velocity
increases with the variance of the hydraulic conductivity. It
is higher for smaller ratios of length of the column to the
correlation length. Under these conditions, the uncertainty
of concentration increases if the correlation length of the

Figure 3. Concentration plot for case 1C. (a) Realizations
generated using MCSM for time t = 1.0, (b) comparison of
mean concentration between SFEM and MCSM at different
time, and (c) comparison standard deviation of concentra-
tion between SFEM and MCSM.

Figure 4. Concentration plot for case 1D. (a) Realizations
generated using MCSM for time t = 1.0, (b) comparison of
mean concentration between SFEM and MCSM at different
time, and (c) comparison standard deviation of concentra-
tion between SFEM and MCSM.
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hydraulic conductivity is chosen larger compared with that
of other random parameters as shown for the case 1F. If the
size of column is taken larger for the flow simulation, the
variance of the flow velocity will reduce and the results
obtained by SFEM for higher correlation length cases would
show good matching with MCSM results.
[19] The accuracy in the results obtained from SFEM

are quantified by comparing with MCSM using the
following error norms for mean and standard deviation
in concentration.

Errorc ¼
1

Nc

XNc

i¼1

ciSFEM � ciMCSMj j

ciMCSM

; ð37Þ

Errorsc
¼

1

Nc

XNc

i¼1

sciSFEM � sciMCSM

�� ��
sciMCSM

: ð38Þ

Here Nc is defined as the total number of nodes where c >
0.01. Nodes corresponding to mean concentration (c �
0.01) are neglected in the computations of the above error
norms because the objective is to assess the comparison
between the methods at locations with reasonable mean
concentrations. The plot of errors in mean and standard
deviation of concentrations for cases 1A–1F at various time
steps are shown in Figure 7.
[20] Higher coefficient of variation results in a larger

error both in the mean and the standard deviations as
expected for cases 1A–1D. The errors in the standard
deviation are relatively higher than that of the mean since
the SFEM uses a first-order accurate solution for the
standard deviation while a second-order accurate solution
for the mean. The error in the mean concentration is found
to be approximately constant with time. The error in the
mean concentration for the higher COV case (i.e., sfn = 0.85

Figure 5. Concentration plot for case 1E. (a) Realizations
generated using MCSM for time t = 1.0, (b) comparison of
mean concentration between SFEM and MCSM at different
time, and (c) comparison standard deviation of concentra-
tion between SFEM and MCSM.

Figure 6. Concentration plot for case 1F. (a) Realizations
generated using MCSM for time t = 1.0, (b) comparison of
mean concentration between SFEM and MCSM at different
time, and (c) comparison standard deviation of concentra-
tion between SFEM and MCSM.
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corresponding to case 1D) is found to be less than 5%. The
error in the standard deviation of concentration (Figure 7b)
increases with time (size of the plume) and is found to reach
a steady state. For the higher COV case (case 1D) the error
is found to be approximately 55%. It is observed that at
upstream locations of the concentration front, the steady
state mean and standard deviation of concentration by
SFEM match better with MCSM. The error of both the
mean and variance is found to be higher when the hydraulic
conductivity is also considered as a random field (cases 1E
and 1F) even though the COV used is 0.5 (sfK = 0.48). The
computational time required for SFEM is approximately
equal to the time required to perform 10 realizations in the
MCSM for the one-dimensional problem.

6.2. Three Dimensional Problem

[21] The SFEM developed in section 4 is applied for
studying the probabilistic behavior of concentration distri-
bution in a three-dimensional problem setting as shown in
Figure 8. In this problem, the hydraulic conductivity,
porosity, decay coefficient, dispersivity, and molecular dif-
fusion are considered as spatially varying random fields and
are positively correlated. The random sorption coefficient is
assumed to have negative correlation with the rest of the
other random parameters. Further, the correlation length
along the horizontal plane are assumed to be same (i.e., l1 =
l2 = lh), while the horizontal correlation length (lh) is
considered larger in comparison to that of the vertical
direction (l3). The flow field in this problem becomes
nonuniform because of the constant continuous recharge
from the pollutant source combined with the lateral ground-
water flow in the underlying permeable layer.
[22] The mean and covariance of the random flow field is

derived from the random hydraulic conductivity field.
Along with covariance matrices of the other random fields,
the covariance of velocity is also used for the probabilistic

Figure 7. Temporal plot of error in (a) mean and
(b) standard deviation of concentration obtained by SFEM
for different cases A–E in the one-dimensional problem.

