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Abstract. We explore quantum signatures of classical chaos by studying the rate of information

gain in quantum tomography. The tomographic record consists of a time series of expectation

values of a Hermitian operator evolving under application of the Floquet operator of a quantum

map that possesses (or lacks) time reversal symmetry. We find that the rate of information gain, and

hence the fidelity of quantum state reconstruction, depends on the symmetry class of the quantum

map involved. Moreover, we find an increase in information gain and hence higher reconstruction

fidelities when the Floquet maps employed increase in chaoticity. We make predictions for the

information gain and show that these results are well described by random matrix theory in the

fully chaotic regime. We derive analytical expressions for bounds on information gain using random

matrix theory for different class of maps and show that these bounds are realized by fully chaotic

quantum systems.
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1. Introduction: Classical and Quantum Chaos

Classical chaos is characterized by the sensitive dependence on initial conditions in a

deterministic dynamical system [1]. In a conservative Hamiltonian system, this occurs

for trajectories which do not settle down to fixed points, periodic orbits, or quasi-periodic

orbits in the limit t→ ∞, where t is the time of evolution of the trajectory [1, 2]. Sensitive

dependence on initial conditions means that nearby trajectories separate exponentially

fast; the rate of separation is given by the Lyapunov exponent, λ, which characterizes the

dynamics of the system. A conservative Hamiltonian system with N degrees of freedom,

with N constants of motion, it is said to be integrable, and its dynamics is regular. When

there are fewer than N constants of motion, then the individual trajectories can explore

the phase space in a complex manner and the system can exhibit chaos.

It is not difficult to see that the above “definition” of chaos fails in the quantum do-

main. A quantum state is not a point in the phase space but is described by a state vector.
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The time evolution of the state vector, due to the Schrödinger’s equation, is unitary. This

means that the overlap of two state vectors undergoing evolution is constant with time.

Therefore, quantum systems, unlike their classically chaotic counterparts, do not show a

sensitive dependence on initial conditions. Furthermore, while classical chaos can lead to

infinitely fine structures in the phase space, in quantum mechanics, Planck’s constant, h̄,

sets the scale for such structures, according to Heisenberg’s uncertainty principle. This is

often stated as the key reason for the absence of chaos in the quantum domain. This, how-

ever, is not the complete story. An alternate description of classical mechanics, involving

the evolution of classical probability densities, preserves the distance between two prob-

ability densities as a function of time [3]. Hence, the distance between two probability

densities does not show exponential sensitivity even for classical mechanics.

All this leads to two interesting questions:

1. How does classically chaotic dynamics inform us about certain properties of quan-

tum systems, e.g., the energy spectrum, nature of eigenstates, correlation functions,

and more recently, entanglement and quantum discord. Alternatively, what features

of quantum systems arise due to the fact that their classical description is chaotic?

2. Since all systems are fundamentally quantum mechanical, how does classical chaos,

with trajectories sensitive to initial conditions, arise out of the underlying quantum

equations of motion?

These two questions are not unrelated. However, the first question deals mainly with find-

ing the signatures of chaos by studying the properties of the quantum Hamiltonian, while

the second concerns with the dynamical behaviour of quantum states and the emergence

of classically chaotic behaviour in the macroscopic limit.

A central result of quantum chaos is its relationship to the theory of random matrices

[4]. In the limit of large Hilbert space dimensions (small h̄), for parameters such that

the classical description of the dynamics shows global chaos, the eigenstates and eigen-

values of the quantum dynamics have the statistical properties of an ensemble of random

matrices. The appropriate ensemble depends on the properties of the quantum system

under time-reversal [4]. The ensemble of random matrices used to describe the Hamil-

tonians unrestricted by the time reversal symmetry is the Gaussian Unitary Ensemble

(GUE). Similarly, the ensemble of random matrices used to describe the Hamiltonians

having a time reversal symmetry are given by the Gaussian Orthogonal Ensemble (GOE).

The other class of random matrices typically studied are the random unitary matrices.

They are employed for periodically driven systems, as models of the unitary “Floquet”

operators, F , describing the change of the quantum state during one cycle of the driving.

Powers of the “Floquet” operator, Fn, give us a stroboscopic description of the dynamics.

The ensemble of random unitaries are also known as the “circular ensembles”, originally

introduced by Dyson [5]. As was the case for random Hermitian matrices, time rever-

sal symmetry arguments play a similar role in the choice of the appropriate ensemble of

random unitaries employed to model the “Floquet” operator to study the properties of the

chaotic system. Depending on whether the system has time reversal symmetry or not,

the appropriate ensemble of random unitaries is called the Circular Orthogonal Ensem-

ble (COE) or the Circular Unitary Ensemble (CUE) respectively. The eigenvectors of the

COE and CUE have the same properties as that for the respective GOE and GUE, but the

eigenvalues are distributed differently. The circular unitary ensemble (CUE) is just the

ensemble of random unitary matrices picked from U(n) according to the Haar measure.

