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Abstract: We demonstrate the mitigation of stimulated Brillouin scattering (SBS) in a double-

clad single mode Yb-doped optical Ąber ampliĄer through external phase modulation of narrow

linewidth laser radiation using optimized periodic waveforms from an arbitrary waveform

generator. Such optimized phase modulation waveforms are obtained through a multi-objective

Pareto optimization based on a comprehensive model for SBS in high power narrow linewidth

Ąber ampliĄers using Brillouin parameters determined from controlled measurements. The

ability of our approach to mitigate SBS is tested experimentally as a function of RMS linewidth

of the modulated optical radiation, and we measure an enhancement in SBS threshold with

respect to optical linewidth of ∼ 10 GHz−1. Furthermore, we discuss the dependence of the SBS

threshold enhancement on key parameters such as the ampliĄer length and the period of the

optimized waveforms. Through simulations we Ąnd that waveforms of sufficiently long periods

and optimized for a relatively long Ąber (10 m) are effective for SBS suppression for shorter

Ąbers as well. We also investigate the effect of increase in the bandwidth and amplitude of the

modulation waveform on the SBS threshold enhancement observed at higher optical linewidth.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Stimulated Brillouin scattering (SBS) has the lowest threshold among all the nonlinearities that

inhibit power scaling of optical Ąber ampliĄers for narrow-linewidth, single-transverse-mode

laser radiation [1]. Among the various SBS mitigation measures such as, using a short length of

large-core Ąbers [2], applying distributed strain [3] and/or temperature [4] variation along the

Ąber length, linewidth broadening of a single-frequency laser radiation through phase modulation

has been demonstrated to be one of the most effective approaches. Phase modulation with white

noise and pseudo random binary sequence (PRBS), normally in the form of a maximum length

sequence (MLS), have been studied experimentally and through modeling and simulations in

passive as well as active Ąbers [5Ű7]. The details of the phase modulation waveforms become

quite important to achieve good SBS mitigation. Unfortunately, though the linewidth broadening

suppresses SBS, it often degrades the system in other regards (e.g., the combination efficiency of

coherently combined systems [8]) and should therefore not be larger than necessary.

For sufficiently long optical Ąbers (∼ 100 m), noise modulation is reported to provide SBS

threshold enhancement close to the theoretical limit for appropriate choices of modulation

parameters [5,6]. Here, the enhancement is evaluated from the optical power spectrum, whereas

the spectral phase is not important. As such, we refer to this theoretical limit as the Şincoherent

limitŤ. For shorter Ąbers, as in the case of an optical ampliĄer where the length is typically
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in the range of 5 to 10 m, the enhancement in SBS threshold is reported to drop signiĄcantly

from the incoherent limit [5Ű7]. We note that these lengths are comparable with the spatial beat

period (LB) for light within the Brillouin linewidth (∆νB = ΓB/2π) [6]. For example, a Brillouin

linewidth of 45 MHz would correspond to spatial beat period of LB = c/(neff × ∆νB) = 4.6 m.

This drop is especially awkward when a short Ąber is used to mitigate SBS. A similar drop in the

enhancement efficiency has been reported for other formats such as PRBS, which is found to

achieve slightly better results than noise modulation [5,9].

Although noise and PRBS modulation are straightforward to implement with off-the-shelf

components, other waveforms may well allow for better SBS suppression. This has motivated

further work on numerical optimization or guided by intuition and understanding of SBS. One

approach is to target modulation waveforms that result in a nearly rectangular optical spectrum,

whether discrete or continuous. This can be achieved through phase modulation with a sum

of sines [10], a numerically optimized waveform realized by an arbitrary waveform generator

(AWG) [11], or a parabolic function (corresponding to a linear chirp) [12]. In simulations of 9 m

of passive Ąber, phase modulation with a parabola was found to be better than noise and PRBS

modulation, although the required large phase modulation amplitude may be difficult to realize in

practice [12]. In experiments, waveforms numerically optimized to achieve rectangular spectra

showed some advantage over MLS waveforms for spectral line spacing larger than the Brillouin

linewidth [13]. However, their performance became comparable to MLS for smaller spectral

line spacings, which are comparable to or smaller than the Brillouin linewidth (e.g., ∼ 45 MHz).

Such line spacings are small enough for SBS cross-interactions and thus the spectral phase to be

signiĄcant. Then, it becomes less clear if a rectangular optical spectrum should be preferred.

Another important aspect is that the scope for waveform optimization and the corresponding

spectra that can be achieved for PRBS as well as noise modulation are heavily restricted by the

small number of optimization variables. This has motivated work on numerical optimization with

a much larger number of optimization variables. Such numerical optimization was previously

carried out for passive Ąbers, wherein the Brillouin Stokes power vs. RMS linewidth tradeoff was

optimized in the Pareto sense [14]. This means that no other waveforms were found for which the

Pareto-objectives (e.g., the Stokes power and linewidth in this case) were simultaneously better.

The optimization used a large number of variables (e.g., 40), corresponding to the equidistant

sample points on a modulation waveform, which is strictly bandwidth-limited according to the

Nyquist-Shannon sampling theorem. In simulations, such sample-optimized waveforms, where

the amplitude of the sample points are optimized, produced signiĄcantly better results than that

obtained using white-noise modulation. Another notable result in this study was that despite

cross-interactions, the SBS suppression improved for smaller line-spacings down to 12.5 MHz,

which was the smallest considered. The improvement at such narrow line-spacings seems to

depend on the spectral phase, although this was not investigated. However, compared to long

Ąbers and the incoherent limit, the enhancement for the shorter Ąber lengths of primary interest

for ampliĄers remained worse than for longer Ąbers. Furthermore, except for our brief conference

report [15], numerical optimization with a large number of variables has not been investigated in

ampliĄers. For such optimization, the ampliĄer gain must also be modeled accurately since it

contributes to the Brillouin Stokes power and leads to an effective length that is even shorter than

the physical Ąber length.

In this paper, we demonstrate the generation of sample-optimized periodic waveforms and

their utility in mitigating SBS in high power narrow linewidth Yb-doped Ąber ampliĄers. To

achieve this, we extend the model used in [5] to include the gain induced by the Yb-ions and use

Pareto-optimization to Ąnd the maximum signal output power for different optical linewidths

and relative Stokes powers through simulations. The simulations use Brillouin parameters that

we determine experimentally. We demonstrate SBS mitigation with optimized waveforms and

compare the performance with that predicted by our simulations as well as with similar mitigation
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using noise modulation. Experimentally, the optimized waveforms lead to better SBS threshold

than with noise modulation. However, it is worse than in simulations, which we attribute in

part to imperfect reproduction of the phase modulation waveform. We further investigate the

robustness of optimized waveforms to perturbations or phase errors in the modulated waveform.