Figure 8. A schematic diagram of three-dimensional problem with continuous source at the top.
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analysis of contaminant transport. A square contaminant
source of dimension lx1 = lx2 = l is assumed to be located
above the permeable layer. The governing equation (1),
the boundary conditions in section (2), and the properties
are made dimensionless with respect to the depth of the
permeable layer (h) and the horizontal pore water velocity
for a deterministic case without any recharge (vd). Here
c(x, t) = ~c(~x, ~t) / c0 is the dimensionless concentration of
the pollutant at a dimensionless distance x = ~x / h at the
dimensionless time (t = vd~t / h). Here c0 is the concentra-
tion at the top of the soil. Further, v(x) = ~v(~x) / vd, a(x) =
~a(~x) / h, Dm(x) = eDm(~x) / (vdh), gd(x) = ~gd(~x)h / vd,
and q = ~q / vd are the dimensionless velocity of flow,
dispersivity, molecular diffusion, decay coefficient, and
recharge at the top, respectively. The following numerical
values of properties are used for solving the three-dimen-
sional problem: l = 0.5, n = 0.4, kd = 0.2, gd = 0.2, a =
0.2, Dm = 0.5, and q = 0.5. For the three-dimensional
simulation, the coefficient of variation of the random prop-
erties are taken as, COVK = 1.0 (sfK =0.803), COVn = 0.4 (sfn
=0.309), COVkd

= 0.4, COVgd
= 0.4, COVa = 0.4, COVDm

= 0.4. The standard deviation of log hydraulic conductivity
used in this study corresponds to mild heterogeneity of the
porous medium based on the values reported for various
field investigations [Gelhar, 1993, pp. 291–292]. Further,
the sfK = 0.803 used is in the range of various investigations
made using numerical methods. The dimensionless domain
size for the three-dimensional problem is 5 � 4 � 1. For
this three-dimensional transport problem, the numerical grid
Peclet number is kept close to 0.5.
[23] To check the accuracy of results and computational

efficiency of the SFEM, the probabilistic analysis has been
carried out by commonly used MCSM (1000 realizations)
for B = 67.9 and l = 0.5. Figure 9 demonstrates the
comparison of temporal behavior of mean and standard
deviation of concentration at location P (shown in Figure
8). In Figure 9a, the mean break through curve obtained by
SFEM shows sharpness than that of the MCSM. Similar
pattern is also observed for the mean concentration in the
one-dimensional problem as well. Figure 9b shows peaks
in the temporal plot of the standard deviation concentra-
tion obtained by both SFEM and MCSM. However,
MCSM produces a lower peak and higher spread in
comparison to the SFEM. Since the arrival time of the
concentration front varies from one realization to another
realization in the MCSM, this might result in a higher
spread or dispersion and accordingly produces a lower
peak for the ensemble averages of the concentration at
any location. The proposed SFEM exhibits oscillations in
the simulations of the statistical moments of the concen-
tration. This is due to the second-order term in the mean
concentration. This behavior is observed mainly at the tail
end regions of the concentration fronts where concentra-

tions being very small (close to zero), the combination of
the zeroth-order and second-order terms results in negative
values. Further, the oscillation and the negative values are
noted during the early stages of concentration break through
curve at any location. Similar behavior was also reported by
Morales-Casique et al. [2006]. The effect of the oscillation of
the second-order is more pronounced for a stronger hetero-
geneous and nonlinear case. The inclusion of higher-order
terms may improve the results.
[24] The contour plot of mean and coefficient of variation

