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Large amount of data is obtained during bridgemonitoring using sensors. Interpreting this

data in order to obtain useful information about the condition of the bridge is not straight

forward. This paper describes a case study of a railway bridge in India and explains how

multi-dimensional visualization tools were used to extract relevant information from data.

Parallel axis plots were used to visually examine the data. Trends and patterns in data

were observed, which were used for more detailed investigation. The case study shows

the complexity in data interpretation even in the case of simple bridge configurations.
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INTRODUCTION

Structures such as bridges are increasingly being monitored for ensuring safety and for taking
appropriate retrofit actions on time. National codes have begun to mandate sensor installation on
large structures (Moreu et al., 2018). Traditionally, measurements are taken during load tests to
compare as-built performance with that expected from the design. Recently, structural responses
have been used for other purposes as well, such as, construction monitoring and occupancy
tracking (Pan et al., 2017; Poston et al., 2017; Harichandran et al., 2019). Conventionally, strain
gauges and accelerometers are fixed on structures with wired connections to data acquisition
systems. Now, camera based non-contact vision sensors have emerged as a promising alternative to
conventional contact sensors for health monitoring (Brownjohn et al., 2017; Feng and Feng, 2018;
Ngeljaratan and Moustafa, 2019). While sensor technology has progressed rapidly, methodologies
for extracting useful information from data and incorporating them into the decision making
process have not matured. Most work on data interpretation focus on removing unwanted effects
from data in order to isolate useful information. For example, Kromanis and Kripakaran (2017)
discuss about separating the effects of temperature from structural response. Zhu et al. (2019)
use Moving Principal Component Analysis (MPCA) for accounting for temperature variations to
detect structural anomalies. Very few researchers have focused on issues related to visualization,
decision making and user interfaces. A few examples include Napolitano et al. (2019), Glisic et al.
(2014), and Zonta et al. (2014).

In many cases, measurements are just used to generate alarms when measured values exceed
the bounds computed using theoretical calculations. This is useful for detecting serious faults and
damage.More sophisticatedmethods involve detecting changes in the dynamic or static response of
structures (Posenato et al., 2010). For example, wavelet analysis has been reported to offer superior
performance especially for low levels of damage (Chouinard et al., 2019). A review of damage
identification methods for bridges is given in An et al. (2019).

However, in many cases, structures that are monitored are not necessarily damaged and might
have gradual deterioration. Here, the challenge is in determining the condition of the structure from
their responses. Traditionally, this is known as the system identification task. System Identification
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is an inverse problem in which the properties of the system are
inferred from the observations of its output.

System identification is widely used in various fields of
engineering including structural engineering. A review of
structural system identification methods is given in Sirca and
Adeli (2012). Major structural system identification approaches
are classified as follows:

• Model Calibration
• Probability based (e.g., Bayesian approach)
• Population based (e.g., model falsification)
• Model-free (e.g., using statistical learning)

Model calibration approach has been widely used for data
interpretation for many years. This approach is also known as
model updating or residual minimization. In this approach, the
right structural model is obtained by minimizing the difference
between measured values and predicted values. One of the major
assumptions in this approach is that the parameter values chosen
governs the difference between measured values and predicted
values (Mottershead et al., 2011).

Even though model calibration is adopted by many
researchers around the world, there are some fundamental
shortcomings associated with this method. Unique solutions
may not exist for inverse problems (Robert-Nicoud et al., 2005a;
Beven, 2009; Raphael and Smith, 2013). Beyond the model
structure within which they are calibrated, the parameter values
may not be physically interpretable (Beven, 2000). So, parameters
calibrated by this approach cannot be used to extrapolate outside
the structure of the model as well as for other models. Residual
minimization method cannot be used in situations involving
presence of systematic bias or simplification of models (Robert-
Nicoud et al., 2005b; Goulet et al., 2013a). Ben-Haim and Hemez
showed that if the model is highly dependent on the test data, it
will result in reduction in robustness and limited understanding
of process (Ben-Haim and Hemez, 2012).