In addition, through simulations, we investigate the dependence on Ąber length, and Ąnd that even

with optimized phase modulation in ampliĄers, the enhancement factor degrades signiĄcantly

for short Ąbers. On the other hand, waveforms of sufficiently long periods and optimized for

long Ąber are found to be as effective as those optimized for short Ąbers. Finally, we investigate

the effect of a restricted modulation bandwidth (determined by the sampling frequency) and

amplitude on the optimization. When the amplitude limit of the optimization samples increases

from a range of 2π(±π) to 4π(±2π), the tradeoff between Stokes power and linewidth improves

in some cases, so the Stokes power decreases for some optical linewidths. Improvements are

also achieved by increasing the sampling frequency from 600 MHz to 1200 MHz for a constant

amplitude of 2π.

2. Modeling SBS in a fiber amplifier

As discussed in the previous section, accurate modeling of our experimental setup is necessary

to obtain optimized phase modulation waveforms. In this section, we brieĆy describe our

experimental setup and its simulation model. A schematic diagram of the experimental setup used

for studying the mitigation of SBS in a Yb-doped Ąber ampliĄer is shown in Fig. 1. It comprises a

10 m long 5/130 µm (core/clad diameter) ytterbium (Yb)-doped polarization maintaining double

clad Ąber (Nufern PM-YDF-5/130-VIII) and is pumped at 915 nm. The pump absorption is

estimated to be 0.52 dB/m based on Ątting simulations to experimental measurements of pump

leakage. This value agrees with the manufacturerŠs speciĄcation of 0.6±0.1 dB/m. Thus there is

about 5.2 dB total pump absorption across the ampliĄer length. The length chosen for our work

is 10 m as it gives acceptable pump absorption and also falls in the regime where a drop in the

SBS threshold enhancement from the incoherent limit is reported. A DFB laser generates narrow

linewidth (∼100 kHz) light at 1064 nm, which is ampliĄed to about 0.2 W by a pre-ampliĄer,

whose output is used to seed the power ampliĄer. A lithium niobate phase modulator driven by a

radio-frequency (RF) source is placed between the DFB laser and pre-ampliĄer to broaden the

linewidth of the signal by applying the desired modulation waveforms. The power ampliĄer setup

uses free-space components as we want to avoid SBS contributions from any passive Ąber in an

all-Ąber setup. A polarization beam splitter (PBS) at the input end of isolator is used to measure

the backward propagating Brillouin Stokes power. We measured the SBS threshold for the power

ampliĄer to be about 2.9 W of output signal power for the case of un-modulated seed laser.

Next, we proceed with the discussion of numerical model for the high power ampliĄer. A

complete time dynamic model for passive optical Ąbers has been reported in [5,16]. Zeringue et

al. [5] have used the model to investigate SBS suppression with phase modulation in a passive

Ąber. We use equations similar to [5] to describe the SBS and add gain terms to account for the

ampliĄcation by Yb-ions [17]. Modeling of SBS in the presence of ampliĄer gain has also been

reported in the literature [18Ű21].

Our model captures the propagation of four waves in an Yb-doped double clad Ąber of length

(L) 10 m. As per the experimental setup, the ampliĄer is co-pumped, so the pump (λp ∼
915 nm) and signal (λs ∼ 1064 nm) are propagating in the forward direction. The Brillouin

Stokes at wavelength λb (downshifted from signal by a corresponding frequency of ∼16 GHz) is

propagating in the backward direction and the acoustic wave that couples the signal and Brillouin

Stokes wave is propagating in the forward direction. The Brillouin Stokes wave builds up from

spontaneous Brillouin scattering due to thermal density Ćuctuations (modelled as Langevin noise).

The Stokes wave beats with the forward propagating signal to generate a forward propagating

acoustic wave through electrostriction. This forward propagating acoustic wave enhances the
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Fig. 1. Experimental setup to test the performance of optimized waveforms for suppression

of SBS; DFB: distributed feedback laser, PM: power meter, PBS: polarization beam splitter,

ISO: Isolator, M: mirror, L:lens, DM: dichroic mirror, HWP: half wave plate, AWG: arbitary

waveform generator.

scattering, leading to SBS. The signal and Stokes waves are assumed to be linearly polarized

with the same orientation and hence we use scalar waves in our simulation. The acoustic wave is

assumed to be a purely longitudinal pressure wave represented by a variation in the density of the

medium (ρ).

The coupled partial differential equations that describe the entire system and models Lorentzian

Brillouin gain spectrum are described as follows. The spatio-temporal evolution of the electric

Ąeld (Ep) corresponding to the ampliĄer pump wave, which only interacts through the Yb-ions,

can be written as [17]:

∂Ep

∂z
+

n

c

∂Ep

∂t
=

1

2
ηp[σepN2 − σapN1]Ep. (1)

The evolution of electric Ąelds corresponding to signal (Es) and Stokes (Eb) are additionally

inĆuenced by Brillouin coupling and can be written as:

∂Es

∂z
+

n

c

∂Es

∂t
=

1

2
ηs[σesN2 − σasN1]Es + i

γeωs

2ρ0nc
Ebρ. (2)

−∂Eb

∂z
+

n

c

∂Eb

∂t
=

1

2
ηs[σesN2 − σasN1]Eb + i

γeωs

2ρ0nc
Esρ

∗. (3)

The evolution of the density of the acoustic wave is given by:

2iΩB

∂ρ

∂t
− iΩBΓBρ = ϵ0γek

2
ρEsE

∗
b − 2iΩBf . (4)

The rate of change of population density of the upper state of Yb-ions (N2) is given by the

following equation:

dN2

dt
=

λpηp

hcA
[σapN1 − σepN2]Pp +

λsηs

hcA
[σasN1 − σesN2]Ps +

λbηs

hcA
[σabN1 − σebN2]Pb. (5)

where ηp and ηs are the overlap factors with the Ąber core for pump and signal respectively. σep,

σap, σes and σas are the emission and absorption cross-sections at pump and signal wavelength
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respectively. As the frequency of the signal and Brillouin Stokes wave are close to each other,

we consider the same overlap factor as well as absorption and emission cross-section for Stokes

and signal waves. N1 and N2 are the population densities of the lower and upper levels of the

Yb-ions, γe is the electrostrictive constant, c is the speed of light in free space and n is the

refractive index of the medium, f is the Langevin noise source in the medium, that models the

thermal excitation of acoustic waves, which in turn initiates the SBS process, ΓB represents the

Brillouin gain bandwidth in angular frequency, ΩB is the resonant acoustic angular frequency of

the medium, kρ represents the wavenumber of the acoustic wave, h is the PlanckŠs constant and A

is the core area of the optical Ąber.

