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REGULARITY OF POWERS OF BIPARTITE GRAPHS

A. V. JAYANTHAN, N. NARAYANAN, AND S. SELVARAJA

Abstract. Let G be a finite simple graph and I(G) denote the corresponding edge ideal.
For all s ≥ 1, we obtain upper bounds for reg(I(G)s) for bipartite graphs. We then compare
the properties of G and G′, where G′ is the graph associated with the polarization of the
ideal (I(G)s+1 : e1 · · · es), where e1, . . . es are edges of G. Using these results, we explicitly
compute reg(I(G)s) for several subclasses of bipartite graphs.

1. Introduction

Let G = (V (G), E(G)) denote a finite simple undirected graph with vertices V (G) =
{x1, . . . , xn} and edge set E(G). By identifying the vertices with the variables in the poly-
nomial ring k[x1, . . . , xn], where k is a field, we can associate to each graph G a monomial
ideal I(G) generated by the set {xixj | {xi, xj} ∈ E(G)}. The ideal I(G) is called the edge
ideal of G. This notion was introduced by Villarreal in [29]. Since then, the researchers
have been investigating the connection between the combinatorial properties of the graphs
and the algebraic properties of the corresponding edge ideals. In particular, there have been
active research on bounding the homological invariants of edge ideals in terms of the com-
binatorial invariants of the associated graphs, see for example [3], [10], [12], [15], [17], [19],
[22], [23], [26], [28], [32], [33]. In this article, we study the Castelnuovo-Mumford regularity
of powers of edge ideals of bipartite graphs. For a homogeneous ideal I, we denote by reg(I),
the Castelnuovo-Mumford regularity, henceforth called regularity, of I.

It was proved by Cutkosky, Herzog and Trung, [9], and independently by Kodiyalam [20],
that for a homogeneous ideal I in a polynomial ring, reg(Is) is a linear function for s ≫ 0,
i.e., there exist integers a, b, s0 such that

reg(Is) = as+ b for all s ≥ s0.

It is known that a is bounded above by the maximum of degree of elements in a minimal
generating set of I. But a general bound for b as well as s0 is unknown. In this paper, we
consider I = I(G), the edge ideal of G. In this case, there exist integers b and s0 such that
reg(Is) = 2s + b for all s ≥ s0. Our objective in this paper is to find b and s0 in terms of
combinatorial invariants of the graph G. We refer the reader to [5] for a review of results in
the literature which identify classes of edge ideals for which b and s0 are explicitly computed.

It is known that for any graph G,

ν(G) + 1 ≤ reg(I(G)) ≤ co-chord(G) + 1, (1.1)

where ν(G) denote the induced matching number ofG and co-chord(G) denote the co-chordal
cover number of G. The lower bound was proved by Katzman, [18] and the upper bound
was proved by Woodroofe, [32]. Beyarslan, Hà and Trung proved that for any graph G and
s ≥ 1, 2s + ν(G) − 1 ≤ reg(I(G))s, [5]. They also proved that the equality holds for edge
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ideals of forests (for all s ≥ 1) and cycles (for all s ≥ 2). Moghimian, Sayed and Yassemi
have shown that the equality holds for edge ideals of whiskered cycles as well, [25].

There is no general upper bound known for reg(I(G)s). Woodroofe’s inequality, (1.1),
suggests reg(I(G)s) ≤ 2s + co-chord(G) − 1 for all s ≥ 1. We prove this inequality for
bipartite graphs. Using this we discover new classes of graphs for which b and s0 can be
computed explicitly. We determine several classes of graphs for which the equality

reg(I(G)s) = 2s+ b

holds, for every s ≥ 1, i.e., s0 = 1 and b is explicitly described using combinatorial invariants
associated with G. One of the central ideas in our proofs is the comparison of certain
properties of a graph G with those of another associated graph G′. Let G be a graph and
e1, . . . , es be edges (not necessarily distinct) of G, s ≥ 1. Banerjee, in [3], introduced the
notion of even-connection with respect to the s-fold product e1 · · · es, see Definition 2.2. He
showed that (I(G)s+1 : e1 · · · es) is a quadratic monomial ideal, and hence its polarization
corresponds to a graph, say G′. Then Banerjee showed that G′ is the union of G with all the
even-connections with respect to the s-fold product e1 · · · es. Though G′ has been obtained
from G through an algebraic operation, some of the combinatorial properties seem to be
comparable. The ideal I(G′) has emerged as a good tool in the study of asymptotic regularity
of the edge ideals, see [1], [3], [5], [23]. The comparison between G and G′ (equivalently,
between I(G) and I(G′)) provides a tool to compute upper bound for the regularity. If G is
an arbitrary graph, e is an edge in G and G′ is the graph associated with the polarization of
(I(G)2 : e), then one of the main results states that co-chord(G′) ≤ co-chord(G) (Theorem
3.2). Alilooee and Banerjee proved that if G is bipartite, then so is G′, [1]. Also, Banerjee
proved that reg(I(G)s+1) ≤ max{reg(I(G′) + 2s, reg(I(G)s}, [3]. We use these results to get
an upper bound for the regularity of I(G)s when G is a bipartite graph:

Theorem 1.1 (Theorem 3.6). Let G be a bipartite graph. Then for all s ≥ 1, we have

reg(I(G)s) ≤ 2s+ co-chord(G)− 1. (1.2)

We also compare certain properties and invariants, algebraic as well as combinatorial, of
G and G′ for several subclasses of bipartite graphs. We prove that if G is either unmixed
bipartite (Theorem 4.1) or Pk-free bipartite (Theorem 4.3) or nK2-free (Corollary 4.7), then
so is G′. We also prove that the induced matching number of G′ is at most that of G
(Proposition 4.4). As a consequence, we obtain an upper bound for reg(I(G)s) when G is a
bipartite graph (Corollary 4.5). Comparison between the graphs G and G′ yields yet another
positive result, namely, a partial answer to a question posed by Banerjee, [2, Question 6.2.2],
on classifying all graphs G and edges e1 · · · es such that

reg(I(G)) ≥ reg(I(G)s+1 : e1 · · · es) for all s ≥ 1.

We obtain some sufficient conditions for this inequality to be true, (Proposition 4.10) and as
a consequence we prove that this inequality holds true for unmixed bipartite graph, chordal
bipartite, whiskered bipartite graph, bipartite P6-free graphs and connected bipartite graphs
with regularity equal to three.

We then move on to compute precise expressions for the regularity of powers of edge ideals.
In [5], the authors raised the question, for which graphs G, reg(I(G)s) = 2s+ ν(G)− 1 for
s ≫ 0. We observe that for certain classes of bipartite graphs, the induced matching number
coincides with the co-chordal cover number, for example, unmixed bipartite, chordal bipartite
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and whiskered bipartite. We then use the upper bound (1.2) for such classes of graphs to
get reg(I(G)s) = 2s+ ν(G)− 1 for all s ≥ 1, (Corollary 5.1). As an immediate consequence,
we derive one of the main results of [5], that the above equality holds for forests. We also
derive the main result of Alilooee and Banerjee, in [1], that equality holds true for connected
bipartite graphs G with reg(I(G)) = 3.

