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1 Introduction

The J/ψ meson, which decays primarily through strong and electromagnetic interactions,

has been thoroughly studied for decades. However, its weak decays remain elusive. Since

the J/ψ mass is below the DD̄ threshold, the J/ψ resonance is forbidden to decay into a

pair of charmed mesons. However, it can decay into a single charmed meson accompanied

by light hadrons or leptons via weak decay of one of the charm quarks. The inclusive

branching fraction (BF) of weak decays to a single charmed meson was predicted to be at

the order of 10−8 or below [1–10] in the Standard Model (SM). Therefore, searching for

these decays not only tests the SM prediction [11], but also probes new physics theories

beyond the SM, such as the Top-color model, the Minimal Supersymmetric SM with or

without R-parity, and the two-Higgs doublet model [12–15], in which these BFs could be

significantly larger, reaching values of 10−5 [10]. So far, weak decays of the J/ψ meson

have not yet been observed [16–20].

In weak semi-leptonic J/ψ decays, the hadronic transition form factor between the

initial and final-state mesons can be cleanly decoupled from the weak current [6–10].

Figure 1 shows the tree-level Feynman diagram within the SM for the decays J/ψ →
D−l+νl (l = e or µ). The theoretical predictions for the BF of the rare semi-leptonic decay

J/ψ → D−e+νe within the SM are of the order of 10−11 [6–10], as shown in table 1. A pre-

vious study of this decay by the BES collaboration reported an upper limit (UL) on the BF

of 1.2 × 10−5 at 90% confidence level (CL) based on a sample of 5.8 × 107 J/ψ events [18].

This result reaches down to the level of the expected BF values in several models beyond

the SM [14, 15], although it is several orders of magnitude larger than the SM value. To

further test the SM predictions and constrain the contributions from new physics models,

a new measurement of B(J/ψ → D−e+νe) with greater sensitivity is required.
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Figure 1. Feynman diagram for J/ψ → D−l+νl decays at tree-level.

Decay mode QCDSR [6] LFQM [7] BSW [8] CCQM [9] BSM [10]

J/ψ → D−e+νe 0.73+0.43
−0.22 5.1–5.7 6.0+0.8

−0.7 1.71 2.03+0.29
−0.25

Table 1. Theoretical results for the BF of the semi-leptonic decay J/ψ → D−e+νe (×10−11).

In this paper, we report a search for the semi-leptonic decay J/ψ → D−e+νe+c.c. with

D± → K∓π±π± using 10.1 × 109 J/ψ events collected at the center-of-mass energy
√
s =

3.097 GeV with the BESIII detector [21] operating at the Beijing Electron Positron Collider

(BEPCII) [22]. In order to avoid possible bias, we first validate the analysis with about 10%

of the full data sample. The final result is obtained with the full data sample by repeating

the validated analysis strategy. In addition, Monte Carlo (MC) simulation samples are

used to optimize the event selection criteria, determine the signal detection efficiency and

study the background. Throughout this paper, the charge-conjugate processes are always

implied.

2 BESIII detector and Monte Carlo simulation

The BESIII detector [21] records symmetric e+e− collisions provided by the BEPCII storage

ring [22], which operates with a peak luminosity of 1 × 1033 cm−2 s−1 in the center-of-mass

energy range from 2.0 to 4.95 GeV. BESIII has collected large data samples in this energy

region [11]. The cylindrical core of the BESIII detector covers 93% of the full solid angle

and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-

of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all

enclosed in a superconducting solenoidal magnet providing a 1.0 T (0.9 T in 2012) magnetic

field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter

muon identification modules interleaved with steel.

The charged-particle momentum resolution at 1 GeV/c is 0.5%, and the dE/dx resolu-

tion is 6% for electrons from Bhabha scattering. The EMC measures photon energies with

a resolution of 2.5% (5%) at 1 GeV in the barrel (end cap) region. The time resolution

in the TOF barrel region is 68 ps, while that in the end cap region is 110 ps. The end
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cap TOF system was upgraded in 2015 using multi-gap resistive plate chamber technology,

providing a time resolution of 60 ps [23, 24].

Simulated data samples produced with the geant4-based [25] MC package BOOST [26],

which includes the geometric and material description of the BESIII detector [27, 28] and

the detector response, are used to determine detection efficiencies and to estimate back-

grounds. The simulation models the beam energy spread and initial state radiation (ISR)

in the e+e− annihilations with the generator kkmc [29, 30]. The inclusive MC sample

includes both the production of the J/ψ resonance and the continuum processes incor-

porated in kkmc [29, 30]. By assuming the decay J/ψ → D−e+νe is governed by the

weak interaction via a c → d charged current process, and ignoring the hadronization ef-

fects and quark spin-flip [19], signal MC events are generated in evtgen [31, 32]. The

known J/ψ decay modes are modelled with evtgen [31, 32] using BFs taken from the

Particle Data Group [16], and the remaining unknown charmonium decays are modelled

with lundcharm [33, 34]. Final state radiation (FSR) from charged final state particles

is incorporated using the photos package [35].