We introduce phase modulation of the signal wave through the boundary conditions Es(z =
0, t) = Ein

s eiφ(t), where Ein
s denotes the amplitude of the input signal Ąeld which is a constant

and ϕ(t) denotes the phase modulation waveform. Here ϕ(t) = πV(t)/Vπ , where V(t) is the

instantaneous voltage of the RF wave applied to drive the phase modulator and Vπ is the voltage

at which the phase modulator provides π phase change. The inherent phase noise due to the

linewidth of the laser (∼100 kHz) is assumed negligible compared to optical linewidth achieved

after phase modulation. For the Brillouin Stokes wave, the initial and boundary conditions are

given by Eb(z, t = 0) = Eb(z = L, t) = 0 [5]. Initial and boundary conditions for the acoustic

wave become ρ(z = 0, t) = ρ′(0,k) and ρ(z, t = 0) = ρ′(j,0), where ρ
′
is given by [5]:

ρ
′

(j,k) =

√︃

nQ

cΓB

S(j,k). (6)

Here S(j,k) is a complex Gaussian random variable with zero mean and unit variance. j

and k represent discrete variables along length (z) and time (t) respectively. Q is given by

2ΓBkTρ0/v2
s Aeff , where Aeff is effective interaction area [5]. Similarly, the Langevin noise term

is deĄned as:

f(j,k) =

√︃

nQ

∆t2c
S(j,k). (7)

The initial condition for upper state Yb-ions (N2) is obtained by solving Eqs. (1), (2), and (5)

for the steady state of the Yb-ampliĄer (i.e. making ∂
∂t
= 0 and considering only the presence

of pump and signal at the input of the ampliĄer and neglecting Brillouin Stokes generation).

This calculation of the initial condition for N2 helps in reducing evaluation time and thus the

Stokes evolution in the ampliĄer can be calculated in a similar time-scale as in passive Ąber.

Equations (1)Ű(5) are then numerically solved using a modiĄed Euler technique similar to [5].

For a CW input signal, the Brillouin Stokes power still Ćuctuates in time. To calculate the

average Stokes power we evaluate the instantaneous Stokes power for at least 20 transit times,

corresponding to signal propagation through the Ąber length in our simulations and discard the

initial two transits, which correspond to the Stokes buildup time. We deĄne the SBS threshold

as the output signal power corresponding to a relative Stokes power value of 0.01 [5], where

the relative Stokes power is deĄned as the ratio of average backward Stokes power to ampliĄed

output signal power. We note that SBS can lead to pulses with high energy [22] which may well

modulate the Yb-gain. However, at 1% of relative Stokes power, the average Stoke power as well

as the energy in any pulses are expected to have a negligible effect on the Yb gain. Thus, we can

neglect SBS when calculating the Yb gain.

In order to emulate the experiment accurately, we need to determine certain parameters,

notably the Brillouin gain bandwidth (ΓB) and electro-strictive constant (γe) for our Ąber. These

parameters are determined by matching simulations to experiments, performed with a signal

broadened by sinusoidal phase modulation of amplitude ±π. The threshold for an un-modulated

signal is largely determined by the value of Brillouin peak gain (gB), which is directly proportional

to γ2
e and inversely proportional to ΓB [16]. We simulated multiple combinations of ΓB and γe,

which result in similar values of gB and SBS threshold as in the experiments with an un-modulated
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signal. Figure 2 shows the SBS threshold measured through experiments, and that through

simulations for different sinusoidal modulation frequencies. We observe that the SBS threshold in

simulation obtained for ΓB = 2π×45×106 rad/s and γe = 1.2, is closer to the experimental results

across various modulation frequencies as shown in Fig. 2. Thus, we choose to use these values of

ΓB and γe in our simulation model to obtain optimized modulation waveforms. Furthermore, ΓB

is equal to the inverse of the lifetime of the phonons of the acoustic wave, which thus becomes

Fig. 2. Comparison between simulated and experimentally obtained values of the SBS

threshold achieved using phase modulation with sine waveform for various values of

modulation frequency.

Table 1. The key parameters in our model and the corresponding values
considered in our simulations.

Quantity Symbol Value Comments

Electrostrictive constant γe 1.2 obtained from our
experiments by comparisons
with simulations

Background density of
Ąber

ρ0 2201 kg/m3 taken from [5]

Resonant acoustic angular
frequency of the medium

ΩB 2π × 16 × 109

rad/s= 10.1×1010

rad/s

taken from [5]

Brillouin gain angular
bandwidth

ΓB 2π × 45 × 106

rad/s = 283 × 106

rad/s

obtained from our
experiments by comparisons
with simulations

Overlap factor for pump,
signal

ηp, ηs 0.0015, 0.6241 calculated from Yb-doped
Ąber parameters

Emission, absorption
cross-section at pump
wavelength

σep, σap 0.0193×10−24m2,
0.5693×10−24m2

provided by Ąber
manufacturer

Emission, absorption
cross-section at signal
wavelength

σes, σas 0.3978×10−24m2,
0.0064×10−24m2

provided by Ąber
manufacturer

Yb-ions concentration N 1.42×1026 m−3 N=clad absorption/(σapηp),
where clad absorption is
determined as 0.52 dB/m at
pump wavelength

Core area A 19.6 µm2 provided by Ąber
manufacturer

Maximum and minimum
phase limit for modulation
waveform

φmin,φmax −π, π user deĄned limit for Pareto
variables
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(2π × 45 × 106 rad/s)−1
= 3.5 ns (here and throughout this paper, we assume that the Brillouin

line is Lorentzian and homogeneously broadened). The parameters and their values used in

simulations are shown in Table 1.

3. Multi-objective Pareto-optimization for finding phase modulation waveforms

As mentioned in the Introduction, we use the above model for determining the ŞoptimizedŤ

waveform for external phase modulation of the seed laser. In our work, a multi-objective

Pareto optimization returns the best trade-off (i.e., the ŞPareto frontŤ) it Ąnds among multiple

simultaneous objectives. In case of SBS mitigation in optical Ąbers, the objectives of high

threshold and narrow linewidth are both desirable, but there is a well-known tradeoff between

them. Pareto optimization Ąnds the phase modulation waveforms that represent the best options

for the trade-off, in the sense that no other waveforms were found that are better in both threshold

and linewidth compared to any of the waveforms in the Pareto-optimized set [23].