The classes of graphs discussed earlier have the property ν(G) = co-chord(G). For bipar-
tite P6-free graphs, it not known whether this equality holds true. However we prove that for
such graphs, for all s ≥ 1, reg(I(G)s) = 2s+ ν(G)− 1. It was shown by Jacques, [17], that
if n ≡ 2(mod 3), then reg(I(Cn)) = ν(Cn) + 2. And, Beyarslan, Hà and Trung proved that
reg(I(Cn)

s) = 2s+ ν(Cn)−1 for all s ≥ 2, [5]. If G is the disjoint union of Cn1
, . . . , Cnm

and
k edges, for some k ≥ 1, then we obtain a precise expression for reg(I(G)s), (Theorem 5.5).
We also construct, for each t ≥ 1, a graph Gt such that reg(I(Gt)

s) − [2s + ν(Gt)− 1] = t,
(Example 5.7).

2. Preliminaries

In this section, we set up the basic definitions and notation needed for the main results.
Let G be a finite simple graph with vertex set V (G) and edge set E(G). A subgraph H ⊆ G
is called induced if {u, v} is an edge of H if and only if u and v are vertices of H and {u, v}
is an edge of G. For a vertex u in a graph G, let NG(u) = {v ∈ V (G)|{u, v} ∈ E(G)} be
the set of neighbors of u. The complement of a graph G, denoted by Gc, is the graph on
the same vertex set in which {u, v} is an edge of Gc if and only if it is not an edge of G. A
subset X of V (G) is called independent if there is no edge {x, y} ∈ E(G) for x, y ∈ X . The
independence number α(G) is the maximum size of an independent set. Let Ck denote the
cycle on k vertices and Pk denote the path on k vertices. The length of a path, or cycle is
its number of edges.

A graph G is called bipartite if there are two disjoint independent subsets X, Y of V (G)
such that X ∪ Y = V (G).

Let G be a graph. We say n non-adjacent edges {f1, . . . , fn} form an nK2 in G if G does
not have an edge with one endpoint in fi and the other in fj for all i, j ∈ {1, . . . , n} and
i 6= j. A graph without nK2 is called nK2-free. If n is 2, then 2K2-free graph also called
gap-free graph. It is easy to see that, G is gap-free if and only if Gc contains no induced C4.
Thus, G is gap-free if and only if it does not contain two vertex-disjoint edges as an induced
subgraph.

A matching in a graph G is a subgraph consisting of pairwise disjoint edges. The largest
size of a matching in G is called its matching number and denoted by c(G) and the minimum
matching number of G, denoted by b(G), is the minimum cardinality of the maximal match-
ings of G. If the subgraph is an induced subgraph, the matching is an induced matching.
The largest size of an induced matching in G is called its induced matching number and
denoted by ν(G).

Let G be a graph. A subset C ⊆ V (G) is a vertex cover of G if for each e ∈ E(G),
e ∩ C 6= φ. If C is minimal with respect to inclusion, then C is called minimal vertex cover
of G. A graph G is called unmixed (also called well-covered) if all minimal vertex covers of
G have the same number of elements.

For a graph G on n vertices, let W (G) be the whiskered graph on 2n vertices obtained by
adding a pendent vertex (an edge to a new vertex of degree 1) to every vertex of G.
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A graph G is weakly chordal if every induced cycle in both G and Gc has length at most 4
and G is chordal bipartite if it is simultaneously weakly chordal and bipartite. Equivalently,
a bipartite graph is chordal bipartite if and only if it has no induced cycle on six or more
vertices.

For any undefined terminology and further basic properties of graphs, we refer the reader
to [31].

Example 2.1. Let G be the graph with vertices V (G) = {x1, . . . , x6} given below.

x1 x2

x3

x4
x5

x6

Then

{
{x2, x3}, {x5x6}

}
forms a matching, but

not an induced matching since the induced subgraph
with vertices {x2, x3, x5, x6} contains edges {x3, x6}
and {x2, x5}. The set

{
{x1, x2}, {x3, x4}, {x5, x6}

}

forms a matching of G and
{
{x2, x5}, {x3, x6}

}
also

form a matching, the set {x1, x3, x5} forms an in-
dependent set of G. It is not hard to verify that
c(G) = 3, b(G) = 2, ν(G) = 1 and α(G) = 3 . It can
also be noted that {x2, x3, x5, x6} and {x2, x4, x6}
are minimal vertex covers of G. Therefore G is not
unmixed.

We recall the definition of even-connectedness and some of its important properties from
[3].

Definition 2.2. Let G be a graph. Two vertices u and v (u may be same as v) are said to
be even-connected with respect to an s-fold products e1 · · · es, where ei’s are edges of G, not
necessarily distinct, if there is a path p0p1 · · · p2k+1, k ≥ 1 in G such that:

(1) p0 = u, p2k+1 = v.
(2) For all 0 ≤ ℓ ≤ k − 1, p2ℓ+1p2ℓ+2 = ei for some i.
(3) For all i, | {ℓ ≥ 0 | p2ℓ+1p2ℓ+2 = ei} | ≤ | {j | ej = ei} |.
(4) For all 0 ≤ r ≤ 2k, prpr+1 is an edge in G.

Example 2.3. Let I(G) = (x1x2, x1x5, x2x5, x2x3, x3x4, x4x5) ⊂ k[x1, . . . , x5]. Then (I(G)2 :
x2x5) = I(G)+(x2

1, x1x3, x1x4). Note that, x1 is even-connected to itself and {x1, x3}, {x1, x4}
are even-connected with respect to x2x5.

The following theorem, due to Banerjee, is used repeatedly throughout this paper.

Theorem 2.4. [3, Theorem 5.2] For any finite simple graph G and any s ≥ 1, let the set of
minimal monomial generators of I(G)s be {m1, . . . , mk}, then

reg(I(G)s+1) ≤ max{reg(I(G)s+1 : mℓ) + 2s, 1 ≤ ℓ ≤ k, reg(I(G)s)}.

Next theorem describes all the minimal generating set of an ideal (I(G)s+1 : M), where
M is minimal generator of I(G)s for s ≥ 1.

Theorem 2.5. [3, Theorem 6.1 and Theorem 6.7] Let G be a graph with edge ideal I = I(G),
and let s ≥ 1 be an integer. Let M be a minimal generator of Is. Then (Is+1 : M) is
minimally generated by monomials of degree 2, and uv (u and v may be the same) is a
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minimal generator of (Is+1 : M) if and only if either {u, v} ∈ E(G) or u and v are even-
connected with respect to M .

Further, Alilooee and Banerjee studied the even-connection in the context of bipartite
graphs and showed that they behave well under even-connections.

Theorem 2.6. [1, Proposition 3.5] Let G be a bipartite graph and s ≥ 1 be an integer. Then
for every s-fold product e1 · · · es, (I(G)s+1 : e1 · · · es) is a quadratic squarefree monomial ideal.
Moreover the graph G′ associated to (I(G)s+1 : e1 · · · es) is bipartite on the same vertex set
and same bipartition as G.

Polarization is a process to obtain a squarefree monomial ideal from a given monomial
ideal. For details of polarization we refer to [21], [24].

Definition 2.7. Let f = xm1

1 · · ·xmn
n be a monomial in R = k[x1, . . . , xn]. Let R̃ =

k[x11, x12, . . . , x21, x22, . . . , xn1, xn2
, . . .]. Then a polarization of f in R̃ is the squarefree

monomial f̃ = x11 · · ·x1m1
x21 · · ·x2m2

· · ·xn1 · · ·xnmn
. If f1, · · · , fm ∈ R are monomials and

I = (f1, · · · , fm), then we call the squarefree monomial ideal Ĩ generated by the polarization

of the fi’s in a larger polynomial ring R̃, the polarization of I.