CUE eigenvalues lie on the unit circle in the complex plane, and hence the name.
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From this fact, an important quantum signature of chaos was obtained by Bohigas and

collaborators [6], describing the spectral statistics of quantum Hamiltonians whose clas-

sical counterparts exhibit complete chaos using random matrix theory. Such signatures

of quantum chaos have mainly focussed on the time-independent Schrödinger’s equation

and features like energy spectra and eigenstates.

Though quantum systems show no exponential separation under the evolution of a

known unitary evolution, they do show a sensitivity to the parameters in the Hamilto-

nian [7]. Peres [7] showed that the evolution of a quantum state is altered when a small

perturbation is added to the Hamiltonian. As time progresses, the overlap of the per-

turbed and unperturbed states gives an indication of the stability of quantum motion. It

was shown that if a quantum system has a classically chaotic analog, this overlap has a

very small value. On the other hand, if the classical analog is regular, the overlap remains

appreciable. In another perspective, as seen in the work of Schack and Caves, quantum

systems exhibit chaos when they are perturbed by the environment. They become hy-

persensitive to perturbations [8], as seen in the information-theoretic studies of the cost to

maintain low entropy in the face of loss of information to the environment. This particular

feature of quantum chaotic systems has several interesting consequences. For example,

Shepelyansky has done extensive work on the issue of many-body quantum chaos in the

quantum computer hardware and its effect on the accuracy of quantum computation [9]

in the absence of error correction. Recently, classical simulations of quantum dynamics

have been connected to integrability and chaos [10].

It is imperative to mention the role played by quantum information theory in the above

journey. Quantum information science has added a whole new perspective to the study

of quantum mechanics. This has resulted in a better understanding of quantum phenom-

ena like entanglement and decoherence, and given us the tools to view certain quantum

properties of physical systems as a resource. This has also enabled us to address the

key questions in quantum chaos from a new perspective. As mentioned above, this has

led to an information theoretic characterization of quantum chaos [8] and explained the

exploration of the behavior of chaotic quantum systems in the presence of environment

induced decoherence [11] along with its connection to the quantum-to-classical transi-

tion. The study of quantum chaos from a quantum information perspective is also closely

related to the theory and application of random quantum circuits [12]. In the last two

decades, quantum information theory has given us a new perspective in finding the fin-

gerprints of chaos in quantum mechanics. The dynamical generation of entanglement and

discord and information gain in tomography have been studied as signatures of classical

chaos in the quantum world [13–23].

In [24], it was shown that information gain about an initial quantum state in the process

of quantum tomography is a metric to characterize and quantify quantum chaos. In this

work, we review this new information-theoretic characterization of chaos and show how

this procedure can be used to distinguish between symmetry classes of various quantum

maps.

Quantum tomography is the process of estimating an unknown quantum state from the

statistics of measurements made on many copies of the state. In this work, we extend

our efforts on information gain in quantum tomography to characterize the properties of

the underlying dynamics. In particular, we give new analytical results for the information

gain for different classes of quantum maps depending on their time reversal and par-

ity symmetry properties. The standard way to perform quantum tomography is to make

projective measurements of an “informationally complete” set of observables and repeat

them many times. The statistics obtained are used to estimate the expectation values of
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the observables and hence the unknown initial state.

Projective measurements pose a hurdle in exploring the connections between informa-

tion gain in tomography and chaos due to large measurement back-action on the system.

However, we overcome this by employing the protocol for tomography via weak continu-

ous measurement developed by Silberfarb et al. [25]. In this protocol, the ensemble is col-

lectively controlled and probed in a time dependent manner to obtain an “informationally

complete” continuous measurement record. We consider the case of a very weak mea-

surement such that the back-action is negligible. This is possible when the uncertainty

in any measurement outcome is small compared to the quantum uncertainty associated

with the probe itself. We accurately model all of the quantum dynamics occurring in the

system, and then use the measurement time history to give us information about the initial

quantum state. The dynamics is “informationally complete” if the time history contains

information about an arbitrary initial condition. Our goal is to characterize and quantify

the performance of tomography, when the dynamics driving the system are chaotic in the

classical limit. We use this to draw connections between the role played by regular and

chaotic dynamics as well as the nature of symmetries of the dynamics in the tomography

procedure. The work presented in this paper is intimately related to the protocols that

have recently been implemented in the laboratory [26].

The remainder of this paper is organized as follows. In Sec. 2, we review the protocol

for tomography via weak continuous measurement developed by Silberfarb et al. [25] and

Riofrı́o et al. [27]. In Section 3, we demonstrate how information gain while performing

tomography is a quantum signature of classical chaos. We perform numerical simulations

of the reconstruction fidelity and its relationship to the degree of chaos in the dynamics

that drive the system. We also show how the fidelity obtained and the corresponding

metrics to quantify information gain can be used to distinguish quantum maps belonging

to different symmetry classes. We then explain these results in terms of the properties of

random states in Hilbert space. Our results are discussed and summarized in Sec. 4.

