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Abstract

Spike estimation from calcium (Ca2+) fluorescence signals is a fundamental and challenging 

problem in neuroscience. Several models and algorithms have been proposed for this task over the 

past decade. Nevertheless, it is still hard to achieve accurate spike positions from the Ca2+ 

fluorescence signals. While existing methods rely on data-driven methods and the physiology of 

neurons for modelling the spiking process, this work exploits the nature of the fluorescence 

responses to spikes using signal processing. We first motivate the problem by a novel analysis of 

the high-resolution property of minimum-phase group delay (GD) functions for multi-pole 

resonators. The resonators could be connected either in series or in parallel. The Ca2+ indicator 

responds to a spike with a sudden rise, that is followed by an exponential decay. We interpret the 

Ca2+ signal as the response of an impulse train to the change in Ca2+ concentration, where the 

Ca2+ response corresponds to a resonator. We perform minimum-phase group delay-based filtering 

of the Ca2+ signal for resolving spike locations.

The performance of the proposed algorithm is evaluated on nine datasets spanning various 

indicators, sampling rates and, mouse brain regions. The proposed approach: GDspike, is 

compared with other spike estimation methods including MLspike, Vogelstein de-convolution 

algorithm, and data-driven Spike Triggered Mixture (STM) model. The performance of GDSpike 
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is superior to that of the Vogelstein algorithm and is comparable to that of MLSpike. It can also be 

used to post-process the output of MLSpike, which further enhances the performance.

I. Introduction

Neurons generate spikes which encode information in the brain. Billions of neurons and 

their numerous task-specific activations are fundamental for brain function. The spikes 

generated by neurons in the brain circuit are essential for sensory, motor and cognitive tasks. 

Thus, understanding the information processing by neurons is of interest to the research 

community. The temporal location, or time of occurrence of spikes, carries information 

about the activity of each neuron.

Spike positions can be obtained using electrophysiological recording or by imaging 

techniques. In electrophysiological recordings, micro-electrodes positioned close to neurons 

are used to get the action potentials. However, this measurement is not only limited by poor 

spatial resolution but is also invasive. In the now-widely used two-photon imaging 

technique, neuronal activity is sensed through genetically encoded or externally introduced 

Ca2+ indicators with fluorescence emitting capability [1]. The activities of individual 

neurons and neuronal populations are recorded via optical techniques [2–4]. These relatively 

noninvasive techniques also enable longer recording times and less intervention for the 

animal. However, the Ca2+ fluorescence signals are noisy in nature with relatively quick rise 

times and long decay tails. Thus, information about the underlying spiking process is 

masked in the fluorescence signal. The fluorescence due to a spike decays gradually and 

interferes with the fluorescence generated by adjacent spikes. A slowly varying signal with 

poor temporal resolution is thus generated. The actual neuronal action potentials need to be 

extracted from these noisy signals for understanding neuronal information processing. The 

spike estimation task is constrained by the following issues: The background fluorescence 

varies with time and is indistinguishable from the fluorescence changes during spike 

occurrence. The two-photon imaging process and fluorescence signals are contaminated by 

random noise. Finally, the transients at intracellular Ca2+ level have large time constants, and 

several such transients are non-linearly added resulting in poor tracking capabilities 

especially when spikes overlap [5–8]. Hence, it is essential to understand and de-noise these 

fluorescence traces to get the actual spike time estimates.

Spike estimation can be interpreted as a peak estimation problem constrained by the nature 

of neuronal firing. The objective of any signal-based approach is to annihilate the baseline 

variations and other residuals, and to extract the peaks. Our approach can be related to 

syllable segmentation from speech signals [9], and estimation of onsets from that of music 

signals after converting it to an envelope function [10]. However, the number of spikes 

occurring at a time is not linearly related to the magnitude of the Ca2+ fluorescence signal, 

and the nature of spike firing is unpredictable in general.

Several methods proposed for inferring the spiking information can be categorised into 

model-based techniques and supervised methods. A recent model-based approach [11] relies 

on the physiology of neuronal firing and uses a non-linear model which estimates the spikes 

based on the most-likely spike train given a fluorescence recording. Parameters of this 
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algorithm are auto-calibrated for optimal performance at the expense of significant 

computational cost. Other typical model-based techniques include template matching [3, 

12], likelihood-based alignment, and approximate Bayesian inference based on de-

convolution [5, 13, 14]. Stringent conditions imposed by assumptions on the model and the 

noise levels limit the performance of these algorithms. The Vogelstein algorithm [14] 

attempts to de-convolve the noisy fluorescence signal to obtain a calcium trace from which 

the spike positions are estimated. Machine learning-based methods such as STM [15] and 

other learning techniques [16–18] need sufficient fluorescence examples along with the 

ground truth information for training the system and often have a limited performance on 

unseen datasets [4]. STM is a model-dependent technique where the spikes are modelled by 

a Poisson distribution [15]. The parameter λ of the distribution is then learned using a neural 

network [19], and the evaluations consider the spiking probabilities.

Most of the existing algorithms are inspired by the neurophysiology of Ca2+ responses. In 

[20], we proposed a non-model based approach that is inspired by the high-resolving 

capability of the group delay function. In this paper, the nature of the Ca2+ fluorescence 

signals is studied in detail, and it is then related to the group delay algorithm. We present a 

theoretical proof of the high-resolution property of minimum-phase group delay function for 

multi-pole systems. The Ca2+ signal can be interpreted as the response of a train of impulses 

to a decaying exponential. We observe that the decay rate of the exponential varies with the 

Ca2+ indicator. We do not model this interpretation, rather use it in a pure signal processing 

fashion in GDspike. The post-processing power of GDspike is illustrated by processing the 

output of MLspike algorithm. We also compare the performance with STM, which estimates 

its parameter by a data-driven approach whereas there are no task-specific assumptions in 

the proposed approach. It is suitable to apply GDspike in an online fashion as it is 

unsupervised.

The paper is organised as follows. Section II provides a novel analysis of the high-resolution 

property of the group delay (GD) function for multi-pole systems and motivates the use of 

group delay for spike estimation. In Section III, an attempt is made to interpret the Ca2+ 

signal using an all-pole model. The resolving power of GD functions for multi-pole signals 

is explained. Experiments with different indicators are studied in detail in Section IV. 

Baselines and evaluation metrics are also discussed. The results are analysed in Section V. 