Although the concept is simple, there are many practical difficulties. During the optimization,

there will be waveforms with signiĄcantly lower or higher relative Stokes power. For example,

the solution obtained with lower relative Stokes power which usually occur at larger linewidths

may be dominated by spontaneous Brillouin scattering. This is a linear effect which cannot be

used for optimization. Furthermore, the results obtained with very high relative Stokes power

typically contain numerical errors [5]. To overcome these issues, we varied the ampliĄer pump

power according to the linewidth and also bound the relative Stokes power to be within 0.03 to

0.2. To implement this, we choose three Pareto objectives to be optimized simultaneously. The

three objectives are the RMS linewidth of the input signal optical spectrum [14], the relative

Stokes power, and the output signal power. Also, we make the ampliĄer pump power a variable

along with the equidistant points (samples) to be optimized for the waveform.

As shown in Fig. 3, the Pareto optimization procedure is initiated with ŠnŠ arbitrary sample

values of phase chosen between ϕmin and ϕmax. These phase values are passed on to the theoretical

ampliĄer model along with the pump power to determine the relative Stokes power, the output

signal power, and the linewidth of the optical spectrum. Such parameters are optimized using the

Pareto Toolbox, thereby yielding the phase values of the optimized waveform. The waveform

is periodic and equidistantly sampled, but we consider different periods including those that

are longer than all time constants in the SBS process, i.e., the phonon lifetime and the ĄberŠs

roundtrip propagation time. The optimizer varies the pump power as the linewidth varies such

that the relative Stokes power falls within the above bound with maximum signal power at the

output. Thus, instead of the conventional approach of a pre-deĄned relative Stokes power for

which the maximum signal power is found versus linewidth, this will provide optimized triplets

of linewidth (smaller is better), relative Stokes power (smaller is better), and signal output power

(larger is better) for a system designer to choose from. A lower pump power is clearly better, too,

if it equates to higher efficiency, but the pump power is expected to follow closely from the pump

absorption (which is nearly constant, since the Ąber length is Ąxed) and the signal output power.

For the multi-objective optimization, we use a genetic algorithm from the optimization toolbox

in MATLAB. We Ąrst consider phase modulation waveforms with 12 MHz repetition frequency

and 50 points (n) to be optimized along the waveform, corresponding to a sampling rate of 12

MHz ×50= 600 MHz. As described above, the ampliĄer pump power is made a variable for

optimizer together with the amplitude of the waveform. For our initial simulations, the amplitude

of the waveform points to be optimized is given a lower and upper bound of −π and +π radians

respectively. Similarly a lower and upper bound is provided for the pump power based on our

initial guess values of lowest and highest pump power required by the ampliĄer algorithm to

provide relative Stokes power within the given bound of 0.03 to 0.2 for signals with modulation.

The simulation model described in the previous section is used to calculate the values of the

three optimization objectives (RMS linewidth , output signal power and relative Stokes power)
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Fig. 3. Schematic representation of our approach to determine optimized phase modulation

waveforms with the help of a comprehensive model of the Ąber ampliĄer.

for a particular set of waveform optimization points (ϕn) and pump power. For the simulations,

we resample the modulation waveform to a higher sampling rate of 1/∆t (≈10 GHz), where

1/∆t corresponds to the discrete time sampling step considered in simulations. For resampling

we evaluate a sum of weighted and time delayed sinc functions as mentioned in [14]. This is a

standard approach, and the sinc-functions have a maximum bandwidth of half the rate of the

optimized points. However, phase modulation as well as SBS are nonlinear processes, so the

signal and Stokes waves will generally not be bandwidth-limited (which is why denser resampling

is necessary). Note also that resampled points can overshoot the optimized points. The overshoot

scales with the logarithm of the number of samples. Thus, in theory it can be inĄnite with an

inĄnite number of optimized points, but was generally less than 10 percent in our simulations

(shown in Fig. 4(b)).

Fig. 4. (a)The trade-off between three optimized objectives (Pareto front) as obtained for

a 10 m long Yb-doped Ąber ampliĄer, where each point represents the performance of an

optimized waveform. The colour bar on the right side represents relative Stokes power. (b)

Time trace for one of the optimized waveforms with 650 MHz optical linewidth (RMS),

where the blue dots represent the 50 points obtained through the optimization and blue trace

shows the re-sampled waveform, (c) the corresponding electrical waveform PSD (|ϕ(ω)|2)

and (d) optical signal spectrum obtained after phase modulation as downshifted to the

baseband (|Es(ω)|2).

Figure 4(a) shows the results of the Pareto optimization in terms of the three optimization

objectives. The color represents the third objective, i.e., relative Stokes power. For each optimized

triplet of objectives, we obtain the corresponding 50 optimized phase modulation points and

ampliĄer pump power. As seen from Fig. 4(a), our optimization routine has yielded multiple

waveforms corresponding to different values of the relative Stokes power, output signal power
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and signal linewidth. In Fig. 4(b) we show one such optimized waveform, where the blue

dots represent the 50 optimized phase points (ϕn) and the blue curve represents the waveform

resampled at 10 GHz . The power spectral density (PSD) of the modulation waveform and

the corresponding phase-modulated optical signal spectrum are also plotted in Figs. 4(c) and

4(d) respectively. This conĄrms that the modulation waveform spectrum extends to half of the

600-MHz rate of the optimized points, so the double-sided width becomes 600 MHz. The optical

spectrum extends further than shown in Fig. 4(d), but is still well-contained in the range ± 1 GHz.

The optimized data can be further analyzed to obtain the SBS threshold power as a function of

signal linewidth. For each optimized waveform, we calculate the SBS threshold power, i.e., the

output signal power corresponding to a relative Stokes power value of 0.01. Note that except

when the relative Stokes power is close to 0.01 for a triplet in the Pareto-optimization, these

waveforms are not optimized for the highest SBS threshold power (as deĄned in that way).

However, they are generally expected to come close to achieving the optimized threshold. The

SBS threshold calculated for each optimized waveform is plotted in Fig. 5. For similar linewidths,

there are several optimized waveforms obtained with different relative Stokes power and their

SBS thresholds are close to each other.