2. Tomography via Weak Continuous Measurement

In this section, we review tomography via a continuous measurement protocol. Consider

an ensemble of N , noninteracting, simultaneously prepared quantum systems in an iden-

tical, but unknown, state described by the density matrix ρ0. Our goal is to determine ρ0
by continuously measuring an observable O0. The ensemble is collectively controlled and

probed in a time-dependent manner to obtain an “informationally complete” continuous

measurement record. In order to achieve informational completeness, when viewed in the

Heisenberg picture, the set of measured observables should span an operator basis for ρ0.

For a Hilbert space of finite dimension d, and fixing the normalization of ρ0, the set of

Hermitian operators must form a basis of su(d). The measurement record is inverted to

get an estimate of the unknown state. Laboratory realization of such a record is intimately

tied to controllability, i.e., designing the system evolution is such a way as to generate

arbitrary unitary maps. While it is desirable to obtain an informationally complete mea-

surement record, we shall see that we can obtain high fidelity in tomography in some

cases even when this is not the case [28].

In an idealized form, the probe performs a QND measurement that couples uniformly to

the collective variable across the ensemble and measures
∑N

n=j O
(j)
0 . For a strong QND

measurement, quantum backaction will result in substantial entanglement among the par-

ticles. For a sufficiently weak measurement, the noise on the detector (e.g., shot noise of

a laser probe) dominates the quantum fluctuation intrinsic to the measurement outcomes
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of the state (projection noise). In this case, we can neglect the backaction on the quantum

state and the ensemble remains factorized. In order to obtain a measurement record that

can be inverted to reconstruct an estimate of the initial state, one must drive the system

by a carefully designed dynamical evolution that continually maps new information onto

the measured observable. In order to do so, the system is manipulated by external fields.

The Hamiltonian of the system, H(t) = H[φi(t)], is a functional of a set of time depen-

dent control functions, φi(t), so that the dynamics produces an informationally complete

measurement record M.

Then we can write the measurement record obtained as

M(t) = Tr(O0ρ(t)) + σW (t), (1)

amplified by the total number of copies (N atoms in this case). Here σW (t) is a Gaussian-

random variable with zero mean and variance σ2, which accounts for the noise on the

detector. Since our goal is to estimate the initial state from the measurement record and

the system dynamics, we will work in the Heisenberg picture. Rewriting Eq. 1 in the

Heisenberg picture, we get

M(t) = Tr(O(t)ρ0) + σW (t). (2)

We sample the measurement record at discreet times so that

Mi = Tr(Oiρ0) + σWi. (3)

Thus, the problem of state estimation is reduced to a linear stochastic estimation problem.

The goal is to determine ρ0, given {Mi} for a well chosen {Oi}, in the presence of

noise {Wi}. We use a simple linear parametrization of the density matrix

ρ0 =
I

d
+

d2−1
∑

α=1

rαEα, (4)

where d is the dimension of the Hilbert space, rα are d2−1 real numbers (the components

of a generalized Bloch vector), and {Eα} is an orthonormal Hermitian basis of traceless

operators. We can then write Eq. 3 as

Mi =

d2−1
∑

α=1

rαTr(OiEα) + σWi, (5)

or, in the matrix form as

M = Õr + σW, (6)

which in general is an overdetermined set of linear equations with d2 − 1 unknowns

r = (r1, ..., rd2−1).
The conditional probablity distribution for the random variable M, given the state r, is

the Gaussian distribution

P(M|r) ∝ exp(−
1

2σ2
(M − Õr)T (M − Õr)). (7)
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We can use the fact that the argument of the exponent in Eq. 7 is a quadratic function of

r to write the likelihood function (ignoring any priors) as

P(r|M) ∝ exp(−
1

2σ2
(r − rML)

T (r − rML)), (8)

a Gaussian function over the possible states r centered around the most likely state, rML,

with the covariance matrix given by C = σ2(ÕT Õ)−1. The uncontrained maximum

liklihood solution is given by

rML = (ÕT Õ)−1ÕT M. (9)

The measurement record is informationally complete when the covariance matrix has full

rank, d2 − 1. If the measurement record is incomplete and the covariance matrix is not

full rank, we replace the inverse in Eq. 9 with the Moore-Penrose pseudo inverse [29].

The eigenvectors of C−1 represent the orthogonal directions in operator space that we

have measured up to the final time, and the eigenvalues determine the uncertainty, or the

signal-to-noise ratio, associated with those measurement directions.

When we have an incomplete measurement record, or in the presence of noise, the

unconstrained maximum likelihood procedure does not give a density matrix that corre-

sponds to a physical state. The estimated density matrix might have negative eigenvalues.