Section VI discusses the conclusions of this paper.

II. Group Delay Analysis

In this Section, we establish that group delay functions can be exploited for the analysis of 

Ca2+ signals. We first review the theory of group delay functions. Then, we briefly discuss 

the mathematical model for the Ca2+ signal based on the observation from [11]. Given the 

properties of Ca2+ signals and group delay functions, we attempt to make a correspondence 

between Ca2+ signals and GD functions. The group delay-based processing step does not use 

domain information. It is primarily a filtering step that enhances the peaks of the 

fluorescence signal owing to the high-resolution property of GD functions.
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Group delay-based representation for various types of signals has been studied extensively 

[21–23]. The group delay function τ(ejω) of a discrete-time signal x[n] is defined as:

τ ejω = −
d θ ejω

dω
(1)

where θ(ejω) is the continuous phase spectrum. It has been observed that group delay 

functions possess a high-resolution property [24]. Group delay-based features have been 

found to be effective in various speech signal processing tasks such as pitch and formant 

estimation, speaker recognition and verification, syllable segmentation and onset detection 

& source separation from music [10, 25–29]. Magnitude based representations of various 

types of signals have been extensively studied [30]. Nevertheless, the phase spectrum-based 

analysis is seldom found in the literature [31, 32]. It is only recently that phase-based 

representations are getting traction [33]. The computation of the group delay function 

requires the unwrapped phase function (1). When a discrete-time signal x[n] is minimum-

phase, the GD can be computed as [34]:

τ ejω =
XR ejω Y R ejω + XI ejω Y I ejω

X ejω 2 (2)

where X(ejω) and Y (ejω) denote the discrete-time Fourier transforms of x[n] and nx[n], R 

and I denote the real and imaginary parts, respectively. Although this computation does not 

require the unwrapped phase, for practical signals such as speech, the group delay function 

is ill-behaved due to the presence of zeroes that are close to the unit circle. Whenever |

X[ejω]|2→ 0, τ(ejω) becomes spiky. This issue is addressed in the modified group delay 

function (MGD) where the denominator in (2) is replaced by S(ejω), where S(ejω) is a 

cepstrally smoothed version of X(ejω). The MGD is an approximation to the minimum-

phase signal and is used for various application including formant extraction, speech 

recognition, speaker verification, pitch extraction, and spectrum estimation [28, 34, 35]. For 

a single resonator system, the ratio of the value of the peak in the magnitude spectrum to the 

value at a frequency that is n dB below the peak is always lower than that of the 

corresponding minimum phase group delay spectrum [24]. A brief review of the analysis is 

provided here for completeness:

Consider a single pole system in the Z-domain,

X(z) =
1

z − z0 z − z0*
(3)

When evaluated on the unit circle:

X ejω =
1

ejω − e
−σ0 + jω0 ejω − e

−σ0 − jω0 (4)

The expression for the magnitude spectrum is given by:
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X ejω = P × Q (5)

where

P =
1

1 + e
−2σ0 − 2e

−σ0 cos ω − ω0
(6)

Q =
1

1 + e
−2σ0 − 2e

−σ0 cos ω + ω0
(7)

Considering P alone, the maximum value, 
1

1 − e−σ0
, occurs at ω = ω0. To compute the n dB 

bandwidth, we compute the angular frequency (ω1) at which the magnitude spectrum falls to 
1
N

 of its maximum value, i.e

1

1 + e
−2σ0 − 2e

−σ0 cos ω1 − ω0

=
1

N 1 − e
−σ0 (8)

Where, N = 10
n
20 . Solving for ω1,

ω1 = ω0 ± cos−1 N2 +
1 − N2

2
e

σ0 + e
−σ0 (9)

The n dB bandwidth is the interval with ω0 at the center, and is given by

ωndB = 2 cos−1 N2 +
1 − N2

2
e

σ0 + e
−σ0 (10)

We repeat this analysis for the group delay spectrum. The GD for the system defined in (3) 

is given by

GD(ω) =
1 − e

−σ0 cos ω − ω0

1 + e
−2σ0 − 2e

−σ0 cos ω − ω0

+
1 − e

−σ0 cos ω + ω0

1 + e
−2σ0 − 2e

−σ0 cos ω + ω0

(11)

Differentiating the first term in (11) and equating to zero, we find that it displays the same 

abscissa and ordinate for the maxima as the magnitude spectrum. Solving for the n dB 

frequency,

ω1 = ω0 ± cos−1 (1 − N) + Ne
−σ0 + e

−2σ0

Ne
−2σ0 + e

−σ0(2 − N)
(12)

Hence, the n dB bandwidth is given as
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ωndB = 2 cos−1 (1 − N) + Ne
−σ0 + e

−2σ0

Ne
−2σ0 + e

−σ0(2 − N)
(13)

Since n dB bandwidth need not exist for all possible pole locations (i.e. if the half power 

amplitude is smaller than strength at ω = 0 and ω = π), we discuss its existence for the case 

of GD and magnitude spectrum separately. The argument of cos−1 function in (10) and (13) 

is bounded by [−1, 1]:

We obtain e−σ0 ∈
N − 1
N + 1

, 1  as the interval for consideration of n dB bandwidth [24]. We 

consider the value of the GD function at the n dB bandwidth of the magnitude spectrum. 

Substituting for (9) in the first term of (11),

τ ejω =
1 + N2 + e

−2σ0 N2 − 1 − 2N2e−σ

2 N2 1 + e
−2σ0 − 2N2e

−σ0
(14)

The magnitude spectrum at the same frequency was shown to have a value of 
1

N 1 − e−σ0
 in 

(10). The difference between this value and that of the GD spectrum in (14) is given by:

1

N 1 − e
−σ0

−
1 + N2 + e

−2σ0 N2 − 1 − 2N2e−σ

2 N2 1 + e
−2σ0 − 2N2e

−σ0
(15)

The numerator and denominator are then obtained by taking the L.C.M of the two terms of 

(15) as,

2 N2 1 + e
−2σ0 − 2N2e

−σ0

N 1 − e
−σ0 2 N2 1 + e

−2σ0 − 2N2e
−σ0

−
N 1 − e

−σ0 1 + N2 + e
−2σ0 N2 − 1 − 2N2e

−σ0

N 1 − e
−σ0 2 N2 1 + e

−2σ0 − 2N2e
−σ0

(16)