In the Bayesian approach, the prior knowledge of the
parameters is updated using the observations from structural
monitoring by use of Bayesian conditional probability (Beck,
2010). The likelihood function and observed data are used to
update the probability distribution of parameters (Beck and
Katafygiotis, 1998). The Bayesian approach can also be used
for selecting model classes based on the measured data by
comparing their relative credibility (Berger and Pericchi, 1996;
Jeffreys, 1998). Only relative suitability of the model classes
is obtained through this approach. Selection of wrong model
classes in the primary stage cannot be identified by this approach
(Goulet, 2012).

Bayesian approach can accommodate errors in observation
or modeling, and can be applied in cases where the experimental
data is incomplete (Goller et al., 2012). This approach is
extensively used for various applications including structural
identification. In complex scenarios which involve large
uncertainties, development of probability distributions at
measurement locations is extremely challenging (Soman et al.,
2017). Parameters will be subjected to over conditioning when
we try to simplify the probability distribution (Beven, 2000).
To avoid bias in this approach, it is necessary to have complete

knowledge about entire error correlation between locations of
measurement (Goulet et al., 2013a,b).

In the population based approach, the goal is to identify a
set of candidate models that reasonably explain observations.
A model is selected to be a candidate if its predictions match
the measurements at each and every sensor location within the
threshold of modeling and measurement errors. Measurement
errors are estimated using the sensor precision data. Estimating
modeling errors ismore complex and involves specific knowledge
about the domain (Vernay et al., 2015). The falsification process
starts with generating a discrete population of model instances
which are created by randomly (or systematically) assigning
values to parameters of a model class that have uncertainties.
Since a large number of combinations of parameter values
are possible and it is computationally expensive to evaluate
each and every combination, a representative population is
selected as the initially model set. The prediction of each
model in the population is compared with the measurement
at each sensor location and if the difference is greater than
the error threshold, the model is eliminated from the set.
The remaining models are accepted as the set of candidates.
The process does not aim to select a single “correct” model;
instead a set of models whose predictions are consistent
with the measurements are selected. These models are used
to predict the ranges of values of output variables at other
unmeasured locations.

Goulet et al. extended this idea and called it Error domain
model falsification (Goulet et al., 2013a). In this approach, model
instances are falsified when the difference between observed
values and predicted values are greater than maximal plausible
error, determined by errors in measurements as well as modeling.
The falsification criteria involves computation of lower and
upper threshold bounds (Goulet et al., 2013a; Pasquier and
Smith, 2015). The candidate model set is created by those model
instances which are not falsified (Papadopoulou et al., 2014; Pai
et al., 2018).

Model-free approaches do not make use of physics-based
models. Instead, empirical models are created using statistical
data. This includes approaches based on signal processing (Adeli
and Karim, 2000; Zhou and Yu, 2004; Ghosh et al., 2010; Cavadas
et al., 2013; He et al., 2019), Chaos theory (Li et al., 2011; Schoefs
et al., 2011; Sirca and Adeli, 2012) and machine learning (Huang
et al., 2003; Jiang and Adeli, 2003; Yu and Li, 2010; Catbas and
Malekzadeh, 2016).

While researchers have demonstrated the applicability of the
above approaches for various scenarios, several challenges exist.
The data cleaning and pre-processing stage has been mostly
ignored. Engineers need to have a high-level understanding of
the data before detailed models are developed. Visualization
techniques are useful at this stage. This is the topic of this
paper. This paper does not attempt to introduce any new
method for structural monitoring or damage detection. Instead,
the importance of visualization of data prior to applying
quantitative methods is emphasized. The complexity of data
analytics in practical bridge monitoring tasks is brought out
and how visualization techniques help in understanding the data
is illustrated.
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OBJECTIVES AND METHODOLOGY

The overall goal of this work is to illustrate the use of
multi-dimensional visualization tools for data interpretation
prior to creating models. The research methodology consists of
the following steps:

1. Selection of a case study
2. Application of multi-dimensional visualization to extract

features from data
3. Validation of the results from Step 2, using

quantitative methods.

These steps are described in more detail below.

Case Study
The case study chosen here is the Ponneri Steel plate girder bridge
situated near Ponneri railway station, Tamil Nadu, India. The
bridge consists of 6 simply supported sections each of 18.3m span
and 1.88m depth (Figure 1). Each section of bridge is made up
of two built up I sections, transversely connected by X bracings at
regular intervals and longitudinally connected on top flanges by
K bracings.