3 Event selection and data analysis

The analysis is performed with the BESIII offline software system (BOSS) [36] which

incorporates the detector calibration, event reconstruction and data storage. In the signal

process J/ψ → D−e+νe, D
− → K+π−π−, we detect all final-state particles except the νe.

Charged tracks detected in the MDC are required to be within a polar angle (θ) range of

|cosθ| < 0.93, where θ is defined with respect to the z-axis. Selected charged tracks are

required to satisfy Rxy < 1.0 cm and |Vz| < 10 cm, where Rxy and |Vz| are the distances

of closest approach to the interaction point of the track in the plane perpendicular to the

beam and along the beam direction, respectively. We retain the events with exactly four

selected charged tracks with zero net charge. Particle identification (PID) for charged

tracks combines measurements of the energy deposited in the MDC (dE/dx) and the flight

time in the TOF to form likelihoods L(h) (h = p,K, π) for each hadron h hypothesis.

The charged kaons and pions are identified by comparing the likelihoods for the kaon and

pion hypotheses, L(K) > L(π) and L(π) > L(K), respectively. Positron PID uses the

measured information in the MDC, TOF and EMC. The combined likelihoods (L′) under

the positron, pion, and kaon hypotheses are obtained. Positron candidates are required to

satisfy Pe > 0.001 and Pe/(Pπ+PK) > 4, while π (K) candidates fulfil the criteria Pπ > PK
(PK > Pπ). To further reduce background from hadrons, the ratio of the deposited energy

of the positron candidate in the EMC, E, and its momentum obtained in the MDC, p, is

required to be in the range 0.85 < E/p < 1.05.

Neutral showers deposited in the EMC crystals are identified as photon candidates

when the shower energies are larger than 25 MeV in the barrel (| cos θ| < 0.8) and 50 MeV

in the end cap (0.86 < | cos θ| < 0.92). In order to suppress fake photons due to electronic

noise or beam background, the shower clusters are required to be detected within [0, 700] ns

from the event start time. In addition, photon candidates must be at least 10◦ away
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from any charged tracks to remove fake photons caused by hadronic showers or final state

radiations.

The selected charged hadron candidates, K+π−π−, are used to form the D− meson.

Its invariant mass MKππ is required to be within the range of [1.85, 1.89] GeV/c2, corre-

sponding to ±3 times the mass resolution around the D− known mass [16]. A kinematic

fit constraining the K+π−π− invariant mass to the D− mass [16] is performed and the

fit χ2
1C value is required to be less than 10. To suppress background contributions from

mis-identified events with extra photons, we require the total energy of good photons (Etot
γ )

to be less than 0.2 GeV.

Due to conservation of energy and momentum, the undetected neutrino νe carries a

missing-energy Emiss = EJ/ψ −ED− −Ee+ and a missing-momentum ~pmiss = ~pJ/ψ − ~pD− −
~pe+ , where ED− (Ee+) and ~pD− (~pe+) are the energy and momentum of the D− (e+) in the

rest frame of the initial e+e− collision. In order to suppress the background contributions

from J/ψ hadronic decays in which a pion or a kaon is mis-identified as a positron, |~pmiss| is

required to be larger than 50 MeV/c. We extract the yield of the signal decays by examining

the variable Umiss = Emiss − c|~pmiss|, in which the signal candidates are expected to peak

around zero if the final states of the semi-leptonic decay have been identified correctly.

Figure 2 shows the Umiss distribution in data, where no clear enhancement around

zero is observed. Using signal MC simulation, the detection efficiency for J/ψ → D−e+νe
passing all selection requirements is determined to be (29.93 ± 0.10)%, where the uncer-

tainty is statistical. The background contributions are investigated using an inclusive MC

simulation sample, whose size corresponds to that in data [37]. As shown in figure 2, the

Umiss distribution in the inclusive MC simulation sample is consistent with that in data

and no peaking structure is seen around the signal region.

4 Result

An unbinned extended maximum likelihood fit is used to estimate the signal yield. The

probability density function of the signal is derived from the shape of signal MC simulation

of the Umiss spectrum, while the background shape is modeled with a linear function. As

shown in figure 2, a negative signal is obtained, which indicates no signal is found from the

fit result. The BF of the signal decay is calculated as

B(J/ψ → D−e+νe + c.c.) =
Nsignal

NJ/ψ × ǫ× Bsub

, (4.1)

where Nsignal is the number of signal decays, NJ/ψ = (10087±44)×106 is the number of J/ψ

events determined with the method described in ref. [38], ǫ is the signal detection efficiency,

and Bsub is the BF of the intermediate decay D± → K∓π±π± quoted from ref. [16].