Fig. 5. SBS threshold obtained for each optimized waveform shown in Fig. 4(a) compared

with SBS threshold for 50 noise modulation waveforms.

3.1. Comparison with noise modulation

Next, the performance of optimized waveforms is compared to that of noise modulation. A Ąrst

set of noise modulation waveforms are made from uniformly distributed uncorrelated random

numbers between -π and +π with the sampling rate of 600 MHz as for the optimized waveform.

The length of the noise modulation waveform is equal to the total simulation time considered for

optimized waveforms (i.e., the time of 20 transits through the length of the Ąber). We simulated

over 50 such noise waveforms. This is also equivalent to running a simulation for a single

noise waveform for the time of 20×50 transits, measuring the threshold and RMS linewidth

in each interval corresponding to the time taken for 20 transits across the Ąber ampliĄer. The

performance of noise waveforms is plotted in Fig. 5 (red cross points). We observe that this set of

noise waveforms results in optical linewidths in the range of 0.6-0.66 GHz and SBS thresholds in

the range 17-22 W. This signiĄcant Ćuctuation in SBS threshold even though the noise statistics

are the same and the linewidths are similar highlights one of the drawbacks of noise modulation

compared to any Ąxed format phase modulation, i.e., the noise modulation provides a larger level

of uncertainty in the SBS mitigation. In addition, we observe that our optimized waveforms

outperform this set of noise waveforms as illustrated in Fig. 5. To quantify the improvement, we

consider the mean value of the linewidth and the lowest value of the SBS threshold for noise

waveforms. The lowest value of the threshold for noise is considered because we expect a system

designer would have to stay well below the corresponding SBS threshold power to remain in a
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safe operating regime. Tracking this regime is important, since it has been reported that higher

relative Stokes power can result in Stokes pulses with high peak power from the Ąber ampliĄer,

which may destroy the ampliĄer as well as the pump lasers [22]. A comparison of limits for

potentially destructive pulsing between optimized and noise modulation is interesting but outside

the scope of this paper. The mean linewidth for noise is 0.63 GHz and the lowest threshold

is 16.9 W. Optimized waveforms with 0.63 GHz linewidth show SBS thresholds of 24.6 W.

Thus, the SBS threshold power achieved for optimized waves is around 1.45 times as high as

noise modulation in this case. Although that is relative to the lower value (16.9 W) with noise

modulation, the optimized waveforms are also around 1.26 times the average noise-modulation

value.

We next evaluate noise modulation performance for different optical linewidths. For this

we generate noise waveform in a similar manner as described above with random samples at

600 MHz and additionally pass the waveform through a low pass Ąlter and an RF ampliĄer

before feeding it to the phase modulator [5,6]. The low pass Ąlter bandwidth is varied to achieve

different optical linewidths and the RF ampliĄer gain is set to scale the amplitude of waveform

within the range ±2π. We evaluate the SBS threshold for 10 such waveforms at each optical

linewidth we consider and plot the average performance in Fig. 5 (Black diamonds). We observe

that the average noise performance obtained earlier by 50 waveforms with amplitude range ±π is

close to the average performance obtained by 10 low-pass Ąltered waveforms with amplitude

range ±2π near 650 MHz RMS linewidth. Furthermore, when comparing optimized waveform

performance with the noise performance obtained at various optical linewidths, we note that

the performance of optimized waveforms rolls off beyond the range of linewidths obtained with

50 noise modulation waveforms. This issue can be solved if we relax the limits imposed on

modulation bandwidth and amplitude while performing the Pareto optimization, as will be shown

in the Discussion section.

3.2. Effect of varying waveform’s period

To study the effect of period of the waveforms, we carried out Pareto optimization with the same

three objectives for different waveform repetition frequencies, 6, 24 and 50 MHz (in addition to

12 MHz). The sampling rate of the optimized points is kept constant at 600 MHz, so that the

optical linewidths that can be achieved are similar in all four cases. This means that the number

of waveform points to optimize varies, and reaches 100 points at 6 MHz waveform repetition

frequency. SBS thresholds achieved for optimized waveforms are plotted in Fig. 6. The trend

looks similar for all the above waveform repetition frequencies with a slight improvement in

threshold as the repetition frequency is reduced (most evident for linewidths around 0.65 GHz).

This trend may be understood as follows: If we consider a modulated waveform with a repetition

frequency of 12 MHz (period 83.3 ns), this corresponds to a spatial range of 17.1 m which covers

8.6 m of Ąber roundtrip propagation (given that signal and Stokes are counter-propagating). With

our 10 m Ąber length, this allows nearly all light that has been modulated by the waveform in one

period and back-scattered through SBS to exit the Ąber before the end of that period. With a

shorter period (e.g., for 24 MHz), the lightwaves in the Ąber have a ŞmemoryŤ from one period

of the modulation waveform to the next, which restricts the optimization. This also means that

in principle, waveforms with 6 MHz waveform repetition frequency cannot be worse than the

12 MHz case. However, in practice they may appear to be, if the large number of sampling

points to optimize for 6 MHz waveform impairs their optimization. Thus, we observe that for

a given ampliĄer length the optimum length of the periodic waveform is somewhere close to

the spatial length corresponding to the roundtrip time. This is further discussed in detail in the

Discussion section. We note also that the phonon lifetime of 3.5 ns is short compared to the

roundtrip propagation time as well as the lengths of the modulation waveforms.
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Fig. 6. SBS threshold calculated for optimized waveforms obtained at various repetition

frequency for a 10 m ampliĄer length

4. Experimental results

The simulation results presented above exhibit a high level of promise for the use of optimized

waveforms to mitigate SBS in high power narrow linewidth Ąber ampliĄers. Such results need to

be validated with controlled experiments, which are described here. We use an arbitrary waveform

generator (AWG) with 12 GHz sampling frequency to generate the optimized waveforms. For this,

the optimized waveform is resampled at 12 GHz using a similar procedure as used in simulations

and fed to the AWG. The high resampling rate can improve the Ądelity of the waveform generated

by the AWG, which is otherwise expected to deviate from the ideal recreation as a sum of sinc

functions with bandwidth equal to half of the sampling frequency e.g., as a result of non-ideal

Ąltering. A combination of a RF ampliĄer at Ąxed gain and a variable RF attenuator is used to

adjust the RF drive power of the phase modulator, to achieve the desired modulation amplitude.