of concentration at dimensionless time (t = 16) along the
planes x2 = 0 and x1 = 0 which are obtained by SFEM are
compared with MCSM in Figure 10. The contours of the
mean concentration as shown in Figures 10a and 10b are
matching quite well overall for the two methods. A marginal
variation between them is observed for the results along
downstream flow direction. The contours COV of concen-
tration (Figures 10c and 10d) obtained by SFEM are found
to be marginally shifted along the upstream direction and
spread higher compared to MCSM. The convergence of the
solution error with size of the sample for MCSM is
demonstrated in Figure 11. It is observed that for this
problem, the solutions with MCSM are stable for 1000
realizations, and the maximum error for this case between
MCSM and SFEM is less than 10%. The relatively lower
error for the three-dimensional problem in comparison to
the one-dimensional problem discussed earlier could be
attributed because of several reasons. Some of these could
be (1) the choice of higher decay coefficient used in this
problem, which limits the spread of the plume thereby the
resulting lesser effect of spatial variability of parameters and
(2) the dispersion process in three-dimensional problem
plays an important role in reducing the uncertainty in the
concentration and hence correspondingly the error. Further,
the relative effects of boundary and plume size on the
uncertainty and corresponding error are discussed at the
end of this section.
[25] The computational time required for the solution

of the three-dimensional problem by SFEM, which uses
910 grids, is 3050 s while for MCSM (with 1000 realiza-
tions) is 65,800 s on COMPAQ Alpha Server ES40 (a
cluster of four CPUs with 667 MHz). This indicates that the
time required for one simulation run by SFEM for the three-
dimensional problem is approximately equal to the time
required for five realizations with MCSM. This higher
computational efficiency with SFEM is very useful when
performing simulations for problems involving larger
domain sizes and finer grids.
[26] The behavior of mean and standard deviation of

concentration for variation in the affinity parameters (B)
and different correlation cases of the random parameters are
studied by SFEM using finer grid in the three-dimensional
problem. The correlation cases are presented in Table 2. In
case 3A, the parameters are perfectly correlated and have
same correlation lengths. In case 3B, the correlation lengths
of porosity field are taken twice of that of conductivity since
its variability in geologic media may show long range
correlation [Hewett, 1986]. In case 3B, sorption coefficient
is also considered to be uncorrelated with the rest of all
other random parameters. The correlation lengths of sorp-
tion coefficient field are taken as half of that of hydraulic
conductivity field.

Table 2. Coefficients of Variation of Random Properties for

Various Cases

Case r{K,gd,a,Dm} lh
K lv

K r{K,n} lh
n lv

n r{K,kd} lh
kd lv

kd

3A 1 1.00 0.50 1 1.00 0.50 �1 1.00 0.50
3B 1 1.00 0.50 0 2.00 1.00 0 0.50 0.25
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[27] The mean concentration increases monotonically
with time and reaches a steady state value for different
cases as shown in Figure 12a. The standard deviation of
concentration also increases monotonically with time and
reaches a steady state. For a higher value of B and perfectly
correlated case (case 3A), it shows a peak before reaching a
lower steady state as shown in Figure 12b. The mean
concentrations are found to be higher for lower values of
B, while the standard deviation of concentrations are found
to be vice-a-versa. Comparison of results for two different
correlation cases (cases 3A and 3B) show that the mean
concentration is not affected much, but standard deviation
of concentration is lower for uncorrelated case with differ-
ent correlation lengths (case 3B). At large dimensionless
time (t = 16), when the concentration in most part of the
domain reaches a steady state because of first-order decay,
the mean concentration decreases with distance from the
source as shown in the contour plots in the Figures 13a,
13b, 14a, and 14b. But the prediction uncertainty in terms of
coefficient of variation of concentration is found to increase
with distance from the source as shown in Figures 13c, 13d,
14c, and 14d. This result is expected, as the uncertainty is
lower close to the deterministic source. The coefficient of
variation is found to be higher for fully correlated case