We correct this by finding a valid density matrix that is “closest” to ρML, the density

matrix obtained by the unconstrained maximum likelihood procedure.

3. Information Gain in Tomography

3.1 Metrics to quantify information gain

Our protocol for quantum tomography via continuous measurement of a driven system

[25] gives us a window into the complexity of quantum dynamics and its relationship to

chaos. Moreover, the experimental implementation of tomography by continuous mea-

surement provides a useful platform for exploring these ideas in the laboratory [26].

Quantum tomography deals with the extraction of information about an unknown quan-

tum state through measurements. In our attempt to study chaos under this paradigm, we

define metrics to quantify this information gain. These metrics characterize the ability

of our control dynamics to generate a sufficiently high signal-to-noise ratio for measure-

ments in different directions of the operator space. As we shall see, these metrics elucidate

the connection between the degree of chaos and the fidelities obtained in tomography. We

can quantify the information gain in a number of ways.

1) Fidelity of Tomography: Fidelity of the reconstruction obtained in tomography is

a metric for information gain which determines the degree of closeness of quantum states

and is intimately related to how much information is obtained during the process. The

fidelity is simply given by the overlap of the initial and the reconstructed state vectors.

The fidelity between a target pure state |ψ〉 and the reconstructed state ρ is F = 〈ψ| ρ |ψ〉.
2) Fisher Information (FI) of the Measurement Record: We can further quantify

the correlation between chaos and the performance of quantum state estimation using

information-theoretic metrics. The information obtained in measurement of a quantum

system can be expressed in terms of the uncertainty of the outcomes summed over a set

of mutually complementary experiments [30] . In terms of the Hilbert-Schmidt distance

between the true and estimated state in quantum state reconstruction, averaged over many

runs of the estimator, this information can be written as I = 〈Tr{(ρ0− ρ̄)
2}〉 [31], which
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in terms of the total uncertainty in the Bloch vector components is I =
∑

α〈(∆rα)
2〉.

The Cramer-Rao bound tells us that this uncertainty obeys

〈(∆rα)
2〉 ≥

[

F
−1

]

αα
, (10)

where F is the Fisher information matrix associated with the conditional probability dis-

tribution, Eq. 7, and thus I ≥ Tr (F−1).
In general, for a multivariate parameter estimation problem, the Cramer-Rao bound

gives

Covθ(T (X)) ≥ F−1, (11)

where the matrix inequality, A ≥ B, is understood to mean that the matrix, A − B, is

positive semidefinite. HereX is a d-dimensional random vector that contains information

about the multivariate parameter, θ = [θ1, θ2, ..., θd], T(X) is the unbiased estimator of

the multivariate parameter, and Covθ(T (X)) is the covariance matrix of a set of unbiased

estimators for the parameters θ. It quantifies the error in our estimation process. F is the

multivariate generalization of the FI [32],

Fmn = E(
∂

∂θm
logf(x; θ)

∂

∂θn
logf(x; θ)), (12)

where f(x; θ) is the probability density of the random variableX conditioned on the value

of θ, and E denotes the expectation value. In the limit of negligible quantum backaction,

we saturate this bound. This is because our probability distribution is Gaussian, regardless

of the state. In that case, the Fisher information matrix equals the inverse of the covariance

matrix, F = C
−1, in units of N2/σ2 and thus the Cramer-Rao bound reads

Covθ(T (X)) ≥ C. (13)

We consider the basis in which F , and hence C−1, is diagonal,

F
′

= UFUT . (14)

Such a transformation is provided by U composed from the eigenvectors of C. In this

representation, the estimate of the newly transformed parameters fluctuate independently

of each other. This suggests the possibility to form a single number that quantifies the

performance of the tomography scheme as a whole by adding those independent errors,

ǫ, as

ǫ ≥ Tr(C). (15)

Thus, 1
Tr(C) , which is the collective FI, serves as a measure of the amount of information

about the parameter θ that is present in the data.

3) Shannon Entropy of Eigenvalues of the Inverse Covariance Matrix: The mutual

information, I[r;M], quantifies the information we have about parameters r from mea-

surement record M, which is given by I[r;M] = H(M)−H(M|r) [32]. Here H is the

Shannon entropy of the given probability distribution. The entropy of the measurement

record, H(M), arises solely due to the shot noise in the probe, and hence is a constant.

