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In this article, taking the quantum Bernstein functions as base functions,

we have proposed the class of quantum Bernstein fractal functions. When

f ∈ (I), the base function is taken as the classical q-Bernstein polynomi-

als, we propose the class of quantum fractal functions through a multival-

ued quantum fractal operator. When f ∈ p(I), 1 ≤ p ≤ ∞, the base function

is assumed as q-Kantorovich-Bernstein polynomial to construct the sequence

of (q, 𝛼)-Kantorovich-Bernstein fractal functions that converges uniformly to

f . Some approximation properties of these new class of quantum fractal inter-

polants have been studied.
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1 INTRODUCTION

Quantum calculus (in short q-calculus) is in the homework of the classical infinitesimal calculus without the notion

of limit. It works as a bridge between mathematics and physics for the last five decades. One can find its application in

different mathematical areas such as number theory, combinatorics, orthogonal polynomials, basic hypergeometric func-

tions apart from quantum theory, mechanics, and theory of relativity in physics. In 1912, using polynomials, Bernstein

gave an alternative proof of the Weierstrass theorem: Every continuous function on [a,b] can be uniformly approxi-

mated by a sequence of polynomial functions. Since Bernstein polynomials play an important role in approximation

theory, many researchers have studied this polynomial and its different generalizations, see for instance References 1-3.

Lupas4 first introduced the q-analogue of Bernstein polynomials that brought into the existence of a new research area

called\ q-approximation theory. Numerous authors5-12 have investigated and proposed the q-extension of various results

of classical approximation theory.

However, classical approximation theory and q-approximation theory deal with the approximation of functions using

smooth functions or infinitely differentiable functions. However, the classical smooth functions may not provide good

representatives of irregular functions, for instance,Weierstrass function, and real-world sampled signals such as financial

series, seismic data, speech signals, bioelectric recordings, and so on. Fractal functions provide a constructive approxi-

mation theory for nondifferentiable functions. Fractal functions concern mainly at data/function which present details

at different scales or some degree of self-similarity.

By exploiting the theory of iterated function system (IFS),13 Barnsley14 introduced the concept of fractal interpola-

tion function (FIF) to provide a mathematical representation of a data set that is generated from irregularity and/or

self-affine structure. The calculus of fractal functions was investigated in References 15,16 and this research provided a

methodology for the construction of r-fractal splines. Very recently, shape-preserving fractal interpolationwas studied in
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References 17-20. In these articles various types of fractal splines that preserve the fundamental shapes of the interpola-

tion data were developed. Shape-preserving fractal surfaces and their convergence and stability aspects were investigated

in References 21-23. Furthermore, Barnsley14 has extended the idea of fractal interpolation to approximate a continuous

function f defined on a real compact interval I, and this led to the concept of fractal approximation or 𝛼-fractal function

f 𝛼 of f .24-26 In general, (i) 𝛼-fractal functions are nondifferentiable; (ii) the graph of f 𝛼 is a union of transformed copies

of itself; (iii) fractal dimension of graph of 𝛼-fractal function is noninteger. Due to these fractal characteristics, f 𝛼 may be

treated as the fractal approximant of f . In this way, every continuous function can be approximated by means of fractal

functions. Furthermore, shape-preserving fractal approximation was investigated in Reference 27. Akhtar et al28 calcu-

lated the box dimension of the graph of 𝛼-fractal functions by assuming suitable conditions on the original function f and

base function.

Navascués et al24-26,29-31 studied various properties of the 𝛼-fractal function f 𝛼 of f including approximation properties,

among various desirable properties of a good approximant. Navascués et al24-26,29-31 proved that the 𝛼-fractal function f 𝛼

of f converges toward f provided the magnitude of the scaling factors of f 𝛼 goes to zero. In this article, using the theory

of fractal functions and classical q-approximation, for a given function f ∈ (I), we propose a sequence {f
(q,𝛼)
n }∞n=1 of

quantum fractal functions that converges to f even if the magnitude/norm of the corresponding scaling factors/functions

does not go to zero. In the construction of the sequence {f
(q,𝛼)
n }∞n=1 of quantum fractal functions, we use the sequence

{Bn,q(f , ⋅)}
∞
n=1 of q-Bernstein polynomials of f as base functions. Consequently, the convergence of the sequence {f

(q,𝛼)
n }∞n=1

of quantum fractal functions toward the function f follows from the convergence of the q-Bernstein polynomials toward

f . The shape of the quantum fractal functions depends on the choice of q∈ (0,1) and the scaling functions. When q→ 1,

the q-Bernstein polynomial coincides with the classical Bernstein polynomial, and in this case we call quantum fractal

functions simply 𝛼-fractal functions. Furthermore, the convergence of these 𝛼-fractal functions toward f follows from the

convergence of the q-Bernstein polynomials of f toward f . The procedure of getting a sequence {f
(q,𝛼)
n }∞n=1 of quantum

fractal functions that converges uniformly to f ∈ (I) determines an operator, termed the multivalued quantum fractal

operator:  (q,𝛼) ∶ (I) ⇉ (I), f → {f
(q,𝛼)
n }∞n=1.We study some basic properties of  (q,𝛼).

Navascués and Chand29 extended the notion of 𝛼-fractal function to p-spaces and derived some approxima-

tion results under the assumption that the norm of the scaling functions tends to zero. In this article, we develop

(q, 𝛼)-Kantorovich-Bernstein fractal functions in p-spaces without any condition on the scaling functions for con-

vergence. Furthermore, we study the approximation properties of (q, 𝛼)-Kantorovich-Bernstein fractal functions and

quantum fractal versions of Müntz theorems in p-spaces.