The first span of the bridge was instrumented with 16
strain gauges and 8 accelerometers as shown in Figure 2.
Accelerometers are fixed at themid span as well as on either sides,
4.6m from the supports. Locations 1 and 2 have 3 accelerometers
each, taking measurements in X, Y and Z directions. Location
3 has 2 accelerometers in the X and Y directions. Stain gauges
are fixed on the top of the bottom flange and bottom of the top

flange at an interval of 2.25m along the span. All the sensors
are installed on the exterior face of the outer girder where access
was available. The strain gauges are numbered from S1 to S16,
out of which S1–S8 are installed at the top and S9–S16 at the
bottom. S1 (top) and S16 (bottom) are near the first support.
The remaining sensors are numbered sequentially from this end.
HBM QuantumX is used for data acquisition with a sampling
frequency of 600 Hz.

Trial runs were conducted after instrumentation. The main
data collection was performed continuously for 10 h. During
this period 31 trains crossed the bridge including 11 express
trains. The measurements were started whenever the train is
seen approaching the bridge. Tests were planned based on the
schedule of trains given by the office of Chief Bridge Engineer,
Southern Railways.

Analysis of strain data collected for one express train is
presented in this paper. Similar conclusions are obtained for
all other trains. The measurements during three stages were
extracted, (a) during the free vibrations while the train is
approaching the bridge (at this time, the train is still not on
the instrumented span) (b) while the train is actually on the
instrumented span c) while the train has left the span.

Visualization Tool
A tool called RRPExplorer (http://www.bennyraphael.com/
RRPX/index.html) was used for visually navigating through the
multi-dimensional data and extracting patterns in data. The tool
uses the concept of parallel axis plots for analyzing trends in data

FIGURE 1 | Ponneri railway bridge. (A) Photo of the bridge. (B) View from bottom. (C) Plan.
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FIGURE 2 | Ponneri railway bridge instrumentation. (A) Elevation. (B) Plan view (sensors are on the exterior face of the outer girder).

(see section Visual Data Interpretation). The concept of multi-
dimensional navigation using parallel axis plots has been used for
tasks such as multi-criteria decision making (Raphael, 2011) and
HVAC design (Pantelic et al., 2012).

Validation of Results
The data patterns obtained in the previous step are validated
using quantitative methods. Statistical parameters such as
correlation and degree of fit in multi-variate regression are used
to confirm the findings.

RESULTS

Challenges in Data Interpretation
If the geometry, material properties, support conditions and the
load are known fairly accurately, the structure can be analyzed
using finite element method and the structural responses can
be compared with the measurements. However, in the present
case, there are too many uncertainties. First of all, the load is
unknown because the number of passengers in the train and the
weight of the train cannot be estimated precisely. Secondly, it is
not the case of simple static loading since the train moves over
the track supported by many wheels. The train load acts on the
bridge through a complex system consisting of rail track, rail pad,
sleepers, ballast, fixtures, and fasteners. Due to the flexibility of
the sleepers, there are vibrations on the track when the wheels

move over it and there might be temporary loss of contact
between the components. The resulting behavior may only be
modeled as a dynamic system consisting of springs and masses.
The stiffness of the springs and the masses affect the dynamic
behavior and the damping parameters are not known. Transient
structural analysis needs to be carried out to get the responses in
this case involving forced vibrations. In order to compare sensor
data with analysis results, relevant features need to be extracted
from the time series of predicted and measured responses.

Initially, the bridge was modeled as a spring-mass system in
which the vehicle and track-system was coupled (Das, 2018).
The vehicle was modeled as a rigid body with 10◦ of freedom.
The rail was modeled as a linear elastic Bernoulli–Euler beam
with finite length, and the bridge decks were modeled as a series
of multi-span continuous Bernoulli–Euler beams. The elasticity
and damping properties of the rail bed were represented by
continuous springs. Time history of strain values were obtained
by simulating this model. The simulation results showed similar
trends as that of real time field data, but the magnitude of strains
were significantly different. The detailed dynamic model was
not useful in providing definite conclusions about the state of
the structure.