To set an UL on the BF via a Bayesian approach [16, 39], we perform a likelihood scan

with a series of fits, where the numbers of signal decays Nsignal are fixed to values from

−70 to 70 with a step of 0.1. Since the BF is only meaningful in physical region (B ≥ 0),

the UL on the BF is calculated in this region. To take into account any uncertainties

from the choice of the fit range and the background shape of the Umiss distribution, we
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Figure 2. The Umiss distributions and the unbinned maximum likelihood fit. The black dots with

error bars are data, the red solid line is the total fit result, and the blue dotted-dashed line is the

background. The green long-dashed histogram shows the signal MC simulation events and the blue

shaded histogram represents the inclusive MC events. Here, the signal MC events histogram is

drawn with an arbitrary normalization, while the inclusive MC events histogram and the fit curve

are normalized to the data luminosity.

expand the fit range by 6 MeV on either side and simultaneously change the background

shape to a second-order polynomial. The largest likelihood value is retained as the most

conservative result. Thus, we obtain the likelihood values as a function of the calculated

BFs. To incorporate the systematic uncertainties described in the following section, we

follow the method in ref. [40] of combining multiple measurements of a BF, where each

result can be presented as an upper limit. The distribution of the resulting normalized

likelihood values is shown in figure 3. The UL on the BF at the 90% confidence level,

obtained by integrating from zero to 90% of the likelihood curve in the physical region

(B ≥ 0), is B(J/ψ → D−e+νe + c.c.) < 7.1 × 10−8.

5 Systematic uncertainty

The main systematic uncertainties come from the tracking and PID efficiency, the signal

MC model, the Etot
γ , E/p and |~pmiss| requirements, the BF of the D− → K+π−π− decay

and the total number of J/ψ events.

• Tracking and PID efficiency. The uncertainty due to tracking and PID efficiency for

kaons and pions is determined by analyzing doubly-tagged D+D− decay events from

ψ(3770) [41]. Using partially reconstructed hadronic decays of D+ → K−π+π+ and

D− → K+π−π− where one π− or K+ meson is not reconstructed, the uncertainties

are estimated to be 1.0% per track. In addition, the uncertainty from the positron

tracking is studied using a control sample of radiative Bhabha events e+e− → γe+e−

produced at
√
s = 3.08 GeV, while the PID uncertainty is studied using a mixed

control sample of e+e− → γe+e− events and J/ψ → e+e−(γFSR) events produced at
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Figure 3. The distribution of the normalized smeared likelihood values (blue solid curve) as a

function of the BF (B(J/ψ → D−e+νe + c.c.)) or the number of signal events (Nsignal). The shaded

area corresponds to the 90% CL region and the red arrow indicates the UL on the BF at 90% CL.

√
s = 3.097 GeV. We quote 1.0% and 1.0% as the systematic uncertainties on the

tracking and PID efficiency for the positron, respectively.

• Signal MC model. The influence of the assumed signal model on the sensitivity of the

result comes from the estimation of the signal efficiency. The difference between the

efficiencies estimated with the nominal model and the phase space model is taken as

the systematic uncertainty, which is about 3.0%.

• Etot
γ , E/p, and |~pmiss| selection requirements. In order to estimate the systematic

uncertainties due to the Etot
γ , E/p, and |~pmiss| selection requirements, we use a control

sample of semi-leptonic signal decays D0 → K−e+νe tagged with a D̄0 → K+π−

decay selected from ψ(3770) data [11]. We obtain the overall efficiency from a sample

of 200000 signal MC simulation events. We apply the event selection criteria in

ref. [42] to the tagging mode, and the selection requirements for the positron and

kaon described in section 3 to the signal mode. After applying all the requirements

to the ψ(3770) data sample, we get a clean signal sample with 97.8% purity. We

perform a fit to the Umiss distribution to extract the signal yields and calculate the

BF B(D0 → K−e+νe). By comparing the nominal result and the results without one

of those requirements, we assign systematic uncertainties of 2.1%, 0.3%, and 0.3%

for the Etot
γ , E/p, and |~pmiss| requirements, respectively.

• BF of the D− → K+π−π− decay. The B(D− → K+π−π−) result is used as an

input in the baseline analysis, and its uncertainty of 1.7% [16] is propagated as the

systematic uncertainty.
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Sources Relative uncertainties

Tracking 4.0

Particle ID 4.0

Signal MC model 3.0

Etot
γ requirement 2.1

E/p requirement 0.3

|~pmiss| requirement 0.3

BF of the D− → K+π−π− decay 1.7

Number of J/ψ events 0.5

Total 7.0

Table 2. Summary of the systematic uncertainties in percentage for the measurement of the BF.

The total value is calculated by summing up all sources in quadrature.

• Number of J/ψ events. We quote a relative uncertainty of 0.5% determined using

J/ψ inclusive hadronic decays for NJ/ψ as the systematic uncertainty from ref. [38].

All systematic uncertainties are summarized in table 2. They are added in quadrature and

their total size is reported as well.

6 Summary

Based upon a sample of 10.1 × 109 J/ψ events collected with the BESIII detector, the

BF of the rare semi-leptonic decay J/ψ → D−e+νe is studied with a semi-blind analysis.

No excess of events is observed over the background. The resulting UL on the BF is

B(J/ψ → D−e+νe + c.c.) < 7.1 × 10−8 at 90% CL, when systematic uncertainties are

taken into account. Our result improves this limit [18] by a factor of 170. This is the most

sensitive search for the J/ψ → D−e+νe decay. This measurement is compatible with the

SM theoretical predictions [6–10], and puts a stringent constraint on the parameter spaces

for different new physics models predicting BFs of the order of 10−5 [10].
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