(case 3A). The COV of concentration is found to be higher
for a larger B. The results indicate that when the nonlin-
earity in the sorption isotherm is higher, at the steady state,
the spreading of the concentration plume of the decaying
solute is smaller but the prediction uncertainty increases
with the increase in the sorption nonlinearity. The computa-
tional time required for the solution for each case of the three-
dimensional problem, which uses 1728 grids, is 87,200 s
(approximately 1 day) on COMPAQ Alpha Server ES40 (a
cluster of four CPUs with 667 MHz).
[28] The deterministic boundary condition and size of the

domain with respect to the correlation length affect the
spatial distribution of (ensemble) moments of flow (i.e.,
mean and covariances of flow velocity). Because of hetero-
geneity, the effective mean velocity vector alters, which
depends on the ratio of size of the domain to the correlation
length. Similar to one-dimensional problem, it is known that
for three-dimensional problem also the standard deviation of
the longitudinal component of flow velocity decreases with
the increase in the ratio. This implies that if the size of
domain used is larger for the simulation of steady state flow,
the uncertainty of the velocity may reduce. Because of the
coupling of flow and transport equations, both mean and
covariances of concentration are affected by the physical
setting of the flow problem. The accuracy of results by SFEM
also depends on the physical setting of the flow problem. This
aspect has been mentioned in one-dimensional problem (for
cases 1E and 1F) wherein the effects of length of column
and correlation length have been discussed. Hence the
larger domain size for flow simulation results in a lower
standard deviation of velocity and thus a lower uncertainty
in the concentration prediction. In such circumstances,
SFEM may perform better since the variance of velocity,
which is the key input parameter, is small. But the boundary
conditions for the transport problem directly affect the
spatial and temporal variation of the mean concentration.
This effect is very similar to the deterministic case. For the
stochastic case the standard deviation increases with the
ratio of the size of the plume as shown for the one-
dimensional problem. It is observed that for both the one-
and three-dimensional problems, the standard deviation is
very high at the tail end of the plume (where the concen-
trations are very low), correspondingly, the error with
SFEM is also high at these locations.

7. Conclusions

[29] In the present study, a computationally efficient
SFEM has been developed for solving the nonlinear
problems pertaining to the transport of solutes in three-
dimensional heterogeneous porous media. The method is
based on the classical perturbation-based approach and is
second-order accurate in mean and first-order accurate in the
standard deviation. Because of the nonlinear governing
equations, the method has to be combined with an iterative
approach to solve the nonlinear algebraic equations discre-
tized using finite element method.
[30] The method is applied for the probabilistic analysis

of a nonlinearly sorbing solute while undergoing transport
in porous media and tested for its accuracy while comparing
with the MCSM. As the computational cost of SFEM
increases with the increase in the number of random
parameters and in addition it may have lesser accuracy with

Figure 9. Comparison of mean and standard deviation of
concentration obtained by SFEM (straight line) and MCSM
(broken line) at location P below the source for the three-
dimensional problem.
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multiple random parameters, in this study, performance of
SFEM is investigated with multiple random parameters. The
analyses are carried out for both one- and three-dimensional
problems considering hydraulic conductivity, porosity, dis-
persivity, diffusion coefficient, sorption coefficient, and
decay coefficient as random fields. In the one-dimensional
transport problem with continuous source, the mean con-
centration breakthrough curves at various time steps as
obtained by SFEM are found to have sharp fronts, and their
spread does not increase with time as expected for the case
of a nonlinear sorption problem. On the other hand, MCSM
results show that the mean concentration has a dispersive
front behavior, which increases with time. The standard
deviation is found to be the highest at the concentration
front location. At the front location, the mean and standard
deviation of concentration by SFEM when compared with
MCSM are found to have higher deviations. A comparison
of the results between SFEM and MCSM for the three-
dimensional problem (break through curve and contour
plots) indicates that results of SFEM match quite well for
mild heterogeneity cases with 0.85 as the upper limit of
standard deviation of log hydraulic conductivity (coefficient