Let G be a graph and I(G) denote the edge ideal of G. Then for any s ≥ 1 and edges

e1, . . . , es of G, Ĩ = ˜(I(G)s+1 : e1 · · · es) is a squarefree quadratic monomial ideal, by Theorem

2.5. Hence there exists a graph G′ associated to Ĩ. Note also that G is a subgraph of G′.

Example 2.8. Let G = C3 and I(G) = (x1x2, x2x3, x1x3) ⊂ k[x1, x2, x3]. Then I = (I(G)2 :

x1x3) = I(G) + x2
2. Therefore, Ĩ ⊂ k[x1, x2, x3, x4] is given by Ĩ = I(G) + (x2x4). Then G′

is given the graph G with the edge {x2, x4} attached to G.

Let M be a graded R = k[x1, . . . , xn] module. For non-negative integers i, j, let βij(M)
denote the (i, j)-th graded Betti number of M .

Theorem 2.9. [21, Proposition 1.3.4] [24, Exercise 3.15] Let I ⊆ R = k[x1, . . . , xn] be a

monomial ideal. If Ĩ ⊆ R̃ is a polarization of I, then for all ℓ, j, βℓ,j(R/I) = βℓ,j(R̃/Ĩ). In

particular reg(R/I) = reg(R̃/Ĩ).

3. Upper bound for the regularity of powers of bipartite graph ideals

In this section, we study the powers of the edge ideals of bipartite graphs. We obtain
an upper bound for the regularity of powers of edge ideals of bipartite graphs in terms of
co-chordal cover number.

Definition 3.1. A graph G is chordal (also called triangulated) if every induced cycle in G
has length 3, and is co-chordal if the complement graph Gc is chordal.

The co-chordal cover number, denoted co-chord(G), is the minimum number n such that
there exist co-chordal subgraphs H1, . . . , Hn of G with E(G) =

⋃n

i=1
E(Hi).

In the following, we relate the co-chordal cover number of a graph with that of its polar-
ization. As a consequence we obtain an upper bound for reg(I(G)s) for s ≥ 1, when G is a
bipartite graph.
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Theorem 3.2. Let G be a graph and e be an edge of G. Let G′ be the graph associated to
˜(I(G)2 : e). Then

co-chord(G′) ≤ co-chord(G).

Proof. Let co-chord(G) = n. Then there exist co-chordal subgraphs H1, . . . , Hn such that
E(G) =

⋃n

m=1
E(Hm). If G = G′, then we are done. Let {p1, p2} = e, NG(p1) \ {p2} =

{p1,1, . . . , p1,s} and NG(p2) \ {p1} = {p2,1, . . . , p2,t}. For any two vertices x, y, set

{[x, y]} =

{
{x, y} if x 6= y;
{x, zx} if x = y, where zx is a new vertex.

Note that for x, y ∈ V (G), x is even-connected to y with respect to e in G if and only if
{x, y} = {p1,i, p2,j} for some 1 ≤ i ≤ s, 1 ≤ j ≤ t. Therefore

E(G′) = E(G) ∪ {[p1,1, p2,1]} ∪ · · · ∪ {[p1,1, p2,t]} ∪ · · · ∪ {[p1,s, p2,1]} · · · {[p1,s, p2,t]}.

For each 1 ≤ µ ≤ s, {p1, p1,µ} ∈ E(Hm) for some 1 ≤ m ≤ n. We add certain even-connected
edges to Hm with a rule as described below, to get a new graph H ′

m:
Since Hm is co-chordal, by [4, Lemma 1 and Theorem 2], there is an ordering of edges

of Hm, f1 < · · · < ftm , such that for 1 ≤ r ≤ tm, (V (Hm), {f1, . . . , fr}) has no induced
subgraph isomorphic to 2K2.

If for 1 ≤ µ ≤ s, {p1,µ, p1} = fk for some 1 ≤ k ≤ tm, then set

· · · < fk < {[p1,µ, p2,1]} < · · · < {[p1,µ, p2,t]} < fk+1 < · · · .

Then we have E(G′) =
⋃n

m=1
E(H ′

m). We claim that H ′
m is co-chordal. Let E(H ′

m) =
{g1, . . . , gtm1

} be edge set of H ′
m and linearly ordered as given above. By Lemma 1 and

Theorem 2 of [4], it is enough to prove that for 1 ≤ r′ ≤ tm1
, (V (H ′

m), {g1, . . . , gr′}) has no
induced subgraph isomorphic to 2K2. Suppose H ′

m is not co-chordal. Then there exists a
least i such that (V (H ′

m), {g1, . . . , gi}) has an induced 2K2-subgraph, say {gj, gi}. Since Hm

is co-chordal, gj and gi cannot be in E(Hm) simultaneously.

Case 1: Suppose gj ∈ E(H ′
m) \ E(Hm) and gi = {xα, xβ} ∈ E(Hm). Let gj = {[p1,k, p2,ℓ]},

for some 1 ≤ k ≤ s and 1 ≤ ℓ ≤ t. By construction, we have

gj′ = {p1,k, p1} < gj < gi.

Since gj′, gi ∈ E(Hm), they cannot form an induced 2K2-subgraph of Hm. Therefore, either
gj′ and gi have a vertex in common or there exist an edge gh ∈ E(Hm) such that gh < gi
connecting gj′ and gi. If gj′ and gi have a vertex in common, then this contradicts the
assumption that {gj, gi} form an induced 2K2-subgraph. Suppose gh is a an edge connecting
gj′ and gi. Let gh = {p1, xα} with xα 6= p2. Then xα ∈ NHm

(p1) and hence by construction,
there is a new edge {[xα, p2,ℓ]} ∈ E(H ′

m) with the ordering

gh < {[xα, p2,ℓ]} < gi.

This also contradicts the assumption that {gj, gi} is an induced 2K2-subgraph. Now if gh =
{p1, xα} and xα = p2, then xβ ∈ NHm

(p2). Therefore there is an edge {[p1,k, xβ]} ∈ E(H ′
m)

with the ordering
gj′ < {[p1,k, xβ]} < gi.

This also contradicts the assumption that {gj, gi} is an induced 2K2-subgraph. Similarly, if
gh = {p1, xβ}, {p1,k, xα} or {p1,k, xβ} for some k, then one arrives at a contradiction.
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If gj ∈ E(Hm) and gi ∈ E(H ′
m) \ E(Hm), then we get contradiction in a similar manner.

Case 2: Suppose gj , gi ∈ E(H ′
m) \ E(Hm). Let gi = {[p1,k′, p2,ℓ′]} and gj = {[p1,k, p2,ℓ]}, for

some 1 ≤ k, k′ ≤ s, 1 ≤ ℓ, ℓ′ ≤ t. By construction, we have

gj′ = {p1,k, p1} < gj < gi′ = {p1,k′, p1} < gi.

Since p1,k ∈ NG(p1) and p2,ℓ′ ∈ NG(p2), by construction, there exists the edge {[p1,k, p2,ℓ′]}
in H ′

m with the ordering

gj′ < {[p1,k, p2,ℓ′]} < gi′ .

This contradicts the assumption that {gj, gi} is an induced 2K2-subgraph.
Therefore H ′

m is a co-chordal graph for 1 ≤ m ≤ n and E(G′) = E(H ′
1) ∪ · · · ∪ E(H ′

n).
Hence co-chord(G′) ≤ n. �

In [1, Corollary 3.6], Alilooee and Banerjee proved that, if the minimal free resolution of
I(G) is linear, then so is the minimal free resolution of (I(G)s+1 : e1 · · · es). By applying this
result recursively, one can see that if the minimal free resolution of I(G) is linear, then so is
the minimal free resolution of (I2 : ei1)

2 : · · · )2 : eij ). We reprove this result as a consequence
of Theorem 3.2.