Another issue is the large amount of data to be analyzed
(Omenzetter and Brownjohn, 2006), when there are multiple
sensor locations and the sampling rate is high. It is difficult
to assess how well simulations match measurements at all the
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FIGURE 3 | Parallel axis plot of strain data during the free vibration phase. (A) Plot of three data points to show the trend. These data belong to the free vibration

period, when the train is far away from the span, roughly 986m from the edge of the girder. The train was moving at a speed of 17.3 m/s. (B) Data points within a

selected time frame.
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FIGURE 4 | Parallel axis plot of selected strain data during the free vibration phase. (A) Selected data points with low values for sensor S5. (B) Selected data points

with high values for sensor S5.
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time steps and sensor locations. Mean square error or similar
metrics have been used to compare simulation results with
measurements. These metrics convert data at multiple locations
and time into a single number, and is convenient for assessing
the degree of match. However, information about the trends and
patterns in data are lost in the process. Even though, data mining
techniques have been used to extract patterns in data, there are
many proposals and choosing the best methods for a particular
application is not easy.

Visual Data Interpretation
A convenient method of visualizing multi-dimensional data is
through parallel axis plots (Raphael, 2011). In a parallel axis plot,
each variable is represented by a vertical axis, and each value of
the variable by a point on this axis. A given data point consists
of a set of values for each variable and this is represented by a
series of straight lines connecting the vertical axes. In Figure 3A,
the vertical lines represent the strain values from sensors S1,
S16, S2, etc. The axes are arranged such that sensors at the top
and bottom of the girder, at the same longitudinal distance, are
adjacent. The last axis represents the time at which the data is
recorded. Three data points P1, P2, and P3 are shown as lines
having different colors. These represent strain readings recorded
at three different times. This form of representation helps to
understand patterns in the data. For example, it can be seen
that all the sensors have low values at time 3.02 s, and they have
maximum values at time 3.47 s. The sensor values more or less
increase or decrease together.

Figure 3B shows more data points. These correspond to the
strain readings recorded while a train was approaching the bridge
from a distance, that is, the free vibrations induced on the bridge
when the train load was not actually on the bridge. The series of
parallel lines indicate that most sensor values increase or decrease
together, that is, they are correlated. Sensor S5 is an exception
which breaks the trend. Very often, S5 has low values when other
sensors have large values, which is indicated by the lines crossing
each other in the neighborhood of this axis.

Visual inspection of the data using parallel axis plot revealed
two crucial points.

1) Sensors at the top and bottom are either in tension or
compression at the same time. This is not possible using the
simple model of the bridge girder as a simply supported beam
bending about its principal axis (transverse horizontal axis).

2) Sensor S5, which is near the mid-span, undergoes local
vibrations and is not in sync with the other sensors.

The patterns in data were totally unexpected and did not
conform to the initial intuitive model of a simply supported
girder. The only explanation for point 1 is that the bridge
undergoes predominantly transverse vibrations, instead of
vertical vibrations. Only in the case of transverse vibrations, it
is possible to have the same sign of stress at the top and bottom.

The second observation is equally important. It indicates that
the bridge girder cannot be modeled as a simply supported beam
and certain details near the mid span induces local vibrations in
that region. Parallel axis plot helps in visually navigating through
the solution space by selecting regions of interest. Contiguous or
separated parts of the space can be selected for closer examination
by choosing windows with a pointing device. This helps in
studying patterns within selected regions. In Figure 4A, data
points having large negative values for sensor S5 are selected.
These points have high positive values for other sensors. Similarly
points having high positive values for sensor S5 are selected in
Figure 4B. Most other sensors have negative values for these
points. This confirms that there are strong local vibrations near
the mid span.