The denominator of Equation (16) is positive. The numerator can be expressed as,

e
−σ0[Ne

−2σ0 + N3 + N + 2N2 e
−σ0 + 3N3 − 4N2 + N ] − N N2 − 2N + 1 (17)

The expression inside [.] is obtained as a quadratic expression in e−σ0, whose value is 

positive for the given range of e−σ0. This is explained below,

Factoring out N from the previous equation,
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e
−σ0 e

−2σ0 + N2 + 1 + 2N e
−σ0 + 3N2 − 4N + 1 − (N − 1)2

(18)

e
−2σ0 + (N + 1)2e

−σ0 + 3N2 − 4N + 1

N − 12
(19)

Showing Equation (18) as positive is same as showing (19) greater than 1. Substituting the 

minimum value of e−σ0 in the above Equation,

≥

(N − 1)2

(N + 1)2
+ (N + 1)(N − 1) + 3N2 − 4N + 1

N2 − 1

(20)

Equation (20) is less than or equal to Equation (19) since (a − 1)2 ≤ a2 − 1, and 
N − 1
N + 1

 is the 

minimum possible value of e−σ0.

1 +
N − 1

(N + 1)3
+

3N2 − 4N + 1

N2 − 1
(21)

1 +
N − 1

(N + 1)3
+

(3N − 1)
N + 1 (22)

1 +
3N3 + 5N2 + 2N − 2

(N + 1)3 (23)

1 +
3N3 + 5N2 + 3N + 1

N3 + 3N2 + 3N + 1
−

1

(N + 1)2
−

2

(N + 1)3 (24)

For the second term in Equation (24), every term in the denominator is less than or equal to 

the corresponding term in the numerator. Hence, the value of this term is > 1. Third and 

fourth terms are with values less than one and are subtracted from the equation. For the 

minimum N value (N=1), they achieve a maximum value of 0.5. The value of Equation (24) 

is strictly greater than 1.5 (1+1−0.5). Hence, the numerator of Equation (17) is positive. i.e, 

the n dB value of the magnitude spectrum is greater than the GD value (calculated at n dB 

bandwidth of the magnitude spectrum). Hence, n dB bandwidth of GD is always smaller 

than the magnitude spectrum.

In the following subsections, a theoretical analysis of GD is presented for multi-pole systems 

to show that the property of GD functions is preserved for multiple peaks as well. This is a 

widely-used concept in signal processing. However, this is the first generalised proof of the 

high-resolution property for minimum-phase multi-pole systems. In the proof, we are only 

considering a multi-pole system of finite order. The proof is limited to real signals where the 
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complex poles are always in complex conjugate pairs. We do not consider systems with 

infinite order poles. This is because real signals have rational and factorisable polynomial 

functions. The Ca2+ signal can be thought as the response of an impulse train to a cascade of 

resonators. We later use this property to illustrate the benefit of using group delay for spike 

estimation (II-C). We consider two different combinations of single pole systems that result 

in multi-pole systems here: i) a cascade connection of resonators, and ii) a parallel 

connection of resonators. The GD and the magnitude spectrum decay monotonically from 

the resonance frequency (or pole) to distances away from the pole. We already know that for 

a single-pole system, the GD decreases faster. Thus, for any multi-pole system which is 

represented as an addition of individual poles, the overlap between the individual GD spectra 

is less than that between the individual magnitude spectra. Therefore, the GD spectrum will 

have higher pole-resolution than the magnitude spectrum. In the following subsections, we 

represent multi-pole configurations as the addition of single pole systems to validate the 

high-resolution property for multi-pole systems.

A. Group Delay Analysis for a Cascade Connection of Resonators

Consider an all-pole system defined by the transfer function in Z domain as:

H(z) =
1

1 + ∑i = 1
k/2 aiz

−i (25)

It is assumed that H(z) can be decomposed into a set of rational polynomials of the form 

P(z)/Q(z). The signal is assumed to be real. Thus P(z) and Q(z) can be further factored into 

complex conjugate order 2 polynomials.

H(z) = G ⋅
z − z1 z − z1* … z − zk/2 z − zk/2*

z − P1 z − P1* … z − Pk/2 z − Pk/2*
(26)

where, G is the gain constant and zi, i = 1, …, k/2 correspond to indices of the zeroes, and 

Pi, i = 1, 2, …, k/2 are the pole indices. An all-pole system with an even number of poles is 

represented by,

G ⋅
zk

z − z0 z − z0
* z − z1 z − z1

* … z − zk/2 z − zk/2
*

while a system with an odd number of poles is given by,

G ⋅
zk

z − z0 z − z0
* … z − zk − 1/2 z − zk − 1/2

* z − zk

where, (*) is the complex conjugate representation and zk is the only real pole of the system.

Considering a unity gain constant and assuming that the poles occur in conjugate pairs 

(corresponding to that of resonances that are not on the real axis),
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H z =
1

1 − z0z−1 1 − z0
*z−1 … 1 − zK/2z−1 1 − zK/2

* z−1
.

Assuming that the system is obtained as a product of rational one-pole/two-pole systems, by 

partial fractions, the frequency response can be represented as a summation of individual 

responses of each single pole system,

H(z) =
Az−1 + B

1 − z0z−1 1 − z0*z−1
+

Cz−1 + D

1 − z1z−1 1 − z1*z−1
+ … (27)

where, A, B, C and D are constant coefficients.

Each term in (27) corresponds to a pair of complex conjugate poles, a pole from each pair 

belongs to 0 to π or 0 to −π. For every single pole system in the given H(z), the magnitude 

spectrum has a lower resolution than the GD spectrum [24]. If the system responses do not 

overlap significantly, the overall group delay function can be considered to be an addition of 

the responses of individual poles. Hence, for a cascade connection of resonators, group delay 

has a higher resolution when compared to that of the magnitude spectrum.

For a cascade connection of single pole systems, the poles are added in the group delay 

domain. This additive nature also contributes to the high-resolution property. Figure 2(left) 

shows an example of the magnitude and GD spectra for a cascade connection of two 

resonators. The pole locations are at angular frequency locations π/8 and π/2 and have a 

similar bandwidth factor of 0.9. It can be seen that the peak locations are sharper in GD 

domain. Considering the group delay representation of the individual pole (first term in 

(11)), it has a maximum value of 1 − e
−σ0 at ω = ω0. This decays at values of ω away from 

ω0 owing to cos(ω – ω0). The cos(ω – ω0) is positive around the pole location as 

e
−σ0 ∈ 0.1715, 1  and causes the response to die off within a range of π/2.