Corollary 3.3. Let G be any graph with edge ideal I = I(G) and e1, . . . , es, s ≥ 1 be
some edges of G which are not necessarily distinct. If the minimal free resolution of I
is linear, then so is the minimal free resolution of (((I2 : ei1)

2 : ei2)
2 · · · )2 : eim), where

{i1, . . . , im} ⊆ {1, . . . , s}.

Proof. Fröberg proved that I(G) has a linear minimal free resolution if and only if co-chord(G) =
1, [12, Theorem 1]. Let G′

1 be the graph associated with the polarization of (I(G)2 : ei1).
Therefore from Theorem 3.2, co-chord(G′

1) = 1. For j ≥ 2, define G′
j to be the graph asso-

ciated with the polarization of (I(G′
j−1)

2 : eij ). Now recursively applying Theorem 3.2 and
[12, Theorem 1], we get the assertion. �

The following corollary helps to obtain upper bound for the asymptotic regularity of edge
ideals of bipartite graphs.

Corollary 3.4. Let G be a bipartite graph and e1, . . . , es, s ≥ 1, be some edges of G which
are not necessarily distinct. Let G′ be the graph associated to (I(G)s+1 : e1 · · · es). Then

co-chord(G′) ≤ co-chord(G).

Proof. Since G is a bipartite graph, it follows by Theorem 2.6 that the graph G′ associated

to
˜

(( ˜(I(G)2 : e1)
2

: · · · )2 : es) is bipartite on the same vertex set and same bipartition as on
G. By [1, Lemma 3.7], (((I(G)2 : e1)

2 : · · · )2 : es) = (I(G)s+1 : e1 · · · es). Therefore by
applying Theorem 3.2 recursively, we get co-chord(G′) ≤ co-chord(G). �

If G is not a bipartite graph, then the equality (((I(G)2 : e1)
2 : · · · )2 : es) = (I(G)s+1 :

e1 · · · es) need not necessarily hold, see the example below. This example further shows that
(((I(G)2 : e1))

2 : e2) has a linear minimal free resolution need not necessarily imply that
(I(G)3 : e1e2) has a linear minimal free resolution.
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Example 3.5. Let I = (x1x7, x1x2, x2x3, x2x6, x3x4, x3x5, x4x5, x6x8) ⊂ R = k[x1, . . . , x8]
and G be the associated graph. Let G1 and G2 be the graphs associated to

˜(I3 : x2x3x4x5) = I + (x1x3, x1x5, x1x4, x3y1, x3x6, x4x6, x5x6) ⊂ R1 = R[y1]

and

˜
(( ˜(I2 : x2x3))2 : x4x5) = ˜(I3 : x2x3x4x5) + (x6y3, x1x6, x1y2) ⊂ R1[y2, y3]

respectively. Then it can easily be seen that Gc
1 is not chordal and Gc

2 is chordal. Therefore
by [12, Theorem 1], I(G1) does not have linear minimal free resolution and I(G2) has linear
minimal free resolution. By Theorem 2.9, (((I2 : x2x3))

2 : x4x5) has linear minimal free
resolution but (I3 : x2x3x4x5) does not have linear minimal free resolution.

We now prove an upper bound for reg(I(G)s), when G is a bipartite graph.

Theorem 3.6. Let G be a bipartite graph. Then for all s ≥ 1,

reg(I(G)s) ≤ 2s+ co-chord(G)− 1.

Proof. We prove by induction on s. If s = 1, then the assertion follows from [32, Theorem
1]. Assume s > 1. By applying Theorem 2.4 and using induction, it is enough to prove that
for edges e1, . . . , es of G (not necessarily distinct), reg(I(G)s+1 : e1 · · · es) ≤ co-chord(G) + 1
for all s > 1. Let G′ be the graph associated to the ideal (I(G)s+1 : e1 · · · es).

reg((I(G)s+1 : e1 · · · es)) ≤ co-chord(G′) + 1,

≤ co-chord(G) + 1,

where the first inequality follows from [32, Theorem 1] and the second inequality follows
from Corollary 3.4. Hence reg(I(G)s) ≤ 2s+ co-chord(G)− 1 for all s ≥ 1. �

Remark 3.7. The inequality given in Theorem 3.6 could be asymptotically strict. For ex-
ample, if G = C8, then one can see that the co-chordal subgraphs of C8 are paths with at
most 3 edges so that co-chord(G) = 3. On the other hand, by [5, Theorem 5.2], reg(I(G)s) =
2s+ 1 < 2s+ 2 for all s ≥ 2.

From [5, Theorem 4.5] and Theorem 3.6 for any bipartite graph G, we have

2s+ ν(G)− 1 ≤ reg(I(G)s) ≤ 2s+ co-chord(G)− 1 for any s ≥ 1. (3.1)

As a consequence of (3.1), we derive the following result of Alilooee and Banerjee:

Corollary 3.8. [1, Proposition 2.15] Let G be a bipartite graph. Then following are equiva-
lent

(1) I(G) has a linear presentation.
(2) I(G)s has a linear resolution for all s ≥ 1.
(3) Gc is chordal.

Proof. It is known that for a graph G, if G is bipartite, then ν(G) = 1 if and only if
co-chord(G) = 1. Therefore the equivalence of the three statements follow directly from
(3.1) and [26, Proposition 1.3]. �
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For any graph G, Hà and Van Tuyl proved that reg(I(G)) ≤ c(G) + 1, [15, Theorem 6.7].
Woodroofe then proved a strong generalization of their result, namely, reg(I(G)) ≤ b(G)+1
for any graph G, [32, Theorem 2]. Let G be a graph and {z1, . . . , zt} be a minimum maximal
matching of G. Let Zi be the subgraph of G with E(Zi) = zi∪{ adjacent edges of zi}. Then
for each i, Zi is a co-chordal subgraph of G and E(G) = ∪t

i=1E(Zi). Hence co-chord(G) ≤
b(G). Therefore, for any bipartite graph G, it follows from [5, Theorem 4.6] and Theorem
3.6 that

2s+ ν(G)− 1 ≤ reg(I(G)s) ≤ 2s+ b(G)− 1. (3.2)

A dominating induced matching of G is an induced matching which also forms a maximal
matching of G. If G has a dominating induced matching, then ν(G) = b(G). Hence for any
bipartite graph G with dominating induced matching, we have,

reg(I(G)s) = 2s+ ν(G)− 1 for s ≥ 1.

In [16], Hibi et al. characterized graphs with dominating induced matchings and also G
satisfying ν(G) = b(G).

4. Relation between G and G′

Let G be a graph and e1, . . . , es be edges of G. Let G′ be the graph associated with
˜(I(G)s+1 : e1 · · · es). In this section, we compare certain algebraic and combinatorial prop-

erties of G and G′. Using these comparisons we obtain upper bounds for the regularity of
powers of edge ideals of bipartite graphs.

We begin by considering unmixed bipartite graphs.

Theorem 4.1. If G is an unmixed bipartite graph, then so is the graph G′ associated to
(I(G)s+1 : e1 · · · es), for any s-fold product e1 · · · es and s ≥ 1.1

Proof. We prove the result using induction on s. Let G be an unmixed bipartite graph. Then
by [30, Theorem 1.1], there exists a partition V1 = {x1, . . . , xn} and V2 = {y1, . . . , yn} with
V (G) = V1 ∪ V2. First we show that the graph G′ associated to (I(G)2 : e) is an unmixed
bipartite graph for any edge e in G. By Theorem 2.6, (I(G)2 : e) is bipartite on the same
vertex set having the same bipartition as in G. Since {xi, yi} ∈ E(G′) for all i, by [30,
Theorem 1.1] we need to show that {xi, yk} ∈ E(G′), if {xi, yj}, {xj, yk} ∈ E(G′) for distinct
i, j, k.