Closer examination revealed that the girder is spliced at the
mid span using riveted connections (see Figure 5) and there
are cross bracings near the mid span acting like local supports
for the mid part of the girder, during transverse vibrations.
This causes the middle part of the beam to vibrate locally
between the local supports. In Figure 1B, the cross bracings
connecting the top flanges of the two I sections of the bridge
can be clearly seen. There is a possibility of local vibrations
if the rivets on the particular cross bracings near the strain

FIGURE 5 | Ponneri bridge—connection details.
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FIGURE 6 | Parallel axis plot of strain data when the train is on the span. (A) Strain at around recording time 58.1 s, when the front of the train is at the edge of the

girder. (B) Selected data points having high and low values of sensor S4.
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gauge 5 are loose. This might be a plausible explanation for
the abnormal trend in the strain gauge 5. The adjacent sensors
need not show the same results if the remaining cross bracings
have sufficient stiffness and have no defects. Soon after the
measurements, rivets were tested and about 40 loose rivets,
distributed throughout the span, were replaced. The loose rivets
have been identified as the cause of strong local vibrations.
Since the railway authorities had given permission to carry
out the experiments during a narrow window of 3 days, due
to the heavy traffic on the line, measurements could not be
repeated after the rivets were replaced. However, the engineers
have remarked that after the fix, they now feel lighter vibrations
while standing on the refuge platform on the bridge while trains
pass by.

The dynamic behavior described so far is valid only during
the period when the train is on the adjacent span. When the train
enters the span, the vibration patterns change to predominantly
vertical vibrations. The heavy load of the train and its impact tend
to suppress the transverse vibrations. Data taken when the train
is moving on the span is shown in Figure 6A. Inverse correlation
between sensors at the top and bottom are visible through the
lines that cross from large positive regions to large negative
regions of the adjacent axis. This is more prominently visible in
Figure 6B in which middle part of sensor S4 is removed. Even in
this case, it can be seen that the sensor S5 has a different pattern
than S2, S3, and S4.

The possible explanation that the abnormal readings of
sensor S5 might be due to defect in the sensor itself is

FIGURE 7 | Sensor readings at the mid-span when the train enters the span. (A) Vertical acceleration. (B) Longitudinal strain.
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categorically ruled out. All the sensors were carefully calibrated
and checked after the installation. Under heavy train loads,
the maximum strains recorded by S4 and S5 are very close.
Under free vibration conditions, the sensor S5 produce values
that oscillate around a mean value close to zero. Under forced
vibration conditions (when train is on the span), the values
of S5 oscillate around a mean negative value as expected. The
strain patterns just before and after the train enters the span
are compared with accelerometer readings at the mid-span
to check whether the trends are similar. In Figure 7A, the
accelerometer readings show large amplifications around 58.8 s
when the train enters the span. In Figure 7B, it can be seen
that strain values start recording high negative values around
the same time.

The out-of-sync vibrations recorded by sensor S5 are
confirmed by the accelerometer readings as well. During the
free vibration phase, the transverse acceleration at the mid-span
is of the same order of magnitude as the vertical acceleration.
Also, high absolute values of transverse acceleration at the
mid-span correspond to relatively low values on either side.
Figure 8 shows the parallel axis plot of accelerometer readings
at locations 1 and 2. The accelerometer 2 is at the mid-
span. In order to reduce clutter, not all readings are shown;
only accelerations in the vertical and transverse directions
(z and y) are shown. Readings having high absolute values
for accelerometer 2 are shown in the plot. The lines going
down from the first axis to the second correspond to data

points that have high values for the vertical acceleration at
2 and relatively low values at 1. If the vibrations at these
two locations were synchronous, we should see parallel lines
connecting these two axes. Similarly, the vertical accelerations
are also not entirely synchronized. Examining the time axis, it
is noted that the selected points with high absolute transverse
accelerations are fairly uniformly distributed over time. This
means that the vibrations have reasonable regularity with well
defined frequencies.

Analysis of data after the train has left the span yielded the
same conclusions as that of the free vibration phase before the
train reached the span. The anomaly in the strain patterns at
S5 was equally pronounced in this stage as well. This is shown
in Figure 9. Comparing this with Figure 4A, similar trends can
be identified.

Confirmation of Visual Observations
Quantitative statistical methods were used to confirm the
findings from visual observations. Part of the correlation matrix
of sensor values are shown in Table 1, for the data shown in
Figure 3A (free vibrations when the train is approaching). It is
seen that the sensors S1, S2, S3, and S6 are strongly correlated.
Sensor S5 does not have good correlation with any other sensors.