of variation of hydraulic conductivity being 1.0). The error
with SFEM for the mean and standard deviation of concen-
tration is found to be less than 10% for the three-dimensional
problem setting. The prediction uncertainty and, corre-
spondingly, the error with SFEM may depend on the
boundary conditions, the size of the domain, and the plume
size. The variation of the flow decreases with increase in the
size of the domain. In such circumstances, the prediction
uncertainty of the concentrations is lower, and the SFEM
would result in lesser error. But as the mean and the
standard deviation of concentration obtained by SFEM at
the tail end of the plume have higher deviations when
compared with MCSM, the overall error increases slowly
with the size of the plume.
[31] The larger value of sorption affinity parameter results

in a higher nonlinearity in the sorption isotherm and causes
more retardation to the solute transport. At the steady state,
the size of the plume of the decaying solute is smaller for a
larger value of the sorption affinity parameter. But the
coefficient of variation of the concentration is more for a
higher nonlinear case. The results for both perfectly corre-
lated case (case 3A) and uncorrelated case with different

Figure 10. Comparison of mean and coefficient of variation of concentration at t = 16 for B = 67.9 and
lh = 0.5 in the three-dimensional problem obtained by SEFM (straight line) and MCSM (broken line).
Mean concentration (a) along the (x2 = 0) plane and (b) along the (x1 = 0) plane, coefficient of variation
(c) along the (x2 = 0) plane and (d) along the (x1 = 0) plane.
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correlation length (case 3B) are qualitatively similar. Sen-
sitivity studies with varying correlation length among the
random parameters indicate that the patterns of the mean
and the standard deviation of concentration are quite similar.
A perfectly correlated case produces a higher prediction
uncertainty than the uncorrelated case. The comparison
between the computational time required for SFEM and
MCSM based on the one- and three-dimensional problems
suggests that the SFEM is very efficient. The proposed
SFEM holds good for low-variance cases corresponding to
mild heterogeneity of governing parameters as it uses only
up to second-order terms in the Taylor series approximation.
The SFEM in the present study is tested with simpler
numerical test cases for the nonlinear solute transport
problem. The results are encouraging to use this method
for complicated test problems, which may require following
adaptations with this method.
[32] For the transport of solutes in field applications, the

Peclet number varies in a wide range from 10�1 to 104. As it
is based on a standard Galerkin finite element method, it is
applicable for only dispersion-dominated problems (i.e., not
applicable for higher Peclet numbers). By using finite
element formulations developed and available for advection
dominated problems, one can develop a SFEM for both
advection and dispersion dominated cases.

[33] The proposed SFEM method can be easily used for
conditional stochastic simulation of flow and solute trans-
port in heterogeneous porous medium. In general, the
conditioning is done to the measurement of the governing
parameters as well as the state variables (or the dependent
variables). For the first case, the conditional mean of the
random vector (discretized random field of the governing
parameters) and conditional covariance matrix can be
derived using various methods such as Kriging, triangular
decomposition method, or eigen value decomposition. The
conditional mean and variance of the random space function
are not constant even though the random parameter is
initially assumed to be statistically homogeneous since at
the locations where the values are known, the parameter is
considered to be deterministic and the variance is set to be
zero. Being a numerical method, SFEM can directly use the
conditional mean and the covariance for conditional sto-
chastic simulation. For the second case, the conditional
stochastic analysis based on the measurements of state
variable can be performed by coupling the SFEM with a
suitable optimization technique [Hernandez et al., 2003,
2006]. The sensitivity analysis, which is inherent in the
SFEM approach, can be used for the optimization also.
In an alternative way, the conditioning to the temporal

Figure 11. Convergence of error with sample size in the
MCSM for the three-dimensional problem.

Figure 12. The effect of affinity parameter (B) and
correlation length (lh) on the mean and standard deviation
of concentration at location P below the source for the three-
dimensional problem.
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measurements of the state variable at few locations can
be performed by treating the measurements as constraints
to the finite element formulation. These constraints can
be incorporated into the global matrix and the right hand
side vector in a similar way as is done for the boundary
conditions.
[34] Several field experimental results show that the

statistical parameters (for example, mean, variance, corre-
lation lengths, etc.) vary within a range. This implies that
the random function representing the parametric spatial
variation is not stationary. In such circumstances, the SFEM
can be a very good alternative tool for the probabilistic
analysis of solute transport problem in such complicated
heterogeneous media, if suitably combined with a proper
method of constructing the covariance matrix.