The RF ampliĄer has a 3-dB bandwidth of 700 MHz, which is sufficient to support the 300 MHz

bandwidth of our resampled waveforms. However, the gain measured for the RF ampliĄer and

attenuator was not constant over this frequency range. Therefore, we modiĄed the AWG samples

to correct for this [13], and were thus able to reproduce the waveforms with a maximum error of

∼0.2 V, which corresponds to ∼0.3 rad (ϕ = πV/Vπ ). The effect of such errors is discussed in

detail in the Discussion section.

We measured the SBS threshold power and RMS linewidth for our optimized waveforms

obtained for a 10 m ampliĄer length and a waveform repetition frequency of 12 MHz. For

measuring the RMS linewidth, a homodyne method is used where the phase modulated signal is

allowed to beat with an unmodulated light on a high speed photo-detector. The output of the

photo-detector is recorded on an electrical spectrum analyser. The results are plotted in Fig. 7(a).

A SBS threshold of 20 W is measured for a RMS linewidth of 0.68 GHz, which translates to an

enhancement factor of about 6.9, where the enhancement factor is obtained by dividing the SBS

threshold after modulation with the un-modulated threshold (2.9 W). This enhancement factor of

6.9 achieved at 0.68 GHz RMS linewidth waveform translates to an enhancement slope of 10

GHz−1. An enhancement slope of 7.7 GHz−1 is reported with PRBS modulation at an optical

linewidth of 1.7 GHz (FWHM) with a similar (Nufern PM-YDF-5/130) Ąber and ampliĄer length

[7]. Here, it has to be noted that the linewidth deĄnition used to obtain performance in [7] is

FWHM. Thus, the comparison between the two results is not straightforward. PRBS modulation

(un-Ąltered) is reported to result in a sinc2 spectrum, for which we found that the RMS linewidth

is 5 % larger than the FWHM linewidth. In such a scenario, the PRBS performance translates to

7.25 GHz−1 in terms of RMS linewidth. Thus, the enhancement slope of 10 GHz−1 obtained for

the optimized waveforms look favorable compared to enhancement slope of 7.25 GHz−1 reported

for PRBS waveforms. However, as the enhancement factor depends on Ąber properties like
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Brillouin peak gain and bandwidth, a simple direct comparison of results obtained in different

cases may not be justiĄed. We also note that an enhancement slope of 10.6 GHz−1 (FWHM) was

reported recently with PRBS modulation with a larger core Ąber and shorter ampliĄer length for <

5 GHz optical linewidth [9]. Back-to-back comparisons with proper optimization may be needed

to quantify the improvements possible with waveforms sample-optimized with a minimum of

restrictions. We also note that the enhancement slope becomes 17.7 GHz−1 with respect to the

RMS linewidth of a Gaussian optical spectrum in the incoherent limit. The enhancement slopes

for different common spectral shapes and linewidth deĄnitions are presented in Appendix.

Fig. 7. Experimentally measured SBS threshold for optimized waveforms obtained for an

ampliĄer length 10 m at (a) 12 MHz frequency spacing and compared with noise modulation

and (b) various frequency spacings.

We experimentally compared the performance of our optimized waveforms with that of noise

modulation. We generated the noise waveform using a uniform random number generator

whose output is passed through a low pass Ąlter and the amplitude of the resultant waveform

is scaled appropriately in simulations (similar to the method presented in Sec. 3). The noise

was generated for a longer 0.7 ms time period. The RF Ąlter bandwidth was varied to achieve

different waveforms with different values of optical linewidth. This generated waveform was

then fed to the AWG to obtain noise modulated optical signal. The measured SBS threshold is

plotted in Fig. 7(a) as a function of linewidth for noise as well as for our optimized waveforms.

The enhancement factor measured for noise is 4.5 at 0.65 GHz linewidth, which corresponds to

an enhancement slope of 6.92 GHz−1. Thus, we found that experimentally optimized waveform

yields an enhancement slope which is about 1.44 times better than for noise modulation, which

matches well with the value (1.45 times which is calculated with lowest value of threshold)

observed in simulations. We also perform experiments with optimized waveforms obtained for

waveform repetition frequencies of 6, 24 and 50 MHz. The results are plotted in Fig. 7(b) which

shows a similar trend as observed in the simulation results shown in Fig. 6.

5. Discussion

5.1. Comparison of SBS threshold enhancement in simulation and experiments

The SBS thresholds measured after modulation with optimized waveforms (red points) in the

above experiments is lower than that estimated from simulation results (blue points) as seen in

Fig. 8(a). We attribute in part this shortfall in experimental suppression to a slight mismatch in

the experimental reproduction of optimized waveforms by the AWG, RF ampliĄer, and/or phase

modulator. An experimentally generated optimized waveform with RMS linewidth of 650 MHz
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and 12 MHz repetition frequency is plotted in Fig. 8(b) along with a simulated waveform. The

experimental waveform is calculated from the measured voltage fed into the phase modulator.

Fig. 8. (a) Simulated SBS thresholds with optimized waveforms (blue) and experimentally

measured waveforms (black) plotted along with experimentally measured SBS threshold

(red) and (b) time trace of a simulated waveform with optical linewidth of 650 MHz to be

generated by AWG (blue) and experimental waveform (as recalculated to phase) fed to the

phase modulator (red).

Compared to the simulated waveform, we observe a small error for the experimentally generated

waveform. To Ąnd the sensitivity of the SBS threshold to this error, we calculate the threshold

with simulations run with the experimentally generated waveforms. The SBS threshold obtained

for all the waveforms is plotted in Fig. 8(a) (black points). We observe that all the experimental

waveforms lead to a simulated threshold that is worse than that of the waveforms optimized

in simulations, but better than the threshold measured in experiments. Thus, the non-ideal

reproduction of the waveforms appears to partly explain the degradation in experimental SBS

suppression. Other factors affecting the results can be uncertainties in the Ąber parameters and

the overall model (e.g., the assumption of scalar waves) used for the simulations. This would lead

to waveforms that are optimized for an ampliĄer or conditions that differs from the actual case.

5.2. Performance of waveforms optimized for different lengths

The enhancement factor for the SBS threshold by phase modulation is reported to reduce for

decreasing length (e.g., below 10 m) in passive Ąbers for noise and PRBS modulation formats

even when details such as clock frequency and RF power (i.e., modulation amplitude) are

optimized for a speciĄc length [5,6]. A related question is how well a waveform optimized for

a speciĄc ampliĄer length performs at other lengths. To study this, we simulate ampliĄers of

different lengths with a modulation waveform optimized for 10 m. We keep the total pump

absorption constant at 5.2 dB (the absorption obtained previously for 10 m ampliĄer length) by

changing the pump wavelength to yield a higher absorption per unit length for shorter ampliĄers.