Case I: Suppose {xi, yj}, {xj, yk} ∈ E(G). Since G is an unmixed bipartite graph, there is
an edge {xi, yk} ∈ E(G), by [30, Theorem 1.1]. Hence {xi, yk} ∈ E(G′).

Case II: Suppose {xi, yj} ∈ E(G) and {xj , yk} /∈ E(G). Let xjp1p2yk be an even-connection
between xj and yk with respect to e = p1p2. Since {xi, yj}, {xj, p1} ∈ E(G), by [30, Theorem
1.1], there is an edge {xi, p1} ∈ E(G). Therefore there is an even-connection xip1p2yk with
respect to e. Hence {xi, yk} ∈ E(G′).

Case III: If {xi, yj} /∈ E(G) and {xj , yk} ∈ E(G). Let xip1p2yj be an even-connection
between xi and yj with respect to e = p1p2. Since {p2, yj}, {xj , yk} ∈ E(G), by [30, Theorem
1.1], there is an edge {p2, yk} ∈ E(G). Therefore there is an even-connection xip1p2yk, with
respect to e. Hence {xi, yk} ∈ E(G′).

1In a personal communication, we have been informed that Banerjee and Mukundan have also obtained
Theorem 4.1.
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Case IV: If {xi, yj}, {xj, yk} /∈ E(G). Consider the even-connections xip1p2yj and xjp1p2yk
between xi, yj and xj , yk respectively with respect to e. Then there is an even-connection
xip1p2yk between xi and yk with respect to e. Therefore {xi, yk} ∈ E(G′). Hence G′ is an
unmixed bipartite graph.

Assume by induction that for any unmixed bipartite graph G, (I(G)s : e1 · · · es−1) is an
unmixed bipartite graph for any (s − 1)-fold product and s > 1. By [1, Lemma 3.7], we
have (I(G)s+1 : e1 · · · es) =

(
(I(G)2 : ei)

s :
∏

j 6=i ej
)
. By the case s = 1, the graph associated

to (I(G)2 : ei) is an unmixed bipartite graph, say Gi. Therefore by induction the graph
associated to (I(Gi)

s :
∏

j 6=i ej) is an unmixed bipartite graph. This completes the proof of
the theorem.

�

The following example shows that Theorem 4.1 is not true if the graph is not bipartite.

Example 4.2. Let I = (x1x4, x1x2, x1x3, x2x3, x2x5, x3x6) ⊂ R = k[x1, . . . , x6] and G be the
graph associated to I. Then G is unmixed, but not bipartite. Taking e1 = {x1, x2}, we get
˜(I2 : e1) = I + (x4x5, x3x5, x3x4, x3y1) ⊂ R[y1]. Let G′ be the graph associated with ˜(I2 : e1).

Then it can be seen that, (x1, x3, x5) and (x1, x2, x4, x5, x6, y1) are minimal vertex covers of
G′. Therefore, G′ is not unmixed.

A graph G is called H-free for some graph H if G does not contain an induced subgraph
isomorphic to H . Bıyıkoğlu and Civan proved that if G is bipartite P6-free, then reg(I(G)) =
ν(G) + 1, [6, Theorem 3.15]. Below we prove that if G is P6-free, then so is G′. This result
is crucial in obtaining a precise expression, in the next section, for the regularity of I(G)s.

Theorem 4.3. If G is a bipartite Pk-free graph for some k ≥ 4, then so is the graph G′

associated to (I(G)s+1 : e1 · · · es), for any s-fold product e1 · · · es and s ≥ 1.

Proof. By [1, Lemma 3.7], it is enough to prove the assertion for s = 1. Let G be a bipartite
Pk-free graph, for some k ≥ 4. First we show that the graph G′ associated to (I(G)2 : e)
is Pk-free for any edge e in G. Note that G′ is bipartite on the same vertex set. Suppose
G′ has an induced path Pk : x1x2 · · ·xk. First assume that E(Pk) \ E(G) has only one
edge, say {xi, xi+1}. Let the even-connection be xip1p2xi+1, where e = {p1, p2}. Note that
{xi, xi+1} ∩ {p1, p2} = ∅. We first show that the vertices p1 and p2 cannot be equal to or
adjacent to xj for j < i− 1 and j > i+ 2.

Claim I: p1 6= xj for j 6= i− 1 and p2 6= xj for j 6= i+ 2.
If p1 = xj for some j 6= i−1, then {xj , xi} ∈ E(G). This contradicts the assumption that Pk

is an induced path. Similarly if p2 = xj for some j 6= i + 2, then {xj , xi+1} ∈ E(G), which
is again a contradiction.

Claim II: {p1, xj} /∈ E(G) for any j 6= i, i+ 2 and {p2, xj} /∈ E(G) for any j 6= i− 1, i+ 1.
Suppose {p1, xj} ∈ E(G) for some j 6= i, i + 2. Then xjp1p2xi+1 is an even-connection
between xj and xi+1 so that {xj, xi+1} ∈ E(G′). Since j 6= i, i+ 2, this is a contradiction to
the assumption that Pk is an induced path. Similarly, it can be seen that {p2, xj} /∈ E(G)
for j 6= i− 1, i+ 1.

Now we deal with the remaining possibilities. If p1 = xi−1, then p2 6= xi+2 and hence we have
a path P ′ : xi−1p2xi+1xi+2 in G. Similarly, if p2 = xi+2, then p1 6= xi−1 and hence we get a
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path P ′ : xi−1xip1xi+2. Now suppose {p1, xi+2} ∈ E(G). If {p2, xi−1} ∈ E(G), then there
is an even-connection xi−1p2p1xi+2 which is a contradiction. Therefore {p2, xi−1} /∈ E(G).
Hence we have a path P ′ : xi−1xip1xi+2 in G. If {p2, xi−1} ∈ E(G), then {p1, xi+2} /∈ E(G)
and hence we have a path P ′ : xi−1p2xi+1xi+2 in G.

Since p1 and p2 cannot be equal to xj for j < i − 1 and j > i + 2, replace the segment
xi−1xixi+1xi+2 in Pk with P ′, to obtain an induced path x1 · · ·xi−2P

′xi+3 · · ·xk of length
k − 1 in G which contradicts our hypothesis that G is Pk-free.

Now suppose E(Pk) \ E(G) has more than one edge. By the proof of Claim I and Claim

II, there cannot be more than two pairs of vertices which are even-connected. Moreover,
if there are two even-connections, then the evenly connected vertices have to be {xi−1, xi}
and {xi, xi+1} for some i. Let the even-connections be, xi−1p1p2xi and xip2p1xi+1. Note
that, in this case, for r = 1, 2, pr 6= xj for any j and {pr, xj} /∈ E(G) for j 6= i − 1, i, i + 1.
Therefore we have path P ′ : xi−1p1xi+1xi+2 in G. Since p1 cannot be equal to xj for j < i−1
and j > i + 2, replace the segment xi−1xixi+1xi+2 in Pk with P ′ to obtain an induced
path x1 · · ·xi−2P

′xi+3 · · ·xk with k vertices in G, which contradicts our hypothesis that G is
Pk-free. Hence G′ is Pk-free graph. �

The following result compares the induced matching numbers of G and G′.