Appendix A: Mean and Covariance of Velocity
and Dispersion Coefficient

[35] Similar to the transport, the global equation for flow
for a given head and flux boundary conditions is expressed
as,

K½ 	 Hf g ¼ H0f g: ðA1Þ

Here [K] is the global hydraulic conductivity matrix in the
flow equation. The ith component of seepage flux of pth
element is obtained by taking average of that at all the
Gauss points (xk, for k = 1,    , NG, where NG is the number
of Gauss points) and is given as,

qip ¼ �
1

NG

K ijp

XNG

k¼1

@Nl xð Þ

@xj
xkHlj ¼ �

1

NG

Kp

XNG

k¼1

@Nl xð Þ

@xi
xkHlj :

ðA2Þ

For isotropic cases, the hydraulic conductivity tensor
becomes a scalar quantity (Kp).
[36] Using the similar methodology presented for the

transport problem (section 4), the perturbation approach
can also be applied on the flow equation (A1), to obtain
the mean and random perturbed components of the hydrau-
lic head. In the case of the flow problem, the random
properties are only the hydraulic conductivities of the
elements Kp, (p = 1, 2.   , N), and hence the mean and
the random component of the hydraulic head are expressed
as,

H
� �

¼ I½ 	 þ
XNk

p¼1

XNk

q¼1

K
� 	�1

K½ 	
Ið Þ
Kp

K
� 	�1

 

 K½ 	
Ið Þ
Kq
K 0
pK

0
q

!
K
� 	�1

H0f g;

ðA3Þ

Figure 13. Contour plots of distribution of mean concentration and coefficient of variation at t = 16 for
B = 67.9 in the three-dimensional problem. Mean concentration (a) along the (x2 = 0) plane and (b) along
the (x1 = 0) plane, coefficient of variation (c) along the (x2 = 0) plane and (d) along the (x1 = 0) plane.
Straight line represents case 3A, and broken line represents case 3B.
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Hf g0¼
XNk

p¼1

Hf g
Ið Þ
Kp
K 0
p

where Hf g
Ið Þ
Kp
¼ � K

� 	�1
K½ 	

Ið Þ
Kp

K
� 	�1

H0f g:

ðA4Þ

Using equations (A3) and (A4), the mean and random
component of seepage flux (qip) are written as,

qip ¼ �
1

NG

XNG

k¼1

@Nl xð Þ

@xi

����
xk

KpH l þ
XNk

q¼1

H
Ið Þ

l;Kq
K 0
pK

0
q

 !
; ðA5Þ

q0ip ¼ �
XNk

q¼1

1

NG

XNG

k¼1

@Nl xð Þ

@xi

����
xk

H ldpq þ KpH
Ið Þ

l;Kq

� �
K 0
q

¼
XNk

q¼1

qi
Ið Þ
p;Kq

K 0
q:

ðA6Þ

From the above expression, one can obtain the auto
covariance of seepage flux and cross covariance with any
other random properties (r0j ) using the auto covariance of

hydraulic conductivity and cross covariance of hydraulic
conductivity with r0j, which may be given as,

q0ip1q
0
jp2

¼
XNk

q1¼1

XNk

q2¼1

qi
Ið Þ
p1 ;Kq1

qj
Ið Þ
p2;Kq2

K 0
q1
K 0
q2

and

q0ipr
0
j ¼

XNk

q¼1

qi
Ið Þ
p;Kq

:K 0
qr

0
j ðA7Þ

qip and q0ip are the mean and the random component,
respectively, of the product npvip in equation (9). The
product npDijp