B. Group Delay Analysis for a Parallel Connection of Resonators

For a parallel connection of resonators, the Z-transform is the addition of individual Z-

transforms. Considering a system obtained by the addition of two single pole systems,

H(z) =
α1

1 − a1z−1
+

α2

1 − a2z−1 (28)

where, αi, i = 1, 2 is the gain factor associated with the pole ai = e−σi+jωi We only consider 

one of the complex conjugate poles for analysis (similar to the single pole analysis in 

Section II). Computing the LCM (least common multiple), (28) can be converted to a 

cascade of resonators again.

H(z) = α1 + α2
1 − C1z−1

1 − a1z−1 1 − a2z−1
(29)

where the constant C1 is given by,
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C1 =
α2a1 + α1a2

α1 + α2
(30)

Now, (29) can be reduced by partial fractions to,

H(z) = α1 + α2

a1 − C1
a1 − a2

1 − a1z−1
+

C1 − a2
a1 − a2

1 − a2z−1
(31)

Considering equal gain factors (α1 = α2 = 1), Equation (31) has the same form as Equation 

(27) and a similar analysis should hold.

This analysis can be carried out without using partial fractions as well. The GD spectrum of 

the system shown in Equation (29) can be written as,

GD(H(z)) = GD 1 − C1z−1 + GD
1

1 − a1z−1
+ GD

1

1 − a2z−1 (32)

Equation (32) shows that the overall GD of the system is the summation of GD of single 

pole/zero systems. The high resolution property is valid for both single pole and single zero 

systems and the bandwidth analysis will be the same. The zero will never coincide with pole 

as it gets introduced as an artifact of the addition of poles. Hence the overall GD has a high 

resolution property than the overall frequency response (Equation (29), z = ejω).

Figure 2(right) shows an example of the magnitude and group delay spectra for a parallel 

connection of two resonators. Pole locations are at frequency locations π/4, π/3 and with 

bandwidth factors of 0.9 and 0.7, respectively.. It can be seen that the peak locations are 

sharper in GD domain for a parallel connection of two poles. This interpretation can be 

extended for multiple resonators by considering the multi-pole system as obtained by 

addition of two systems which in-turn are parallel resonators by themselves.

GD domain representation for parallel connection of two resonators [36] is given by,

∑
i = 1

2 2ai ai
2 + bi

2 − ω2

ai
2 + bi

2 − ω2 2
+ 4ω2ai

2
(33)

where the pole is represented by ai±jbi. Substituting the polar form for each of the poles, the 

numerator becomes

2e
−3σ0 + 4e

−σ0 cos 2 ω − ω0 (34)

which can be written as,

C1 + C2 cos 2 ω − ω0 (35)
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This equation suggests that the decay from the peak position is proportional to cos(2x) 

where x corresponds to the distance from the pole. The group delay exhibits high-resolution 

property for various peak heights (e−σi) and decay rates (cos(ω – ωi)) with e−σ ∈ [0.1715, 

1]. This is of great significance for any peak picking task and especially for Ca2+ 

fluorescence signals wherein the superposition of responses leads to hardly resolvable peaks.

C. Motivation for spike estimation

Extracting the timing information is of significant interest in the context of audio signal 

processing as it reveals various temporal acoustic information. In speech processing, the 

time-related source characteristics can be extracted using peak-picking algorithms [35]. The 

extraction of timing information is explicit in music information retrieval (MIR) research for 

applications such as rhythm analysis, beat tracking, meter extraction and sound synthesis/

analysis [37]. In the context of spike estimation, the location and, the rate of neuronal firing 

carries the information.

Ca2+ fluorescence signals represent the neuronal activity over a period of time. This time 

series signal contains the spike time information embedded within the signal. However, as it 

is corrupted by noise, the exact response of Ca2+ to a spike and the fluorescence protein to 

Ca2+ response is unknown and obtaining the spike timing of these signals is a cumbersome 

task. The changes of the short-term energy envelope for each syllable in speech and changes 

in the derivative envelope for each onset in music are similar to the fluorescence changes 

which correspond to the neuronal firing (see Figure 3), although the duration of each of 

these events is different. In speech signals, a syllable is the smallest meaningful production 

unit. Similarly, for a percussion instrument, a stroke is the fundamental production unit. In 

neuronal signals, an action potential is a fundamental unit which we observe as a peak in the 

Ca2+ signals. Depending on the kinetics of Ca2+ binding to the indicator dye or protein, this 

peak can have various rise and decay time constants. We observe that all these signals have 

an onset, an attack, and a decay. However, it is different from audio signal processing in the 

following aspects: the spectrum is richer and has several frequency components with 

variable characteristics across time, whereas the envelope of the audio signal is adequate to 

determine the syllable boundaries in speech, the sampling frequency is much lower in Ca2+ 

signals, and the dynamic range of the input varies significantly for Ca2+ signals. As shown in 

Figure 3, GD-processing leads to sharper peak locations for these tasks. The bottom panel 

(b) and (c) shows GD, and (a) shows inverse of GD as we are looking for valleys rather than 

peaks in the syllable segmentation task.

The change in Ca2+ concentration owing to a single spike and the resulting fluorescence 

change can be thought of as a single pole system. The responses to a set of spikes are added 

together in the time domain, and their Fourier representation should also be an addition of 

individual responses. We interpret the Ca2+ fluorescence signal as a Fourier representation of 

superposition of responses to a set of spikes. The impulse response of a two-pole system 

shown in Figure 2 in Subsection II-B can be interpreted as the response of Ca2+ fluorescence 

to two independent spikes. It is the impulse response of a two pole system with an 

exponential decay for each of the poles for practical bandwidths. Though this interpretation 

considers a simple model, it enables us to understand the power of GD domain for spike 
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estimation task. It should be noted that we use model only for estimating the indicator 

bandwidths and thereby interpreting the Ca2+ signals as a one-sided magnitude spectrum.