The mutual information between the Bloch vector and a given measurement record can

be expressed as the entropy of the conditional probability distribution (Eq. 7)

I[r;M] = −H(M|r) = −
1

2
log (detC) = log(1/V ), (16)

where V is the volume of the error-ellipsoid whose semi-major axes are defined by the

covariance matrix.
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3.2 The Quantum Kicked Top

How does the presence of chaos in the control dynamics influence our ability to perform

tomography? In order to address this question, we chose the “kicked top” dynamics [4] as

the paradigm to explore quantum chaos in tomography. The Hamiltonian for the kicked

top (after setting h̄ = 1) is given by

H(t) =
1

τ
pJx +

1

2j
κJ2

z

∞
∑

n=−∞

δ(t− nτ). (17)

Here, the operators, Jx, Jy and Jz are the angular momentum operators obeying the

commutation relation [Ji, Jj ] = iǫijkJk The first term in the Hamiltonian describes a

precession around the x axis with an angular frequency p
τ

, and the second term describes a

periodic sequence of kicks separated by time period τ . Each kick is an impulsive rotation

about the z axis by an amount proportional to Jz . Choosing the external field to act in

delta kicks allows us to express the Floquet map (transformation after one period) in a

simple form of sequential rotations as

Uτ = e
−iλJ2

z
2j e−iαJx , (18)

where α and λ are related to p and κ, respectively, in terms of the kicking period. The

evolution of the initial quantum state has the form UnρU†n, where n enumerates the kick

number or the periodic application of the map. The classical map can be obtained by

considering the Heisenberg evolution of the expectation values of the angular momentum

operators in a familiar way [4].

The classical dynamics consists of the motion of a unit spin vector on the surface of

the sphere. The z-component of a spin and the angle φ, denoting its orientation in the x-y
plane, are canonically conjugate, and thus the spin constitutes one canonical degree of

freedom. The classical dynamical map has the same physical action as described above in

the quantum context – precession of the spin around the x axis with an angular frequency

α followed by an impulsive rotation around the z axis by an amount proportional to Jz
with a proportionality constant λ. In our analysis, we fix α = 1.4 and choose λ to be our

chaoticity parameter. As we vary λ from 0 to 7, the dynamics change from highly regular

to completely chaotic. Since the total magnitude of the spin is a constant of motion,

our classical map is two dimensional. We visualize the phase by plotting the z and y

components of motion after every application of the dynamical map.

Figure 1 shows four different regimes of classical dynamics. With the parameters α =
1.4, λ = 0.5 (Fig. 1a), the dynamics are highly regular. When α = 1.4, and λ = 2.5
(Fig. 1b), we see a mixed space with chaotic and regular regions of comparable size. The

parameters, α = 1.4, λ = 3.0 (Fig. 1c), give a phase space that has mostly chaotic regions

and finally, α = 1.4, λ = 7.0 gives a completely chaotic phase space (Fig. 1d).

A central result of quantum chaos is the connection with the theory of random matrices

[4]. In the limit of large Hilbert space dimensions (small h̄), for parameters such that the

classical description of the dynamics shows global chaos, the eigenstates and eigenvalues

of the quantum dynamics have the statistical properties of an ensemble of random matrices

[6]. The appropriate ensemble depends on the properties of the quantum system under

time-reversal symmetry[4]. We thus seek to determine whether there exists an anti-unitary

(time reversal) operator T that has the following action on the Floquet operator,

TUτT
−1 = U†

τ = eiαJxe
iλJ2

z
2j . (19)
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Figure 1. Phase space plots for the kicked top in four regimes. (a) Regular phase

space: α = 1.4, λ = 0.5, (b) Mixed phase space: α = 1.4, λ = 2.5, (c) Mostly

chaotic: α = 1.4, λ = 3.0, (d) Fully chaotic phase space: α = 1.4, λ = 7.0. The

figures depict trajectories on the southern hemisphere (x < 0) of the unit sphere where

X = Jx

j
, Y =

Jy

j
and Z = Jz

j
, and we take the limit j → ∞ to get the classical limit

as in [4].
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Considering the generalized time reversal operation

T = eiαJxK, (20)

where K is the complex conjugation operator. It then follows that

TUτT
−1 =

(

eiαJxK
)

(

e
−iλJ2

z
2j e−iαJx

)

(

Ke−iαJx
)

(21)

= eiαJx

(

e
+iλJ2

z
2j eiαJx

)

e−iαJx

= eiαJxe
+iλJ2

z
2j = U†

τ ,

so the dynamics is time-reversal invariant. Moreover as T 2 = 1, there is no Kramer’s

degeneracy. Given these facts, for parameters in which the classical dynamics is globally

chaotic, we expect the Floquet operator to have the statistical properties of a random

matrix chosen from the circular orthogonal ensemble (COE) [4].