To limit the change in pump wavelength to a smaller value, we used a wavelength of 971 nm

for a length of 10 m. This results in the same absorption as obtained previously with 915 nm

pumping. As we reduce the Ąber ampliĄer length, we tune the pump wavelength closer to the

absorption peak at around 975 nm. We Ąrst choose one optimized waveform obtained with 10

m ampliĄer length for each value of waveform repetition frequency with linewidth around 650

MHz and compute enhancement factors for lengths varying from 3.5 to 15 m. The simulation

results are plotted in Fig. 9(a). Similar to previous results [5], the enhancement factor decreases

for shorter ampliĄers. We also observe that for the shorter ampliĄers, all waveform repetition

frequencies perform similarly but for longer ampliĄers the longer waveforms (with smaller

repetition frequency) perform better. The 20 ns period of the 50 MHz waveform corresponds to
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4.1 m of Ąber propagation (2.1 m round-trip), which we believe is a reason why the 50 MHz

curve falls off for Ąbers longer than 4-5 m.

Fig. 9. Length dependence of the enhancement factor achieved for (a) optimized waveforms

with 650 MHz linewidth obtained for 10 m ampliĄer at various frequency spacing and their

comparison with noise modulation of similar linewidth and (b) optimized waveforms with

650 MHz linewidth obtained for 10 m and 3.5 m ampliĄer length at 12 MHz frequency

spacing

In addition, we observe that long period waveforms perform well for all investigated Ąber

lengths. Furthermore, as mentioned earlier, a longer waveform can in theory never be worse

than a shorter one (at least if it is longer by an integer factor), so we attribute the absence of

performance improvement for 6 MHz waveform compared to 12 MHz waveform to imperfect

optimization. In contrast, for long Ąbers, shorter waveforms are increasingly worse, even when

optimized for long Ąbers. Short waveforms can perform as well as the long ones for short

Ąbers, but in no case did they perform better than the long waveforms. We also performed

Pareto-optimization at shorter Ąber lengths (i.e., at 3.5 m) with the long period waveform (i.e.,

12 MHz) and evaluated its performance across various lengths. We found that for longer Ąbers,

long period waveforms optimized at such lengths (i.e., 10 m in our case) performs slightly better

than those optimized for shorter Ąbers (shown in Fig. 9(b)). On the other hand, in shorter Ąbers

their performance is found similar. Thus, to the extent that computational power and modulation

hardware suffice, long waveforms seem best, and even when optimized for long Ąbers they seem

to perform close to optimum also for short Ąbers.

We also compare the results with the enhancement factors obtained with noise modulation.

Here, the noise waveforms are generated as in the previous simulations and the enhancement

factor of the SBS threshold is computed for each length based on the average performance of

many trials of noise waveforms. As seen from Fig. 9(a), the noise waveforms do not perform as

well as the optimized waveforms, except in cases where the optimized waveform period is too

short relative to the Ąber length.

5.3. Simulation with larger linewidths

We next perform simulations to demonstrate the performance of the optimized waveforms at

larger optical linewidths, potentially leading to kW level output power. Larger linewidths can

be achieved by increasing the modulation depth (RF power) as well as the sampling frequency

(RF bandwidth). Increasing the sampling frequency for a Ąxed frequency spacing means more

points (n) to optimize. On the other hand, the maximum value of modulation depth depends on

the available RF power and/or the RF power handling and the Vπ-value of the phase modulator

being used. We next optimize the 12 MHz waveform with twice the sampling rate of optimized

points as previously used (1200 MHz instead of 600 MHz), while maintaining the modulation

depth at ±π. In addition, we optimize the case with the 600 MHz sampling rate of optimized
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points (as previously) but twice the modulation depth, ±2π. Both of these changes are expected

to approximately double the signal linewidth that can be achieved. The SBS thresholds achieved

for Pareto-optimized waveforms is plotted in Fig. 10. We observe that the optimized waveform

are obtained in the RMS linewidth region between 0.9 GHz to 1.5 GHz. This is because the

lower and upper bound provided for the pump power was chosen such that the optimization yields

waveforms appropriate for kW-level power-scaling. The mean enhancement slope calculated for

larger phase modulation depth i.e., ±2π with 600 MHz sampling rate is about 12.8 GHz−1 which

is better than the 11.5 GHz−1 mean enhancement observed for ±π with 1200 MHz sampling rate.

A possible explanation is that the optimization routine Ąnds it more difficult to Ąnd global optima

with the large number of points (100) in the 1200 MHz sampling case, but further investigations

are needed to conĄrm this. Also, we observe that the enhancement slope for waveforms obtained

with ±2π modulation depth and 600 MHz sampling rate increases for lower RMS linewidth. We

believe that it would atleast match the performance of waveforms obtained with ±π modulation

depth and 600 MHz sampling at lower RMS linewidths (below 0.9 GHz), since modulation

depth limit of ±π is a subset of ±2π modulation depth. Please note that the results obtained

with ±π modulation depth and 600 MHz sampling, which shows a mean enhancement slope of

13.8 GHz−1 are re-plotted from Fig. 5 for comparison. Regardless, we expect that modulation

waveforms that allow for larger optical linewidths lead to larger enhancement factors and thus to

scaling beyond 1 kW of output power even with relatively small cores.

Fig. 10. SBS threshold for optimized waveform obtained with higher sampling rate or

modulation depth for a 10 m ampliĄer length and compared with results obtained with lower

sampling rate and lower modulation depth

6. Conclusion

In conclusion, we have demonstrated the mitigation of SBS in Yb-doped Ąber ampliĄer through

external phase modulation of a narrow linewidth source using optimized periodic waveforms.

To the best of our knowledge, this work constitutes the Ąrst demonstration of SBS mitigation

with waveforms optimized based on a comprehensive ampliĄer model including Brillouin

parameters extracted from measurements. The optimized waveforms used in our work result from

multi-objective Pareto optimization involving the RMS linewidth of the optical signal, output

signal power, and relative Stokes power.

In case of a modulation bandwidth limited to 300 MHz and modulation amplitude limited

to ±π radians, it was possible to reach an enhancement factor for the SBS threshold relative to

that without phase modulation of 6.9 for an optical linewidth of 650 MHz, corresponding to an

enhancement slope of ∼ 10 GHz−1. Modulation waveforms with relaxed limits on modulation

bandwidth and amplitude allowed for larger optical linewidths, and larger SBS thresholds

approximately in proportion. An enhancement factor of nearly 15 was reached for RMS linewidth

of 1.3 GHz, which is expected to allow for kW-level power scaling in Ąbers with larger cores than
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we studied. The SBS mitigation is also studied for different lengths of the modulation waveform.