The correlation between sensors at the bottom of the girder,
when the train is on the span is shown in Table 2. Even though
S5 is still weakly correlated with other sensors, the correlation
coefficients have increased compared to Table 1. This is because

FIGURE 8 | Selected accelerometer readings during the free-vibration phase. Only points with large absolute values of A2Y are chosen for display. During the

selected time period, the train is at a distance of 735–98m from the edge of the girder.
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FIGURE 9 | Free vibrations after the train has left the span. Only points having large negative value of S5 are shown. Comparing with Figure 4A, similar patterns

are identified.

the forced vibrations are causing the mid span to move in sync
with other regions, even though, local transverse vibrationmodes
are still present. The correlation of S6 with S1 is also relatively
low. In fact, S6 has relatively high correlation with S5. A likely
explanation is that the location of S6 is also slightly affected by
the transverse vibration at S5.

The correlation between sensors at the top and bottom for
the case of forced vibrations are shown in Table 3. All these
sensors show negative correlation, meaning that, when the top
is in compression, the bottom is in tension and vice versa. Sensor
S5 has relatively weak correlation with its counterpart at the top.
This is because of local vibration component at S5, in addition to
the vertical vibrations.

Multi-variate regression was performed in order to find out
whether sensor data at S5 is related to any other combination of
sensors. It is emphasized that the purpose of regression is not
to predict the value of S5. It is to check whether the readings
from S5 is a linear combination of other sensor readings. That
is, to find out which combination of sensors strongly determine
the values of S5. This gives an indication of the vibration modes.
Pair-wise correlation coefficients do not give this information.
Here, the aim is to select a minimal set of sensors that
mostly explain the data from S5. This is done using the
following algorithm:

Step 1: Start with the number of independent regression
variables n=0. The selected list of variables is empty to
start with.
Step 2: Repeat for each variable, i, that is not yet included in the
selected list

Step 2.1: Perform a regression with (n+1) independent
variables, consisting of variable i and other variables in the
current selected list. Calculate the degree of fit R.
Step 2.2: Keep track of the variable i that causes the largest
increase in R

Step 3: If the R value has improved beyond a threshold (0.02),
add the variable having the highest R to the selected list of
variables, increment n and repeat Step 2.

This procedure selects variables that have the highest influence
on the output variable (S5). It should be noted that, if a certain
variable is highly correlated with an already selected variable,
it will never get selected because the degree of fit will not be
improved. That is, the correlated variable is not able to explain
the variability in data any more than the already selected variable.
Important results for the case of free vibrations are summarized
in Table 4. In Table 4, the first row does not give the highest
fit according to the above algorithm, nevertheless, it is added to
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TABLE 1 | Correlation of sensors when the train is on adjacent span.

S2 S3 S4 S5 S6 S11 S12

S1 0.9951 0.9951 0.9958 0.3437 0.9336 0.8814 0.9164

S2 0.9908 0.9925 0.3468 0.9512 0.9017 0.9326

S3 0.997006 0.353488 0.92619 0.8771 0.9093

S4 0.348253 0.931139 0.8813 0.9139

S5 0.47358 0.5933 0.5705

S6 0.9847 0.9912

S11 0.9939

TABLE 2 | Correlation of sensors when the train is on the selected span.

S2 S3 S4 S5 S6

S1 0.89611 0.775991 0.708709 0.372658 0.546307

S2 0.918461 0.836901 0.465421 0.646226

S3 0.957815 0.584679 0.794523

S4 0.691725 0.886768

S5 0.739625

TABLE 3 | Correlation between sensors at the top and bottom when the train is

on the selected span.

S2–S15 S3–S14 S4–S13 S5–S12

−0.81133 −0.84296 −0.86193 −0.48798

TABLE 4 | Regression with S5 as the output variable.

Input variables Degree of fit (R)

S4, S6 0.288

S12, S13 0.526

S12, S13, S6 0.823

S12, S13, S6, S11 0.857

S12, S13, S6, S11, S7 0.903

show the low degree of fit with adjacent sensors. Even though
S5 is not strongly correlated with any sensors individually, by
adding certain adjacent sensors to the regression equation, the
degree of fit increases to 0.903. That is, the reading at S5 is a linear
combination of the sensors in its neighborhood. The regression
equation is needed to explain this.