Proposition 4.4. Let G be a graph and G′ be the graph associated to ˜(I(G)s+1 : e1 · · · es)
for e1, . . . , es ∈ E(G). Then ν(G′) ≤ ν(G).

Proof. Let {f1, . . . , fq, fq+1, . . . , fr, fr+1, . . . , ft} be an induced matching of G′, where

(1) for ℓ = 1, . . . , q, fℓ ∈ E(G);
(2) for ℓ = q + 1, . . . , r, fℓ = {uℓ, vℓ} and uℓ 6= vℓ are vertices of G even-connected with

respect to e1 · · · es.
(3) for ℓ = r + 1, . . . , t, fℓ = {uℓ, u

′
ℓ}, and uℓ is even-connected to itself with respect to

e1 · · · es and u′
ℓ is new vertex.

Let uℓ = pℓ0p
ℓ
1 · · · p

ℓ
2kℓ+1

= vℓ, for ℓ = q + 1, . . . , t, be an even-connection between uℓ and vℓ
(uℓ may be equal to vℓ) with respect to e1 · · · es. For i = q + 1, . . . , t, let f ′

i = {pi0, p
i
1}.

Claim: {f1, . . . , fq, f
′
q+1, . . . , f

′
t} is an induced matching for G.

Proof of the claim: Suppose this is not an induced matching. Then, either there is a common
vertex for two of the edges or there exists an edge in G connecting two of the edges in the
above set. Since {f1, . . . , ft} is an induced matching, we can see that fi and f ′

j cannot

have a common vertex, for any 1 ≤ i ≤ q, q + 1 ≤ j ≤ t. Suppose f ′
ℓ = {pℓ0, p

ℓ
1} and

f ′
m = {pm0 , p

m
1 } have a common vertex. If pℓ0 = pm0 or pℓ0 = pm1 or pℓ1 = pm0 , then this

contradicts the assumption that {fℓ, fm} form an induced matching. If pℓ1 = pm1 , then there
is an even-connection

pm0 (p
m
1 = pℓ1)p

ℓ
2 · · · p

ℓ
2kℓ+1

between pm0 and p2kℓ+1 with respect to e1 · · · es, which contradicts the assumption that
{fℓ, fm} form an induced matching. Therefore f ′

ℓ and f ′
m cannot have a common vertex.

Also, since {f1, . . . , fq} is an induced matching in G, there cannot be an edge connecting fi
and fj. Therefore the two possibilities are,

(1) there exists an edge connecting fi and f ′
j ;

11



(2) there exists an edge connecting f ′
ℓ and f ′

m.

Case 1: Let fi and f ′
j = {pj0, p

j
1}, for some 1 ≤ i ≤ q and q + 1 ≤ j ≤ t, be connected

by an edge, say {xα, xβ} in G. If either xα = pj0 or xβ = pj0, then this is a contradiction to

the assumption that fi and fj form an induced matching in G′. Therefore either xα = pj1 or

xβ = pj1. Suppose xα = pj1. Then there is an even-connection xβp
j
1 · · ·p

j
2kj+1

in G. This is also

in contradiction to the assumption that fi and fj is an induced matching in G′. Therefore

xα 6= pj1. Similarly one can prove that xβ 6= pj1. Therefore, there cannot be any common
edge {xα, xβ} between fi and f ′

j for any j = q + 1, . . . , t.

Case 2: Suppose there exists an edge, say {xα, xβ}, between f ′
ℓ = {pℓ0, p

ℓ
1} and f ′

m =
{pm0 , p

m
1 }.

(1) If {xα, xβ} = {pℓ0, p
m
0 }, then {xα, xβ} is a common edge of fℓ and fm, which is a

contradiction to the assumption that {fℓ, fm} is an induced matching in G′.
(2) If {xα, xβ} = {pℓ0, p

m
1 }, then there is an even-connection

pℓ0p
m
1 p

m
2 · · ·pm2km+1

between pℓ0 and pm
2km+1

with respect to e1 · · · es, which is again a contradiction. Sim-

ilarly, one arrives at a contradiction if {xα, xβ} = {pℓ1, p
m
0 }.

(3) Suppose {xα, xβ} = {pℓ1, p
m
1 }. If {pℓ2µ+1, p

ℓ
2µ+2} and {pm2µ1+1, p

m
2µ1+2} have a common

vertex, for some 0 ≤ µ ≤ kℓ − 1, 0 ≤ µ1 ≤ km − 1, then by [3, Lemma 6.13], pℓ0
is even-connected either to pm0 or to pm

2km+1
. Both contradicts the assumption that

fℓ, fm is an induced matching in G′. Therefore {pℓ2µ+1, p
ℓ
2µ+2} and {pm2µ1+1, p

m
2µ1+2}

does not have a common vertex for any 0 ≤ µ ≤ kℓ−1, 0 ≤ µ1 ≤ km−1. Then there
is an even-connection

pℓ2kℓ+1p
ℓ
2kℓ

· · · pℓ1p
m
1 · · · pm2km+1

between pℓ
2kℓ+1

and pm
2km+1

, which is also a contradiction to the assumption that
{fℓ, fm} is an induced matching.

Therefore {f1, . . . , fq, f
′
q+1, . . . , f

′
t} form an induced matching of G. Hence ν(G′) ≤ ν(G). �

As a consequence of Proposition 4.4, we obtain an upper bound for reg(I(G)s) when G is
a bipartite graph.

Corollary 4.5. Let G be a bipartite graph with partitions X and Y . Then for all s ≥ 1,

reg(I(G)s) ≤ 2s+
1

2
(ν(G) + min{|X|, |Y |})− 1.

Proof. If s = 1, then this is proved in [7, Theorem 4.16]. Let G′ be the graph associated to
(I(G)s+1 : e1 · · · es) for some edges e1, . . . , es in G. Since ν(G′) ≤ ν(G) and G′ is also bipartite
with partitions X and Y , the assertion now follows from Theorem 2.4 and induction. �

By [5, Theorem 4.5] and Corollary 4.5, for any bipartite graph G, we have

2s+ ν(G)− 1 ≤ reg(I(G)s) ≤ 2s+
1

2
(ν(G) + min{|X|, |Y |})− 1 for any s ≥ 1. (4.1)

Let G be a bipartite graph with partitions X and Y , say |X| ≤ |Y |. Then by Corollary 4.5,

reg(I(G)s) ≤ 2s+ |X| − 1 for any s ≥ 1.
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Remark 4.6. It is easy to see that for a bipartite graph G, ν(G) ≤ min{|X|, |Y |}. At
the same time, the difference between ν(G) and min{|X|, |Y |} could be arbitrarily large,
for example in the case of complete bipartite graphs. If ν(G) = min{|X|, |Y |} or ν(G) =
min{|X|, |Y |}− 1, then from (4.1), it follows that reg(I(G)s) = 2s+ ν(G)− 1. For example,
let H be a bipartite graph with V (H) = X ∪ Y . Let X = {x1, . . . , xn} and n ≤ |Y |. Let
G be the graph obtained by attaching at least one pendant vertex to each xi’s in H. Then
ν(G) = n and hence reg(I(G)s) = 2s+ n− 1.

Another immediate consequence of the comparison between the induced matching numbers
is the relation between the nK2-free property of G and G′.

Corollary 4.7. If G is an nK2-free graph for some n ≥ 1, then for any s-fold product

e1 · · · es, the graph G′ associated to ( ˜I(G)s+1 : e1 · · · es) is nK2-free.