In simulations, we found that a modulation waveform optimized for a Ąber length of 10 m could

be effective for lengths in the range 3.5 Ű 15 m, corresponding to Ąber roundtrip times of 34 Ű

146 ns, but only if the modulation waveform was sufficiently long. Thus, an 83.3-ns waveform

(12 MHz frequency) worked well for this range, whereas a 20 ns waveform (50 MHz frequency)

proved worse for Ąbers longer than 5-6 m.

Experimentally, we veriĄed the increase in SBS threshold in different cases, although it was

slightly degraded compared to simulations. We found that experimental waveforms deviations

from the simulated waveforms could partly explain this degradation, although imperfections in

the model and parameter values are also expected to contribute. Nevertheless, we still found that

the optimized waveforms provide 1.4 times higher enhancement in SBS threshold than noise

modulation did. The relative enhancement improvement of optimized waveforms agreed with

that obtained in simulations.

Appendix A: Impact of lineshape and linewidth metric on incoherent Brillouin

gain

Here we consider the peak Brillouin gain in case of a broadened optical spectrum with lineshape

S(ν) in the incoherent approximation for a Lorentzian Brillouin lineshape with FWHM linewidth

∆νB. For simplicity, we consider optical line shapes for which the position of the Brillouin gain

peak stays the same. The optical lineshape is normalized so that
∫ ∞
−∞ S(ν)dν = 1 and shifted

in frequency with peak at frequency ν = 0. The Brillouin proĄle gB(ν, ν0) can be written as

gB,0/{1 + 4[ν − (ν0 − νB)/∆νB]2}, where gB,0 is the peak value and ν0 is the optical frequency of

the Brillouin pump (i.e. signal) [24,25]. In case of monochromatic Brillouin pump, this directly

determines the Brillouin gain at frequency ν, including the peak gain, following scaling with

Brillouin pump intensity and Ąber length. Without loss of generality, we will assume these equal

to unity.

In the more general case of a broadened Brillouin pump, different parts of the pump spectrum

contribute to the Brillouin gain GB(ν) at frequency ν according to the value of gB(ν, ν0). This

can be evaluated as a convolution (represented by *) of the Brillouin pump spectrum and the

Brillouin lineshape:

GB(ν) = gB(ν, ν0) ∗ S(ν) =
∫ ∞

−∞

gB,0

1 + 4
(︂

ν′−(ν0−νB)
∆νB

)︂2
S(ν − ν′)dν′. (8)

At the gain peak at ν = ν0 − νB, we get

GB(ν0 − νB)
GB,0

=

∫ ∞

−∞

S((ν0 − νB) − ν′)

1 + 4
(︂

ν′−(ν0−νB)
∆νB

)︂2
dν′ =

∫ ∞

−∞

S(−ν)

1 + 4
(︂

ν
∆νB

)︂2
dν. (9)

where the integration variable is changed according to ν = ν′ − (ν0 − νB) and GB,0 is the

peak Brillouin gain without broadening, which is equal to gB,0 with assumed scaling. In

case of a Lorentzian optical lineshape of FWHM linewidth ∆νFWHM , Eq. (9) evaluates to

GB/GB,0 = (1 + ∆νFWHM/∆νB)−1, where we have dropped the frequency argument from the

peak Brillouin gain (i.e., GB = GB(ν0 − νB)). In this simple approach, the Brillouin threshold

becomes proportional to (GB/GB,0)−1
= GB,0/GB = 1 + ∆νFWHM/∆νB. This is also equal to the

enhancement in threshold, with Şenhancement slopeŤ equal to ∆ν−1
B

. However, this is modiĄed for

other lineshapes. For those, an Şenhancement slope coefficientŤ kFWHM can be introduced, so that

GB,0/GB = 1 + kFWHM∆νFWHM/∆νB. Note however that this is in general only an approximation

to Eq. (9), valid for large optical linewidths (∆νFWHM ≫ ∆νB; the expression can then be further

simpliĄed to GB,0/GB = kFWHM∆νFWHM/∆νB). Alternatively, one can use the RMS linewidth
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∆νRMS, i.e., GB,0/GB = 1 + kRMS∆νRMS/∆νB, with a different value for the enhancement slope

coefficient kRMS. Table 2 summarizes the exact expressions for the integral as well as the

coefficients kFWHM and kRMS for different optical lineshapes. Relations between the RMS and

FWHM linewidths are also given. The Brillouin linewidth is still the FWHM value (the RMS

linewidth of a Lorentzian spectrum is inĄnite). Note that the value of the slope coefficients can

vary by almost a factor-of-two, depending on lineshape and linewidth deĄnition. For ∆νB = 45

MHz and a Gaussian optical spectrum, the enhancement slope kRMS/∆νB becomes 17.7 GHz−1.

Table 2. GB,0/GB from Eq. (9), kFWHM , kRMS , and relation between FWHM and
RMS linewidth for different optical spectral shapes and a Lorentzian Brillouin

spectrum.

Shape of optical
spectrum S(ν)

Rectangular Lorentzian Gaussian

S(ν) Smax,
|ν |<∆νFWHM/2 0,
|ν |>∆νFWHM/2

Smax

1+( 2ν
∆νFWHM

)2
Smaxe[−ln2(2ν/∆νFWHM )2]

Smax × ∆νFWHM 1 2/π ≈ 0.6366 2(ln 2/π)1/2 ≈ 0.9394

GB,0/GB (Inverse of
Eq. (8))

∆νFWHM/∆νB

arctan
∆νFWHM
∆νB

1 +
∆νFWHM
∆νB

∆νFWHM/∆ν

2(∆νB/∆νFWHM )2√
π ln2 erfc

∆νB

√
ln2

∆νFWHM

kFWHM 2/π ≈ 0.6366 1 (πln2)−1/2 ≈ 0.6777

kRMS 2
√

3/π ≈ 1.103 Not applicable (2/π)1/2 = 0.7979

∆νRMS =

2

√︂

∫ ∞
−∞ ν2S(ν)dν

3−1/2
∆νFWHM ≈

0.5774 ∆νFWHM

InĄnite (2ln2)−1/2
∆νFWHM ≈ 0.8493

∆νFWHM
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