In order to have maximum information gain, we need to condition the dynamics so that

we maximize 1/V =
√

det (C−1). The quantity Tr(C−1) is constrained at tn. One can

show that after n steps

Tr(C−1) =
∑

i,α

(Oi,α)
2
= n‖O(0)‖2, (22)

where ‖O(0)‖2 =
∑

α Tr(O(0)Eα)
2 is the Hilbert-Schmidt square norm, and O(0) =

Jz for our case. Therefore, from the theorem of the arithmetic and geometric means,

det (C−1) ≤

(

1

D
Tr(C−1)

)D

=
( n

D
‖O(0)‖2

)D

, (23)

where D = d2 − 1 is the rank of the regularized covariance matrix. The maximum

possible value of the mutual information is attained when all eigenvalues are equal, sat-

urating the above inequality. At a given time step, the dynamics that gives the largest

mutual information is the one that makes the eigenvalues most equal. If we normalize the

eigenvalues of the inverse of the covariance matrix, then as a probability distribution, its

Shannon entropy E, is a measure of how evenly we have sampled all the directions in the

operator space. We reach the maximum entropy when we have measured all directions in

the space of matrices equally, Emax = log(d2 − 1). This is the most unbiased measure-

ment we can implement that will lead to the highest fidelities, on average, for a random

state.

The collective FI, 1
Tr(C) , tells us about the amount of information our measurement

record contains about the parameters that define the density matrix. Figure 4 shows the

behavior of the FI as a function of the number of applications of the kicked top map, and

for different values of the chaoticity parameter. We see that the rate of increase of the FI

is correlated with the degree of chaos present in the control dynamics. As our dynamics

become increasingly chaotic, we obtain higher values for the FI at a given time. We expect

the FI to be correlated with the average fidelities of estimation for an ensemble of random

states.
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Figure 2. Fidelity of reconstruction as a function of the number of applications of the

kicked top map. The fidelity is calculated as the average fidelity of reconstruction of

100 states picked at random according to the Haar measure. The parameters of the

kicked top are as described in the text, with α = 1.4 fixed. We show the fidelity for

different choices of the chaoticity parameter. Both the rate of growth and the final value

of the fidelities are increased with higher values of λ.
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ance matrix as a function of the number of applications of the kicked top map: (a) Short
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the text.
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Figure 4. The FI of the parameter estimation in tomography as a function of the

number of applications of the kicked top map: (a) Short time behavior (b) long

time/asymptotic behavior. The parameters are as described in the text.
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3.3 Signatures of chaos : Information gain in the fully chaotic regime and random ma-

trix theory

3.3.1 Results and Discussion

We are now ready to explore the role of chaos in the performance of tomography. Through-

out this section, we consider spin J = 10, a d = 21 dimensional Hilbert space, which is

sufficiently large that a minimum uncertainty spin coherent state is a sufficiently confined

“wavepacket” that it can resolve features in the classical phase space. Figure 2 shows the

average fidelity of reconstruction of 100 states picked at random according to the Haar

measure as a function of the number of applications of the kicked top map, and for differ-

ent values of the chaoticity parameter. We see that the rate of increase in fidelity increases

with the degree of chaos. The final fidelity achieved after a fixed number of kicks is also

correlated with the degree of chaos. We can understand the above results by studying the

information gain in tomography as a function of the degree of chaos in the control dynam-

ics. Figure 3 shows the behavior of the entropy E of the covariance matrix, as defined

above, as a function of the number of applications of the kicked top map, and for different

values of the chaoticity parameter. We see that the rate of increase of entropy for short

times, Fig. 3a, is correlated with the degree of chaos present in the control dynamics.

The asymptotic value of the entropy reached also increases with the chaoticity parameter.

Chaotic dynamics provides a measurement record with a large signal-to-noise ratio in all

the directions in the operator space. An increase in the chaoticity parameter results in an

increasingly unbiased measurement process that will yield high fidelities for estimating

random quantum states. Figure 3a shows the behavior of the entropy at short time scales,

while we see asymptotic behavior in Fig. 3b.

When the system is driven by dynamics that are completely chaotic, we expect the

information gain and the fidelity to follow the predictions from random matrix theory.

Figure 5 shows the behavior of the fidelity, Shannon entropy and the FI of the inverse of

the covariance matrix as a function of the number of applications of the kicked top map

(the blue line) and compares them with the corresponding quantities for a typical random

unitary picked from the COE (the green line). We see a strong agreement between our

predictions from random matrix theory and the entropy calculation for the evolution by a

completely chaotic map.

We test our predictions from the random matrix theory for chaotic maps without a

time reversal symmetry. For example, another type of the “kicked top” map without time

reversal symmetry [33] is given by

Uτ = e−iλ1−iJ2
x−iα1Jxe−iλ2−iJ2

y−iα2Jye−iλ3J
2
z−iα3Jz . (24)

In Fig. 6, we repeat the above calculations for this map. In this case, the appropriate

random matrix ensemble is the CUE. We see an excellent agreement between the behavior

of the fidelity, Shannon entropy and the FI, as predicted by random matrix theory, and that

for the evolution by a completely chaotic map without the time reversal symmetry [33].

When all the eigenvalues of the inverse of the covariance matrix are equal, we have an

upper bound on the entropy, Emax = log(d2 − 1). Figures 5 - 6 compare the entropy

values achieved by the repeated application of the same unitary (time reversal invariant or

otherwise) to Emax. We see that we fall significantly short of Emax by such a procedure.