Proof. If G is nK2-free, then ν(G) < n. By Proposition 4.4, ν(G′) ≤ ν(G). Hence ν(G′) < n
and hence G′ is nK2-free. �

Taking n = 2 in the previous corollary, we obtain [3, Lemma 6.14]. Using this result and
[26, Proposition 1.3] we get:

Corollary 4.8. If G is gap-free, then so is the graph G′ associated to ˜(I(G)s+1 : e1 · · · es),
for every s-fold product e1 · · · es. In other words, if I(G) has linear presentation, then so has
(I(G)s+1 : e1 · · · es), for every s-fold product e1 · · · es.

In [2], Banerjee posed questions on the relation between I(G) and (I(G)s+1 : e1 · · · es) for
some edges e1, . . . , es in G. In particular, he asked

Question 4.9. [2, Question 6.2.2] Classify G and e1, . . . , es such that reg(I(G)) ≥ reg(I(G)s+1 :
e1 · · · es).

As an application of our results Corollary 3.4 and Proposition 4.4, we obtain some sufficient
conditions for which the above inequality holds true.

Proposition 4.10. Let G be any graph and e1, . . . , es be edges of G, for some s ≥ 1. Let G′

be the graph associated to ˜(I(G)s+1 : e1 · · · es). Then the inequality reg(I(G)) ≥ reg(I(G)s+1 :
e1 · · · es) holds true if

(1) reg(I(G)s+1 : e1 · · · es) = ν(G′) + 1; or
(2) G is bipartite with reg(I(G)) = co-chord(G) + 1.

Proof. If reg(I(G)s+1 : e1 · · · es) = ν(G′) + 1, then

reg(I(G)s+1 : e1 · · · es) = ν(G′) + 1
≤ ν(G) + 1 (by Proposition 4.4)
= reg(I(G)). (by (1.1))

If G is bipartite and reg(I(G)) = co-chord(G) + 1, then

reg(I(G)s+1 : e1 · · · es) ≤ co-chord(G′) + 1 (by (1.1))
≤ co-chord(G) + 1 (by Corollary 3.4)
= reg(I(G)).

�
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The chromatic number denoted by χ(G) is the smallest number of colors possible in a
proper vertex coloring of G, see [31, Definition 5.1.4]. Note that, if G is bipartite graph,
then α(G) = χ(Gc), see [31, Chapter 8]. We now recall some results from the literature:

Remark 4.11. Let G be a graph.

(1) If G is unmixed bipartite, then Woodroofe proved that ν(G) = co-chord(G), [32,
Theorem 16].

(2) If G is a graph, then Woodroofe proved that co-chord(W (G)) = χ(Gc) and α(G) =
ν(W (G)), [32, Lemma 21].

(3) If G is a weakly chordal graph, then Busch-Dragan-Sritharan proved that ν(G) =
co-chord(G), [8, Proposition 3].

As an immediate consequence, we have

Corollary 4.12. Let G be a bipartite graph and e1, . . . , es be edges of G. Then reg(I(G)s+1 :
e1 · · · es) ≤ reg(I(G)) if

(1) G is unmixed;
(2) G is weakly chordal;
(3) G = W (H) for some bipartite graph H or
(4) G is P6-free;

Proof. If G is unmixed, weakly chordal or G = W (H) for some bipartite graph H , then the
assertion follows from Remark 4.11 and Proposition 4.10. If G is P6-free, then by Theorem
4.3 G′ is also P6-free. By [6, Theorem 3.15], reg(I(G′)) = ν(G′) + 1. Now the assertion
follows from Proposition 4.10. �

Below, we present an example to show that the inequalities in Corollary 3.4, Proposition
4.4 and Proposition 4.10 could be strict.

Example 4.13. Let G = C6 and I = I(G) = (x1x2, x2x3, x3x4, x4x5, x5x6, x6x1) ⊂ k[x1, . . . , x6].
Then (I3 : x2x3x4x5) = I + (x1x4, x3x6). Let G′ be the graph associated to (I3 : x2x3x4x5).
It can be easily seen that co-chord(G) = ν(G) = 2 and co-chord(G′) = ν(G′) = 1. By (1.1),
reg(I) = 3 and reg(I3 : x2x3x4x5) = 2.

5. Precise expressions for asymptotic regularity

In this section, we apply Theorem 3.6 to obtain precise expressions for the regularity of
powers of edge ideals of various subclasses of bipartite graphs. We begin the study with
some classes of graphs G for which ν(G) = co-chord(G). We then use (3.1) to prove that
reg(I(G)s) = 2s+ ν(G)− 1 for such graphs.

Corollary 5.1. Let G be a bipartite graph. If

(1) G is unmixed; 2

(2) G = W (H) for some bipartite graph H;
(3) G is weakly chordal, or
(4) If G is P6-free graph,

then for all s ≥ 1, reg(I(G)s) = 2s+ ν(G)− 1.

2In a personal communication, we have been informed that Banerjee and Mukundan have also obtained
Corollary 5.1(1).
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Proof. The assertions, (1), (2) and (3) follows from Remark 4.11 and (3.1). If G is P6-free,
then so is G′. Therefore, the result now follows from Theorem 2.4 and Corollary 4.12. �

Observe that bipartite P5-free graphs are chordal bipartite. Therefore by Corollary 5.1(3),
reg(I(G)s) = 2s + ν(G)− 1 for all s ≥ 1. In general, for a bipartite P6-free graph, it is not
known whether the equality ν(G) = co-chord(G) is true. However, the previous result shows
that for s ≥ 1, reg(I(G))s) = 2s+ ν(G)− 1.

Since forests are weakly chordal bipartite graphs, we derive, from Corollary 5.1(3), one of
the main results of Beyarslan, Hà and Trung:

Corollary 5.2. [5, Theorem 4.7] If G is a forest, then for all s ≥ 1,

reg(I(G)s) = 2s+ ν(G)− 1.

The bipartite complement of a bipartite graph G is the bipartite graph Gbc on the same
vertex set as G, V (Gbc) = X ∪ Y , with E(Gbc) = {{x, y}|x ∈ X, y ∈ Y, {x, y} /∈ E(G)}.
Below we make an observation on connected bipartite graphs G with reg(I(G)) = 3.

Observation 5.3. If G is a connected bipartite graph with reg(I(G)) = 3, then by [11,
Theorem 3.1], 2 ≤ ν(G). If 2 < b(G), then Gbc has an induced cycle of length 6, which
contradicts [11, Theorem 3.1]. Therefore, ν(G) = co-chord(G) = b(G) = 2.

We now derive two results of Alilooee and Banerjee ([1, Theorems 3.8, 3.9]) as a corollary:

Corollary 5.4. If G is a connected bipartite graph with reg(I(G)) = 3, then

(1) reg(I(G)s+1 : e1 · · · es) ≤ 3 for any s-fold product e1 · · · es;
(2) for all s ≥ 1, reg(I(G)s) = 2s+ 1.

Proof. The first assertion follows from Observation 5.3 and Proposition 4.10 and then second
assertion follows from Observation 5.3 and (3.2). �

So far, we had been discussing about graphs G for which reg(I(G)s) = 2s+ν(G)−1 for all
s ≥ 1. Now we produce some classes of graphs G for which co-chord(G)−ν(G) is arbitrarily
large and hence reg(I(G)s) − [2s + ν(G) − 1] is also arbitrarily large. If G is the disjoint
union of Cn1

, . . . , Cnm
and k edges, then one can easily see that

ν(G) = k +

m∑

j=1

⌊nj

3

⌋
,

co-chord(G) =

{
k +

∑m

j=1
⌊nj

3
⌋ if n1, . . . , nm ≡ {0, 1} (mod 3),

k +m+
∑m

j=1
⌊
nj

3
⌋ if n1, . . . , nm ≡ 2 (mod 3),

and

reg(I(G)) =

{
ν(G) + 1 if n1, . . . , nm ≡ {0, 1} (mod 3),

co-chord(G) + 1 if n1, . . . , nm ≡ 2 (mod 3).