III. Group Delay for spike estimation

We propose a non-model-based signal processing algorithm for spike estimation from Ca2+ 

fluorescence signals. The approach relies on the ability of the GD function to resolve 

closely-spaced spikes. The fluorescence signal is considered as the positive frequency half of 

the magnitude spectrum. This assumption of Ca2+ signals makes it similar to a formant 

structure in speech signal with a centre frequency and bandwidth. This is justified by (a) the 

correspondence between the Ca2+ decay and practical single pole bandwidth and, (b) the 

feasibility of group delay-based smoothing on this magnitude spectrum. Minimum-phase 

group delay representation not only amplifies the sharp and tiny fluorescence changes but 

also restricts the peaks for large fluorescence changes. Since we interpret the Ca2+ 

fluorescence signal as a magnitude spectrum representation of the addition of responses to 

several spikes, the fluorescence decay time-constant should be in a resolvable range in the 

frequency domain. In this Section, we consider different time constants for the decay and 

show that group delay analysis indeed provides a high resolving capability.

The decay of Ca2+ concentration with respect to time after the occurrence of a spike is 

exponential in nature. This is modelled in [11] as:

ct = e−Δt/τct − 1 + nt (36)

where, nt is the number of spikes between time t − 1 and t. The exponential decay of Ca2+ 

concentration depends on the time constant (τ) of the indicator being used. The fluorescence 

change owing to the change in Ca2+ concentration is modelled as a non-linear function of 

Ca2+ concentration ct. Hence, the fluorescence change (∆F) will be slower than the 

corresponding Ca2+ concentration change. The ∆F thus has a larger time constant than the 

Ca2+ decaying time constant. Table I gives the time constants for each of the indicators as 

obtained from manual calibration (Supplementary material from [11]) and their 

corresponding bandwidths in the frequency domain.

The value of e−σ denotes closeness of the pole to the unit circle and is inversely proportional 

to the bandwidth. The e−σ value obtained for the fastest indicator is 0.268. The bandwidth of 

a pole location e−σ+jω is obtained by its correspondence with the decaying exponential. This 

suggests that the decay rate for any of the indicators is no more than 0.76s±0.17s. GD 

processing will work provided the GD function has a better resolution for corresponding 

bandwidths. In single pole analysis (Section II), it was observed that the high-resolution 

property holds good when e−σ ∈[N − 1/N + 1, 1] [24]. For practical bandwidth 

considerations (3 dB), e−σ ∈[0.1715, 1]. In the context of the indicators, it can be seen that 

the bandwidth lies in the interval [0.26,0.59], a subset of the interval obtained in [24]. 

Hence, we can consider the input signal as the magnitude spectrum and the application of 

GD processing is justified. Using decay rate as bandwidth, spectra of resonances 

corresponding to each of these indicators is plotted in Figure 4.
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When a neuron is in an excited state, a spike is observed. The response of an indicator 

bonded with Ca2+ ions to a spike can be thought of as a convolution of an impulse with the 

indicator. The observed Ca2+ fluorescence at a neuron can be interpreted as the 

superposition of response of the indicator to a train of impulses. Figure 5 shows a synthetic 

Ca2+ signal obtained as the convolution of impulse train and impulse response of the Ca2+ 

concentration (36). Here, we consider a simple exponential model with zero rise time (onset 

and attack at the same temporal position) for the impulse response of calcium concentration. 

For each of the spike positions, the corresponding bandwidth representation (e−σ = 0.90) is 

lower than the maximum allowable bandwidth (e−σ = 0.17) in the magnitude spectrum 

which makes the GD analysis feasible. The bottom panel shows the corresponding GD 

representation which is sharper than the magnitude spectrum. This interpretation considers 

the nature of group delay response to an ideal condition, not considering the baseline 

variations or noise. Nevertheless, it is effective as the aim of this observation is to interpret 

GD processing for spike estimation. The bandwidth interpretation is valid for indicators with 

non-zero rise times as well since the Ca2+ fluorescence signal is modelled as a magnitude 

spectrum.

Figure 6 shows the block diagram of the proposed approach. The Ca2+ signal which encodes 

the spike information is the input to the algorithm. We consider the signal as a magnitude 

spectrum, since it is a positive function and the decay rate matches with the required 

bandwidths for group delay-based smoothing operation. A minimum-phase equivalent GD 

function is then obtained for this magnitude spectrum [28] by taking the causal portion of 

the inverse Fourier transform of the Ca2+ signal, after making it symmetric with respect to 

the magnitude axis. It is observed that the location of the spikes is characterised by a 

transition from positive to negative. A triangulation step is performed to make these peaks 

positive. Mid-point of every high-to-low change of the signal in the group delay domain is 

considered as a peak and the saddle points (where the first order difference is zero) are 

considered as the zero positions, as shown in Figure 7. These positions are connected to 

form isosceles triangles of various heights. The red boxes indicate the transition and the 

corresponding isosceles triangle. It should be noted that no threshold is needed to get this 

spike information.

A. Algorithm

As stated in II, the group delay-based processing step does not use any domain information 

and is a filtering step to enhance the peaks of the Ca2+ signal. Most algorithms in the 

literature process the fluorescence signal to obtain a signal in which the spike locations are 

enhanced. In our algorithm, the signal is considered as a spectral signal. Hence, it is 

regarded as the one-sided magnitude spectrum of a hypothetical signal (Figure 8(a)). This 

assumption is valid not only as the decay range falls in the practical bandwidth for high 

resolving capability, but also as the hypothetical signal is minimum-phase which makes 

group delay processing feasible. The group delay signal is obtained using (2) (Figure 8(b)). 

This signal has information about the spike position. This is refined using triangle 

approximation step to obtain the detection function (Figure 8(c)). This detection function is 

similar to the spiking probabilities or spiking information.
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Algorithm 1 GDspike Algorithm

Input: Ca2+ Fluorescence signal C[n].

Output: Spike information signal Sp[n].

 1: Consider the fluorescence signal, C[n] = positive side of absolute of (F.T{h[n]}).

 2: Calculate the hypothetical signal, h[n] = F−1(C[n] + C[−n]).

 3: Take h[n], n > 0. This is limited by window scale factor (WSF), an empirical parameter1. 

ℎ1[n] =
lengtℎ(ℎ[n])

W S F
.

 4: Compute group delay, GD[n] = Group delay of minimum-phase signal, h1[n] using Equation 2.

 5: Triangulation step: Find the zero crossing positions i in GD′ [n] (∀i ∈ N) and compute 

Sp
2i + 1

2
= abs(G D[i] − G D[i + 1]) and Sp[i] = 0,∀i.