can be written in terms of water flux and is
expressed as,

npDijp
¼ ap 1� �ð Þ

qipqjp

qp
þ �qpdij

� �
þ npDmpdij ðA8Þ

The mean of the resultant seepage flux (qp = (
P3

i¼1

qip
2)1/2),

and its random component are expressed as,

qp ¼ qp þ
1

qp

X3

i¼1

Cqipqip
�

1

q3p

X3

i¼1

X3

j¼1

qipqjpCqipqjp
and

q0p ¼
1

qp

X3

i¼1

qipq
0
ip: ðA9Þ

Figure 14. Contour plots of distribution of mean concentration and coefficient of variation at t = 16 for
B = 10.0 in the three-dimensional problem. Mean concentration (a) along the (x2 = 0) plane and (b) along
the (x1 = 0) plane, coefficient of variation (c) along the (x2 = 0) plane and (d) along the (x1 = 0) plane.
Straight line represents case 3A, and broken line represents case 3B.
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The effective mean dispersion coefficient and its random
component are obtained by using equation (5), along with
the expression (A9), which may be expressed as,

npDijp
¼ ap

qipqjp þ Cqi pqj p

qp
�
qipCqjpqp

þ qjpCqi pqp

q2p
þ
qipqjpCqpqp

q3p

 ! 

þ
qipCqj pap

þ qjpCqipap

qp
�
qipqjpCqpap

q2p

!
1� �ð Þ

þ � apqp þ Cqpap

� �
dij þ npDmp þ CnpDmp

� �
dij and

npDijp

� �0
¼ ap

qipq
0
jp
þ qjpq

0
ip

qp
�
qipqjpq

0
p

q2p

 !
þ a0

p

qipqjp

vp

 !

 1� �ð Þ þ � apq
0
p þ a0

pqp

� �
dij þ npD

0
mp

þ n0pDmp

� �
dij:

Notation

c(x, t) Concentration in aqueous phase
s(x, t) Concentration in sorbed phase
g(x, t) Nonlinear reaction function
x and t Position vector and time, respectively

n(x) Porosity
v(x) Velocity vector of flow
D(x) Hydrodynamic dispersion coefficient

tensor
kd(x) Sorption coefficient

rb Bulk density of soil
gd(x) Decay coefficient
a(x) Local dispersivity

� Ratio of transverse to longitudinal
dispersivity

Dm(x) Effectivemolecular diffusion coefficient
c0(x) Initial concentration in the domain W

cb(x, t) and fb(x, t) Specified concentration at boundary
G1 and solute flux at boundary G2

nxi Direction cosine of the normal with xi
axis

q(x) Water flux vector
h(x) Hydraulic head
K(x) Hydraulic conductivity

hb(x, t) and qb(x, t) Specified hydraulic head at boundary
G
h
1 and water flux at boundary G2

h

_ Time derivative
B Sorption affinity parameter
m Anexponential parameter in Langmuir-

Freundlich isotherm equation
[Rc] and [Rg] Coefficient matrix for time derivative

of aqueous and sorbed concentration
[Dc] and [Dg] Coefficient matrix for aqueous and

sorbed concentration
Dt Time interval
q Fractional parameters for implicit

time difference
{Ct} Nodal aqueous concentration vector

at time step t
{Gt} Nodal sorbed concentration vector at

time step t

[D1] and [D2] Coefficient matrix for aqueous con-
centration at present and previous
time step

[R1] and [R2] Coefficient matrix for sorbed concen-
tration at present and previous time
step

{Cb
t} Nodal source vector at time step t

{r} Random vector due to random gover-
ning parameters

� Mean
0 Random component

[CV]cc Covariance matrix of aqueous
concentration

sc Standard deviation of aqueous
concentration

{Et} A vector for the solution by Newton-
Raphson method

[DEt] Derivative matrix
{H} Nodal hydraulic head vector
[K] Coefficient matrix due to hydraulic

head vector
l1, l2, and l3 Correlation lengths

sfK, sfkd, and sfn Standard deviation of log hydraulic
conductivity, sorption coefficient, and
porosity

~ Dimensional quantity
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