The final regression equation is given by Equation (1). From
the regression coefficients, it is noted that, on average, S5 moves
in the opposite direction as the neighboring sensors at the top, S6
and S7. This happens when there are local vibrations between S6
and S7. Furthermore, the coefficients of S13 and S11 are positive,
which indicates predominantly transverse vibrations (both top
and bottom have the same sign of strain).

S5 = 3.815∗S13+ 0.848∗S12-3.708∗S6+ 7.395∗S11

-5.287∗S7+ 8.915 (1)

This is qualitatively explained as follows: During certain time
steps (roughly 52% of the time), S5 is moving in sync with
the neighboring sensors at the bottom, S12 and S13. This
corresponds to predominantly transverse vibrations. At other
time steps, S5 moves in the opposite direction as S6 and S7 (with
negative correlation). This is when the local vibration dominates
the transverse vibration.

DISCUSSION

The primary objective of this paper is to illustrate the
importance of visualization in understanding trends and patterns
in data. Parallel axis plot is a convenient representation for
multi-dimensional data that aids in highlighting important
relationships between variables. In this representation, strongly
correlated variables are indicated by parallel lines. Variables that
break the trend can be detected by the presence of lines that
criss-cross each other. This is clearly visible in the case of readings
of sensor S5 (Figure 3B).

The parallel axis plot permits analyzing subsets of data by
selecting windows along specific axes. This helps to reveal
patterns within data contained in specific regions satisfying
certain conditions. For example, by selecting large negative
values for Sensor S5 (for the selected time window when
the train is not on the current span), it is seen that the
points are more or less uniformly distributed along the time
axis (Figure 4A). This means that large negative strain is
obtained at regular intervals, indicating that the girder is
undergoing vibrations with a fairly well-defined time period.
During these moments of high negative strain for S5, all the
other sensors have mostly positive values, showing that the
sensor S5 is vibrating in the opposite direction compared to
other locations.

By selecting the time window when the train is actually
on the span, definite patterns are found, which indicate
predominantly vertical vibrations (Figures 6A,B). Even here,
mixture of vibration modes are visible through a number of data
points that connect large absolute values of some sensors to low
values of other sensors.

Having identified the patterns described above, it is possible
to perform specific statistical analysis to confirm the findings.
The abnormal vibrations of sensor S5 was confirmed by its low
correlation with other sensors. Mixture of modes of vibrations
is confirmed by multi-variate linear regression which established
that sensor S5 moves partly in sync with S11, S12, and S13, and
out of sync with S6 and S7.

The insights obtained by visual analysis and confirmed
by statistical analysis, provides clues to accurately modeling
the structure for applying more sophisticated quantitative
methods such as system identification. The data patterns
made it clear that the girders might not be modeled as simply
supported beams; riveted splices at the mid-span and the
cross bracings are important in numerically reproducing
the transverse and local vibrations near the mid-span.
Detailed numerical modeling of the bridge is out of scope
of this paper.
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SUMMARY AND CONCLUSIONS

A relatively simple bridge girder exhibits complex vibration
patterns that were not intuitively expected. Themode of vibration
changes significantly when the train is actually on the bridge
compared to the free vibrations induced when the train is
approaching from the neighboring span. The complex behavior
of the bridge is primarily because of defective connections (loose
rivets). This demonstrates the complexities in the condition
assessment of structures. Even when the normal design models
of the bridge are simple, actual as-built conditions might be
very complex. Population based system identification methods
are useful in such cases. Many instances consisting of normal
models and fault models are necessary in order to explain the
sensor data. However, qualitative understanding of the patterns
in the data is necessary even for developing plausible model
classes. Otherwise, critical aspects of the structural behavior
might not be incorporated in the model class. Visual analysis
of data helps in this task, as illustrated using the case study in
this paper.

The limitations of the present study include the following:

• Complex statistical analysis methods have not been used
to extract data patterns. Only correlation coefficients are
computed in this study. Visual examination indicates that
clustering techniques might be useful, but this has not
been attempted.

• Spectral analysis of the measurement data is not reported here.
Frequencies extracted through Fast Fourier Transform (FFT)
show interesting patterns. This is work in progress.
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