B. GDspike as a post-processing algorithm

As GD is actually agnostic to the signal, it can be used as a post-processing step in the 

existing algorithms with spike information as the output. These signals are less-noisy in 

nature and are correlated more with the actual spike train than the fluorescence signal. Use 

of GD to post-process these signals enables sharper spike locations at the output. We show 

that the GDspike also can be used as a post-processing step for the best performing signal-

processing method (in spikefinder challenge [16]) for OGB data: MLspike, resulting in 

better spike detection. GDspike performs consistently well for GCaMP indicator-based 

fluorescence signals. The GD based post-processing step is therefore not required for these 

datasets (Sl No. 1–5 in Table II). GDspike is applied as a post-processing method on the 

MLspike algorithm for the OGB datasets. The enhanced spike signal obtained using 

MLSpike is used as the input for GDSpike. Given the property of GDSpike, the peaks are 

further sharpened leading to more accurate spike locations.

IV. Experimental Evaluation

A. Data collection procedure

The datasets for experimentation are obtained both from publicly available datasets and from 

the authors of MLspike. The procedure for collection of the fluorescence signals uses two-

photon imaging technique. Cells are labelled either with a virus carrying a genetically 

encoded calcium indicator (GECI) or with a calcium indicator dye such as Oregon Green 

Bapta (OGB) injected into the cortex. The calcium sensor enables neurons to show 

fluorescence changes, due to variations in calcium concentration with each action potential. 

The fluorescence change is captured, and a sequence of images consisting of a population of 

neurons is obtained. This is reported in detail in [11]. The experiments are repeated across 

trials. Electrophysiology recordings are performed simultaneously to obtain the ground truth 

for evaluating the performance. Different scanning methods lead to various sampling rates of 

the Ca2+ fluorescence imaging. Data is acquired using either acousto-optic or galvanometric 

1Uniformly across various domains, it has been observed that a WSF of 4 works
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scanning methods. The dataset includes multiple brain areas (visual cortex, hippocampus, 

and barrel cortex) and different species of animals (rats and mice).

B. Datasets used

A publicly available dataset2 contributed by Svoboda lab, at Janelia Research Campus [8, 

38, 39] and four other datasets [11] were used to evaluate GDspike. The spikefinder 

challenge [16] had some of these GCaMP and OGB datasets. Spike finder challenge signals 

were pre-processed to remove linear trends. We use the raw, unprocessed signals for our 

analysis. The dataset we use is a larger dataset as compared to the spikefinder evaluation 

dataset. The datasets 1–5 (Table II) are identical to the ones optionally used for training in 

the spikefinder contest, though without preprocessing. The datasets are chosen such that they 

correspond to different areas of the brain, different experimental setup and, fluorescence 

colours. In total, we have considered nine test datasets. The details of the datasets are given 

in Table II. The datasets 1–5 and 9 in Table II are collected from the neurons of in vivo mice 

visual cortex and use GECI proteins. Other datasets are collected using OGB indicators (Sl 

No. 6–8 in Table II) and also include mouse invitro and awake setup. The ground truth is 

recorded at a very high sampling rate ≃ 10 kHz compared to the slowly varying Ca2+ 

fluorescence signal which is recorded at a sampling rate, ranging from 15 Hz to 100 Hz via 

two-photon imaging. Following the protocol used in spikefinder challenge [16], the signals 

are re-sampled to a uniform sampling frequency of 100 Hz and the evaluations are 

performed at 25 Hz (equivalent to a bin width of 40 ms) on the spike information signal.

C. Algorithms considered for comparison

The algorithms used for comparison vary from supervised [15], models based on physiology 

[11] and de-convolution-based [14] approaches. The objective of this work is the proposal of 

a real-time signal processing based approach. The comparison is therefore made with the 

most popular algorithm (Vogelstein), best signal processing (MLspike) and, the baseline 

(STM) algorithms of spikefinder challenge [16]. Supervised baseline method (STM) uses 

Poisson distribution for modelling the spike information whereas MLspike uses a 

biophysical model consisting of a noise and baseline fluorescence modelling to estimate the 

most likely spike train. We used the original version of the algorithm presented in [11]. The 

Vogelstein de-convolution algorithm is a popular signal processing algorithm for spike 

estimation. It has been shown in [15] that the STM method outperforms other methods such 

as Peeling [3], Sequential Monte-Carlo [5], constrained de-convolution [40], and other 

algorithms used for comparison in [15].

D. Evaluation Metrics

1) Correlation: Correlation measures the similarity of the two signals by considering the 

overall shape of the spike information signal. It is a commonly used evaluation measure [11, 

15] and the primary evaluation measure used in the spikefinder challenge. In this metric, 

between every sample of the original and the estimated spike information, the Pearson 

correlation coefficient is calculated. We use 40 ms as the bin-width for obtaining the 

2http://crcns.org
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correlation following the standard framework [11, 15, 16]. Correlation can not lead to an 

interpretation of spike rates or counts [15], we therefore include other measures as well.

2) Area Under the ROC Curve (AUC): The AUC is the area covered between the true 

positive rate (TPR) and the false positive rate (FPR) in a Receiver Operating Characteristic 

(ROC) and is also used as a measure in spikefinder challenge [16]. The area is obtained by 

changing the threshold of the spike information signal for selecting the appropriate threshold 

or operating point. AUC is a measure of how well a parameter can distinguish between 

positive and negative instances. AUC is not a good measure for methods that directly result 

in the binary spike train. We use the signal obtained after triangulation step as the spike 

information for computing the AUC. We compute AUC at 40 ms bin width (equivalent to 

25Hz).

3) F-measure: The harmonic mean of sensitivity and precision is called F-measure. 