So far, we have considered the application of the same unitary matrix periodically to

obtain the measurement record. However, this alone does not give us an informationally

complete measurement record; high fidelities are reached only when we make use of

the positivity constraint. On the other hand, we can consider application of a series of
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Figure 5. Comparison between the tomography performed by the repeated application

of kicked top in the fully chaotic regime (the blue line) and that by a typical random

unitary picked from the COE (the green line). (a) The average fidelity of reconstruc-

tion of 100 states picked at random according to the Haar measure. (b) The Shannon

entropy of the normalized eigenvalues of the inverse of covariance matrix as a function

of the number of applications of the map. The dotted line gives the upper bound on the

entropy, Emax = log(d2 − 1).
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Figure 6. Same as Figure 4, but for a kicked top without time reversal invariance (Eq.

24) (the blue line). In this case as well, the results are well predicted by modeling the

dynamics by random matrices sampled from the CUE (the green line).
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different random unitaries [34]. In that case, we expect to rapidly reach an informationally

complete set and thus rapidly gain information about tomography. In Fig. 7, we plot the

fidelities, Shannon entropy and the FI achieved by applying a different random unitary,

picked from the unitarily invariant Haar measure, and compare it with the results obtained

by the repeated application of the same unitary (picked from the COE and CUE). We also

see that we reach the upper bound, Emax, asymptotically, by this method. Indeed, an

application of a different random unitary is the most unbiased dynamics we can hope to

perform.
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Figure 7. Comparison between tomography performed by applying a different random

unitary at each time step, picked from the unitarily invariant Haar measure (magenta

line) and that by a repeated application of a random unitary picked from the COE (blue

line) and the CUE (red line) . The dotted line gives the upper bound on the entropy,

Emax = log(d2 − 1)

3.3.2 Analytical expressions for Information gain

In this section, we use random matrix theory to predict the information gain in tomogra-

phy when we apply the unitary map Uτ periodically.

1) The quantum kicked top : In our system, we have a symmetry given by the parity

operator R that has the form

R = e−iπJx . (25)

Our unitary map, U , being the kicked top or the appropriate COE sampled matrix, will

commute with R, i.e., [R,U ] = 0. Thus, there exists a basis in which U and R are

diagonal. First, note that the eigenvalues of R are ±1. Then, let’s define a basis, {|Rj〉},

where |Rj〉 = |R
(−)
j 〉 for j = 1, . . . , a, and |Rj〉 = |R

(+)
j 〉 for k = a + 1, . . . , d,

corresponding to the eigenvalues −1 and +1, and where a ∈ {(d + 1)/2, (d − 1)/2}.

Since U is also diagonal in this basis, an asymptotic approximation to the inverse of the

covariance matrix is

C−1 ≈ n





d
∑

j,k=1

|〈Rk|O0 |Rj〉|
2 |Rk, Rj〉 〈Rk, Rj |

+

d
∑

j 6=k=1

〈Rj |O0 |Rj〉 〈Rk|O0 |Rk〉 |Rj , Rj〉 〈Rk, Rk|



 .

(26)
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Our initial observable, O0 = Jz , anti-commutes with R, meaning that

RJzR
† = −Jz. (27)

Because of this, we see that

〈R
(−)
j |Jz|R

(−)
k 〉 = −〈R

(−)
j |Jz|R

(−)
k 〉 = 0, for j, k = 1, . . . , a, (28)

and

〈R
(+)
j |Jz|R

(+)
k 〉 = −〈R

(+)
j |Jz|R

(+)
k 〉 = 0, forj, k = a+ 1, . . . , d. (29)

As discussed above in Eq. 22, we know that after time tn, the trace of the inverse covari-

ance matrix is given by Tr(C−1) = nβ, where β = ‖O(0)‖2 is a constant independent

of the Floquet map, Uτ , driving the system.

Thus, the matrix representation of Jz in the ordered basis in which R is diagonal is

anti-block diagonal. We immediately see that Eq. 26 simplifies to

C−1 ≈ n





d
∑

j,k=1

|〈Rk|O0 |Rj〉|
2 |Rk, Rj〉 〈Rk, Rj |



 . (30)

In this basis, C−1 is approximately diagonal. So we can actually give an analytical for-

mula for the Shannon entropy. Remember that we previously defined the normalization

factor as β. So the eigenvalues of C−1 are simply |〈Rk|O0 |Rj〉|
2/β. To compute the

expected value of the Shannon entropy, we use the results of Wootters [35] for the ex-

pected value of entropy of the entries of a state expressed in a random basis, and sampled

from the appropriate ensemble. We see that since Jz is anti block diagonal, there are only

2× (d− 1)/2× (d+ 1)/2 nonzero terms.