We prove a precise expression for reg(I(G)s) in this case. We would like to thank Tai Hà
for indicating the following proof, much simpler than the original one.
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Theorem 5.5. Let G be the disjoint union of Cn1
, . . . , Cnm

and k edges, k ≥ 1. Then for
all s ≥ 1,

reg(I(G)s) =

{
2s+ ν(G)− 1 if n1, . . . , nm ≡ {0, 1} (mod 3)

2s+ co-chord(G)− 1 if n1, . . . , nm ≡ 2 (mod 3)

Proof. Let e1, . . . , ek be disjoint edges. It follows from [17, Theorem 7.6.28] and [5, Theorem
5.2] that

(1) if n ≡ {0, 1}(mod 3), then reg(I(Cn)
s) = 2s+ ν(Cn)− 1, for all s ≥ 1;

(2) if n ≡ 2(mod 3), then reg(I(Cn)) = co-chord(Cn)+1 and reg(I(Cn)
s) = 2s+ν(Cn)−1,

for all s ≥ 2.

Let G1 = Cn1
∪ {e1} ∪ · · · ∪ {ek}. First we claim that, for s ≥ 1

reg(I(G1)
s) =

{
2s+ ν(G1)− 1 if n1 ≡ {0, 1} (mod 3)

2s+ co-chord(G1)− 1 if n1 ≡ 2 (mod 3)

We prove this by induction on k. Let k = 1. Let H1 = Cn1
∪ {e1}. By [14, Lemma 2.5], we

can prove the case s = 1. If n1 ≡ {0, 1}(mod 3), then by [27, Theorem 5.7], for s ≥ 2, we
have

reg(I(H1)
s) = 2s+ ν(H1)− 1.

If n1 ≡ 2(mod 3), then by [14, Proposition 2.7], we get

reg(I(H1)
2) = reg(I(Cn)) + reg(I(e1)

2)− 1 = co-chord(H1) + 3.

By [27, Theorem 5.7], for s ≥ 3, we have

reg(I(H1)
s) = 2s+ co-chord(H1)− 1.

This completes the proof for k = 1. Suppose k > 1. Let G1 = Cn1
∪ {e1, . . . , ek}, where

e1, . . . , ek are disjoint edges. Let H = Cn1
∪ {e1, . . . , ek−1}. By induction hypothesis, for

s ≥ 1,

reg(I(H)s) =

{
2s+ ν(H)− 1 if n1 ≡ {0, 1}(mod 3),

2s+ co-chord(H)− 1 if n1 ≡ 2(mod 3).

Since G1 = H ∪ {ek}. By [14, Lemma 2.5] and [27, Theorem 5.7], for s ≥ 1, we have

reg(I(G1)
s) =

{
2s+ ν(G1)− 1 if n1 ≡ {0, 1}(mod 3),

2s+ co-chord(G1)− 1 if n1 ≡ 2(mod 3).

Let Gm−1 = Cn1
∪ · · · ∪ Cnm−1

∪ {e1, . . . , ek}. Then by induction on m, we get, for s ≥ 1,

reg(I(Gm−1)
s) =

{
2s+ ν(Gm−1)− 1 if n1, . . . , nm−1 ≡ {0, 1}(mod 3),

2s+ co-chord(Gm−1)− 1 if n1, . . . , nm−1 ≡ 2(mod 3).

Let G = Gm−1 ∪ Cnm
. By [14, Lemma 2.5], [14, Proposition 2.7] and [27, Theorem 5.7], we

have s ≥ 1,

reg(I(G)s) =

{
2s+ ν(G)− 1 if n1, . . . , nm ≡ {0, 1}(mod 3),

2s+ co-chord(G)− 1 if n1, . . . , nm ≡ 2(mod 3).

This completes the proof of the theorem. �
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It may be noted that Cn is not bipartite if n = 2k + 1 for some k, but the upper bound
in Theorem 3.6 is still satisfied in this case. Suppose H ∼=

∐m

j=1
C3nj+2

∐ ∐k

i=1
ei, then

ν(H) = k +
∑m

j=1
nj and co-chord(H) = k +m +

∑m

j=1
nj . By Theorem 5.5, for s ≥ 1, we

have

reg(I(H)s)− [2s+ ν(G)− 1] = m.

Woodroofe proved that if H is an induced subgraph of a graph G, then reg(I(G)) ≥ k+m+∑m

j=1
nj + 1, [32, Corollary 11]. We obtain a similar bound for all the powers.

Corollary 5.6. If a graph G has an induced subgraph H ∼=
∐m

j=1
Cnj

∐∐k

i=1
ei, then

reg(I(G)s) ≥

{
2s+ (k +

∑m

j=1
⌊
nj

3
⌋)− 1 if n1, . . . , nm ≡ {0, 1} (mod 3),

2s+ (k +m+
∑m

j=1
⌊nj

3
⌋)− 1 if n1, . . . , nm ≡ 2 (mod 3).

Proof. Follows immediately from Theorem 5.5 and [5, Corollary 4.3]. �

Note that if nj = 3kj + 2 for some kj ≥ 1, j = 1, . . . , m, then reg(I(G)s) ≥ 2s +
co-chord(H) − 1. This is a much improved lower bound in this class of graphs since
co-chord(H) could be much larger than ν(G).

Example 5.7. Let K1,n be the complete bipartite graph with partition {w} ∪ {x1, . . . , xn}.
Let n = k+m. Let G be the graph obtained by attaching a pendant vertex each to x1, . . . , xk

and identifying a vertex of C2rt with xt for k + 1 ≤ t ≤ n, where 2rt ≡ 2(mod 3). Let H be
induced subgraph of G on V (G) \ {w}. One can easily see that, co-chord(H) = co-chord(G).
Therefore it follows from Corollary 5.6 and Theorem 3.6 that for all s ≥ 1,

reg(I(G)s) = 2s+ co-chord(G)− 1.

It may also be noted that for this class of graphs reg(I(G)s)− [2s+ ν(G)− 1] = m.

There are many classes of graphs G for which the equality reg(I(G)s) = 2s + b has been
established, where b is some combinatorial invariant associated with G. For all such results,
the constant term b is either equal to ν(G)− 1 or equal to co-chord(G)− 1. While ν(G)− 1
is a lower bound for reg(I(G)s) − 2s for all graphs, co-chord(G) − 1 is an upper bound in
the case of bipartite graphs. Moreover, co-chord(G) − ν(G) can be arbitrarily large. We
conclude our article with the following question:

Question 5.8. Does there exist a graph G such that for all s ≫ 0

2s+ ν(G)− 1 < reg(I(G)s) < 2s+ co-chord(G)− 1?

More generally, let n = co-chord(G) − ν(G) and Cn = {G | co-chord(G) − ν(G) = n}. For
each t ∈ {0, 1, . . . , n}, does there exist Gt ∈ Cn such that reg(I(Gt)

s) = 2s+ ν(G) + t− 1?
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[5] Selvi Beyarslan, Huy Tài Hà, and Trân Nam Trung. Regularity of powers of forests and cycles. J.

Algebraic Combin., 42(4):1077–1095, 2015.
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