Precision is the measure of relevance of the selected spikes. Sensitivity is the fraction of true 

spike positions detected. For this measure, the input needs to be in the discrete format. For 

computing the F-measure, the output is converted to discrete spikes by thresholding the 

spike information signal. We calculate F-measure between every sample (at 10ms bin width) 

based on the protocol used in [15]. The distance between the predicted spikes and the 

ground truth is computed using a dynamic programming algorithm [41] which penalises the 

distance for insertions, deletions, and shifts of spikes [11]. Hence, this F-measure is a 

measure of the exactness of the spike with respect to the ground truth at a high-resolution 

(100 Hz). We use the discrete output of MLspike algorithm for calculating this measure. For 

Vogelstein and STM, an optimum global threshold is experimentally chosen for the given 

datasets. Since these algorithms were designed to generate spike information, we report the 

results on the best-possible threshold values. For GDspike, we threshold the signal at a 

global value computed based on mean and standard deviation of the spike information signal 

averaged over all datasets (not the best possible threshold), although GDspike is also an 

algorithm designed to generate the spike information. This threshold is used for comparison 

with the baselines. We also compute the F-measure using dataset-wise thresholds, (a) 

dataset-wise 1: by 3-fold cross-validation on 60% of each dataset to determine the threshold 

(Mean + X × Standard Deviation) and then testing on held out data (40%) and (b) dataset-

wise 2: by using 20% of the data to determine the threshold (with maximum F-measure) and 

testing on 80% of the data (averaged over 5 random sets).

E. Results and Analysis

Table III shows the average performance of GDspike in comparison with the baselines. It 

outperforms Vogelstein algorithm for all of the evaluation metrics. It also has second best 

average AUC. It has better correlation & AUC than MLspike. MLspike had the best 

correlation in spikefinder challenge. This might be because of (a) using the a-posteriori 

probabilities rather than maximum-a-posteriori spike trains and (b) 5 or 6 parameter 

tweaking based on the training datasets (supplementary material of [16]). This provided 

better results than auto-calibration, but the parameters need to be tuned for each training 

dataset, in the similar lines of [4]. The correlation of spike information with the ground truth 

is limited by the nature of the continuous output in both GDspike and MLspike. Our “de-
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convolved-trace” is the triangulation output. The peak values of triangulation output are 

well-suited to estimate a discrete spike train as the AUC measure suggests. However, the 

shape is very different from the sharp spiking probabilities and this makes the correlation 

worse for GDspike. The authors of MLspike also state that its “estimation accuracy is ranked 

inferior to that of the other algorithms when quantified using correlation”. The average 

correlation between discrete spike train and ground truth is observed to be 0.349 for 

MLspike and 0.262 for GDspike, suggesting that the discrete spike train is important for 

these algorithms. It should be noted that as we are not modelling the spiking process and the 

time delay between the spike occurrence, the corresponding fluorescence change [38] is not 

captured in the GDspike algorithm. This delay is not very relevant for GENIE dataset [4].

Both the Vogelstein and STM (test) runs in linear time. GDspike requires O(nlogn) owing to 

the computation of Fourier transforms. MLspike takes O(nlogn) for dynamic programming 

and additional time for auto-calibration of three parameters. The run-time (in hh:mm:ss) for 

all the 9 datasets on an Intel(R) Core(TM) i7–4930K CPU @ 3.40GHz machine is 00:03:26 

for Vogelstein, 00:02:30 for STM (testing time), 00:04:34 for GDspike whereas it is 

01:00:54 for MLspike. Hence, GDspike is 13 times faster than MLspike. This huge variation 

for MLspike is due to the auto-calibration of parameters. The calibration also requires 

sufficient number of isolated spikes and becomes less accurate at high spiking rates 

(supplementary material- [11]).

Table VI shows the result obtained by GDspike on various datasets (averaged over all the 

trials and cells). The F-measure and correlation are better for GCaMP6s, GCaMP6f and 

GCaMP5k indicators which are slowly varying and, less-noisy, hinting that the spike 

information is easier to threshold. Figure 11 shows the Area Under ROC3. AUC measure is 

consistent across the datasets. Figure 9 shows the spike information obtained by GDspike 

and baseline algorithm on representative examples with GECI and OGB indicators. Dataset-

wise F-measure for each algorithm is shown in Figure 10(Left). The minimum F-measure 

obtained is higher for MLspike and GDspike in comparison with Vogelstein and STM. The 

F-measure for GDspike is not computed on the optimal threshold, rather on a simple rule-

based global threshold obtained by computing the mean and standard deviation. The dataset-

wise thresholding (shown as dataset-wise 1 and dataset-wise 2 in Table IV and discussed in 

Subsection IV-D) provides an improved F-measure. However, to have an unbiased 

comparison, the discrete spikes obtained using the global threshold is used for comparison 

with optimally-thresholded baselines.

Figure 10(Right) shows the correlation measure. STM has the best correlation measure and 

GDspike has the second best. The correlation measure of GDspike and MLspike becomes 

better when it is calculated on the discrete spike train. Thus the spike information signal is 

less-representative of the actual estimation ability of these algorithms. It is important to note 

that GDspike does not require complex modelling of baseline fluctuations and noise to 

perform the spike prediction. STM method seems to provide the best results on average, 

though not consistent across the datasets. The STM approach performs well on the datasets 

similar to the training dataset but suffers when a different dataset to the training set is used 

3Source code, dataset-wise ROC and examples at: https://sites.google.com/site/groupdelayspike
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for evaluation (dataset 4 and 5 in Table II). OGB indicator captures the relative fluorescence 

amplitude change with respect to most of the spikes (unless they occur in bursts) as they are 

faster. GDspike detects most of these spikes. However, it suffers from lower recall owing to 

false alarms for the OGB examples where the fluorescence signal is very noisy. This makes 

GDspike inferior to MLspike and STM for noisy OGB examples. Hence we use GDspike as 

a post-processing step, not as a stand-alone algorithm, for OGB data.

Table VII presents the results of the experiments in which GDspike is used as a post-

processing step on the spiking probabilities obtained using MLspike. Observe that there is an 

improvement in performance on most of the metrics. MLspike modelling results in de-

noised Ca2+ traces and GD enhances the resolution of the peaks. The combined approach 

makes use of the ability of MLspike to detect the precise locations and the ability of group 

delay to convert it to a more resolved shape. This results in larger correlation and AUC 

measures. Figure 9(b) shows this improvement on an example OGB signal. Applying a 

single threshold on the triangulation output is not optimal and results in a reduced F-measure 

compared to MLspike in some cases.

On the contrary to speech/audio applications, in spike estimation, the errors are caused by 

the calibration errors of the receiver and the noise which is inside the measured fluorescence 

signal itself. To validate the performance of GD based processing under various noise 

conditions, an experiment similar to the one shown in [28] can be performed. Since the 

possible noise at the receiver is limited to Gaussian, we mix the fluorescence signal with 

white noise at ratios varying from −10 to +10 dB and report the results. We have not 

considered synthetic signals for performing the experiments because the proposed approach 

is not a model based approach, and the simulation results are usually much different than the 

actual experimental measures [15].