Now, we can directly use Wootters formula for the expected Shannon entropy,

Hexp = log(D)− 0.729637 = log

(

d2 − 1

2

)

− 0.729637. (31)

For d = 21, we get Hexp = 4.66. Numerically, we find a somewhat larger value for

the kicked top, HKT = 4.85 and Hav = 4.69 for entropy averaged over 100 block

diagonal COE matrices. This is due to the fluctuations in H about the expected value and

these fluctuations reduce as we increase d and we find an excellent convergence with the

analytical expression derived above.

2) The CUE : The above analysis can be carried over to a quantum map that does not

have time reversal symmetry. In this case, since there is no parity symmetry, there are

d2 − 1 nonzero terms in Eq. 26, and therefore, we get for the expected Shannon entropy

as

Hexp = log
(

d2 − 1
)

− 0.729637, (32)

which agrees remarkably well with our numerical simulations (for d = 21,Hexp = 5.35).

3) A different Haar random unitary at each time step: In this case, we explore the

complete Hilbert Space and we get Hexp = log(d2 − 1), which agree very well with

our simulations (for d = 21, Hexp = 6.08). The maximum possible value of the mutual

information is attained when all eigenvalues of the covariance matrix are equal. In order to

extract the maximum information about a random state, we must measure all components

of the Bloch vector with maximum precision. In finite time, we obtain the best estimate

by dividing evenly among all observables.
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4. Conclusion and Outlook

The missing information in deterministic chaos is the initial condition. A time history

of a trajectory at discrete times is an archive of information about the initial conditions

given perfect knowledge about the dynamics. Moreover, if the dynamics is chaotic the

rate at which we learn information increases due to the rapid Lyapunov divergence of

distinguishable trajectories and we expect unbiased information because of the ergodic

mixing of phase space. That is, if the information is generated by chaotic dynamics, the

trajectory is random, and all initial conditions are equally likely until we invert the data

and discover the initial state.

Dynamics sensitive to the initial conditions will reveal more information about the ini-

tial conditions as one observes the system trajectory in the course of time. Classically

chaotic dynamics generates this unpredictability, or information to be gained about the

initial coordinates of the trajectory. Similarly, we found that the rate at which one obtains

information about an initially unknown quantum state in quantum tomography is corre-

lated with the extent of chaos in the system. This is a new quantum signature of classical

chaos. In fact, our results can be regarded as signatures of chaos in quantum systems un-

dergoing unitary evolution, as measurement backaction is negligible. We have been able

to quantify the information gain using the FI associated with estimating the parameters

of the unknown quantum state. When the system is fully chaotic, the rate of information

gain agrees with the predictions of random matrix theory.

At its core, our approach is akin to the Kolmogorov-Sinai (KS) entropy measure of

chaos [36]. Incomplete information about the initial condition leads to unpredictability of

a time history. In the presence of classical chaos, in order to predict which coarse-grained

cell in phase space a trajectory will land at a later time, we require an exponentially

increasing fine-grained knowledge of the initial condition. The KS entropy is the rate of

increase, and is related to the positive Lyapunov exponents of the system. Is there a mean-

ingful quantum definition of KS entropy? Our results seem to suggest this. In order to

predict the measurement record with a fixed uncertainty, we need to learn more and more

about the initial condition. Is the rate at which we obtain this information exponentially

fast when the system is quantum chaotic? Does this converge to the classical Lyapunov

exponents in the limit of large action (small h̄)? There are many important subtleties in

these questions.

As we gain more and more information, eventually quantum backaction becomes im-

portant in the measurement history. The number of copies we have and the shot noise

on the probe limits the ultimate resolution with which we can deduce the quantum state

[37]. Unlike classical dynamics, we can never consider infinite resolution, even in princi-

ple. The quantum resolution is limited by the size of h̄. As the dimension of the Hilbert

space increases, and hence the effective h̄ decreases, we expect to see an even sharper

difference in the information gain as a function of chaoticity. In the limit when d, the

dimension of the Hilbert space, becomes infinity, we expect the rate of information gain

to be intimately related to the classical Lyapunov exponents. How all this translates into

a quantum definition of KS entropy is an important subject of further investigation.

In principle we never have perfect knowledge of the dynamics. This is related to hyper-

sensitivity to perturbations[38] in quantum chaotic dynamics. This implies that, though

quantum systems show no sensitivity to initial conditions, due to unitarity, they do show

a sensitivity to parameters in the Hamiltonian [8, 39]. How does this fundamentally limit

our ability to perform quantum state reconstruction when the system is sufficiently com-

plex, and the equivalent dynamics is chaotic. This poses interesting questions for quantum

tomography and, more interestingly, for quantum simulations. Under what conditions are
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the system dynamics sensitive to perturbations and how does this effect our ability to per-

form quantum tomography? Under what conditions does the underlying quantum chaos

affect our ability to accomplish quantum simulations in general? We hope to address these

questions in our future work.
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