It is observed that the performance degrades gracefully with the addition of white noise. 

Analogue correlation is affected by noise, probably because of the interference in sample 

values are directly reflected in linear correlation value. Other performance measures are not 

much affected and the degradation with respect to SNR is not very significant.

Our experimental evaluation considered multiple evaluation measures, different sampling 

rates of inputs, various brain regions, mouse conditions, indicators and, fluorescence 

colours. The proposed approach is better than Vogelstein with similar computational 

complexity (same O(⋅)). It is inferior to MLspike on the discrete spike train and superior on 

the spike information signal, with lesser time complexity. GDspike is agnostic to the signal 

and can be run in an online fashion.

V. Conclusions

A signal processing technique for spike estimation which is agnostic to the signal is 

presented. The properties of GD function relevant to this task are analysed by modelling the 

Ca2+ traces using a simple all-pole model. An interpretation of group delay-based signal 

processing on Ca2+ fluorescence signals is presented in terms of bandwidth considerations 

and minimum-phase processing. GDspike is evaluated on a set of nine datasets and is 
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compared to three main techniques in the literature in terms of AUC, correlation and F-

measure. The proposed approach outperforms Vogelstein de-convolution algorithm for all of 

the performance measures. It has better AUC and is much faster than the MLspike 

algorithm. In the future, the authors would like to exploit the group delay function as a 

feature for training the machine learning models for spike estimation.
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Fig. 1: 

High-Resolution property of group delay functions compared to the magnitude spectrum
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Fig. 2: 

Resolving power of the group delay function for cascade (left) and parallel (right) 

connection of resonators. (Top) Magnitude spectrum and (Bottom) GD spectrum 

representation for a connection of two resonators.
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Fig. 3: 

Motivation for Group Delay (GD)-based spike estimation. Signal units having an onset, an 

attack, and a decay and its corresponding GD representation are shown. (a) “Va”, a Hindi 

speech syllable (b) “Tha”, a percussive stroke in Mridangam and (c) A Ca2+ fluorescence 

segment generated due to an action potential. The bottom panel shows the minimum-phase 

GD functions extracted from the corresponding signals in the top panel.
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Fig. 4: 

Frequency domain decay interpretation for various Ca2+ indicators
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Fig. 5: 

Group delay representation of a set of exponential with instantaneous rise time (simplest 

case of a synthetic Ca2+ signal)
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Fig. 6: 

Block diagram of the proposed approach

Sebastian et al. Page 27

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7: 

Example of triangulation step.
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Fig. 8: GDspike Algorithm.

(a) A segment of a fluorescence signal, (b) its minimum-phase group delay representation, 

(c) the spike information (used for computation of AUC and correlation), (d) predicted spike 

train (used for F-measure computation), and (d) ground truth. Observe that spike information 

(c) captures the smallest of the changes in the fluorescence signal corresponding to a spike 

position.
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Fig. 9: 

Examples of spike information obtained by GDspike and the baselines with (a) GCaMP6f 

indicator and (b) OGB indicator. The post-processing power of GDspike is demonstrated 

(for OGB in this paper) in (b), where the analog output of MLspike is used as the input to 

GDspike. Observe that combined method picks only the actual spike positions, even if 

MLspike and GDspike cause false positives.

Sebastian et al. Page 30

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10: 

Comparison of algorithms based on (Left) F-measure and (Right) Correlation.
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Fig. 11: 

Dataset-wise ROC for various approaches.
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TABLE I:

Time constants and the corresponding e−σ for various Ca2+ indicators

Measure OGB GCaMP5 GCaMP6s GCaMP6f

τ 0.78s (± 0.37) 1.63s (± 0.55) 1.87s (± 0.35) 0.76s (± 0.17)

e−σ 0.277 0.541 0.586 0.268
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TABLE III:

Comparison with the baseline approaches.

Algorithm Recall Prec. F-measure Corr. AUC

Vogelstein 0.548 0.368 0.292 0.196 0.665

STM 0.762 0.426 0.499 0.335 0.813

MLspike 0.513 0.618 0.433 0.128 0.662

GDspike 0.413 0.687 0.393 0.214 0.680
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TABLE IV:

F-measure with the dataset-wise thresholds on the test set.

Dataset Global Dataset-wise 1 Dataset-wise 2

GCaMP6s 0.58 0.60 0.53

GCaMP6f 0.52 0.52 0.56

GCaMP5k 0.38 0.41 0.39

jRGECO1a 0.32 0.25 0.39

jRCaMP1a 0.29 0.28 0.38

OGB (Weizmann) 0.23 0.47 0.39

OGB (Marsellie) 0.31 0.34 0.47

OGB (invitro) 0.36 0.59 0.51

GCaMP6s (Budapest) 0.56 0.65 0.47

Average 0.39 0.46 0.45
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TABLE V:

Performance of GDspike under white noise at different SNRs.

Measure Clean 10 dB 5 dB 0 dB −5 dB −10 dB

Recall 0.413 0.348 0.347 0.341 0.338 0.369

Precision 0.687 0.657 0.665 0.646 0.648 0.649

F-measure 0.393 0.346 0.350 0.343 0.341 0.332

Correlation 0.214 0.093 0.090 0.082 0.081 0.084

AUC 0.680 0.633 0.622 0.610 0.611 0.608
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TABLE VI:

Performance of GDSpike for evaluation datasets.

Dataset Recall Precision F-measure Corr. AUC

GCaMP6s 0.58 0.72 0.58 0.177 0.74

GCaMP6f 0.50 0.73 0.52 0.168 0.78

GCaMP5k 0.71 0.36 0.38 0.331 0.77

jRGECO1a 0.42 0.40 0.32 0.08 0.62

jRCaMP1a 0.26 0.63 0.29 0.214 0.57

OGB (Weizmann) 0.14 0.95 0.23 0.208 0.59

OGB (Marsellie) 0.22 0.85 0.31 0.147 0.64

OGB (invitro) 0.20 0.94 0.36 0.208 0.67

GCaMP6s (Budapest) 0.69 0.60 0.56 0.394 0.76
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