2 BACKGROUND AND PRELIMINARIES

In this section we endeavor to expose the reader to the requisite preliminaries on fractal interpolation functions and its

generalization through 𝛼-fractal functions.

2.1 Fractal interpolation

LetNk denote the first k natural numbers, I = [x1,xN] be a closed and bounded interval ofR, and (I) be the Banach space
of all real-valued continuous functions on I equippedwith the supremumnorm. Consider the interpolation data {(xi, yi) ∶

i ∈ NN} with strictly abscissae and N > 2. Let Li, i ∈ NN−1, be a set of homeomorphic mappings from I to Ii = [xi,xi+ 1]

satisfying

Li(x1) = xi, Li(xN) = xi+1. (1)

Let Fi be a function from I ×K to K (K is suitable compact subset of R), which is continuous in the x-direction and

contractive in the y-direction (with contractive factor |𝛼i| ≤ 𝜅 < 1) such that

Fi(x1, y1) = yi, Fi(xN , yN) = yi+1, i ∈ NN−1. (2)

Let us consider  = {g ∈ (I)|g(x1) = y1 and g(xN)= yN}. We define a metric on  by 𝜌(h, g) = max{|h(x) − g(x)| ∶ x ∈
I} for h, g ∈ . Then (, 𝜌) is a complete metric space. Define the Read-Bajraktarević operator T on (, 𝜌) by

Tg(x) = Fi(L
−1
i (x), g◦L−1i (x)), x ∈ Ii. (3)
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Using the properties of Li and (1) and (2), Tg is continuous on the interval Ii; i ∈ NN−1, and at each of the points

x2, … , xN − 1. Also,

𝜌(Tg,Th) ≤ |𝛼|∞𝜌(g, h),

where |𝛼|∞ = max{|𝛼i| ∶ i ∈ NN−1} < 1.Hence, T is a contractionmap on the complete metric space (, 𝜌). Therefore, by
the Banach fixed point theorem, T possesses a unique fixed point (say) f * on , that is, (Tf *)(x)= f *(x) for all x∈ I. Accord-
ing to (3), the function f * satisfies the functional equation: f ∗(x) = Fi(L

−1
i
(x), f ∗◦L−1

i
(x)), x∈ Ii. Furthermore, using (1)

and (2), it is easy to verify that f *(xi)= yi, i ∈ NN .Defining amappingwi:I ×K→ Ii ×K aswi(x, y) = (Li(x),Fi(x, y)), (x, y) ∈

I × K, i ∈ NN−1, the graph G(f *) of f * satisfies:

G(f ∗) = ∪
i∈NN−1

wi(G(f
∗)), (4)

and hence f * is called fractal interpolation function (FIF) corresponding to the IFS  = {I × K,wi(x, y) =

(Li(x),Fi(x, y)), i ∈ NN−1}.

Barnsley and Navascués14,24,25 observed that the concept of FIFs can be used to define a class of fractal functions

associated with a given function f ∈ (I).
For a given f ∈ (I), consider a partition Δ = {x1, x2, … , xN} of [x1,xN] satisfying x1 < x2 < … < xN , a continuous

function b ∶ I → R that fulfills the conditions b(x1)= f (x1), b(xN)= f (xN) and b≠ f , and N − 1 real numbers 𝛼i, i ∈ NN−1

satisfying |𝛼i| < 1. Define an IFS through the maps

Li(x) = aix + bi, Fi(x, y) = 𝛼iy + f (Li(x)) − 𝛼ib(x), i ∈ NN−1.

The corresponding FIF denoted by f 𝛼
Δ,b

= f 𝛼 is referred to as 𝛼-fractal function for f (fractal approximation of f ) with

respect to a scaling vector 𝛼 = (𝛼1, 𝛼2, … , 𝛼N−1), base function b, and partitionΔ. Here the set of data points is {(xi, f (xi)) ∶

i ∈ NN}. The function f 𝛼 is the fixed point of the Read-Bajraktarević (RB) operator T ∶ f (I) → f (I) defined by
(Tg)x = 𝛼ig(L

−1
i (x)) + f (x) − 𝛼ib(L

−1
i (x)), x ∈ Ii, i ∈ NN−1,

where f (I) = {g ∈ (I) ∶ g(x1) = f (x1), g(xN) = f (xN)}. Consequently, the 𝛼-fractal function f 𝛼 corresponding to f satis-

fies the self-referential equation

f 𝛼(x) = 𝛼if
𝛼(L−1i (x)) + f (x) − 𝛼ib(L

−1
i (x)), x ∈ Ii, i ∈ NN−1. (5)

The fractal dimension (box dimension or Hausdorff dimension) of f 𝛼 depends on the choice of the scal-

ing vector 𝛼. For instance, Akhtar et al28 calculated box dimension of graph of 𝛼-fractal functions by assum-

ing suitable conditions on the original function f and base function b. The following proposition provides the

details of it.

Proposition 1. Let f ∈ (I) and b ∶ I → R be Lipschitz functions with b(x1)= f (x1), b(xN)= f (xN). LetΔ = {x1, x2, … , xN}

be a partition of I satisfying x1 < x2 < … < xN . and 𝛼 = (𝛼1, 𝛼2, … , 𝛼N−1). If the data points (xi, f (xi)), i ∈ NN are not

collinear, then graph G of the 𝛼-fractal function f 𝛼 has the box dimension

dimB(G) =

⎧⎪⎨⎪⎩

D if

N−1∑
i=1

|𝛼i| > 1,

1 otherwise,

where D is solution of
∑N−1

i=1 |𝛼i|aD−1i
= 1.

To obtain fractal functions with more flexibility, iterated function system wherein scaling factors are replaced by scal-

ing functions received attention in the recent literature32 on fractal functions. That is, one may consider the IFS with

maps

Li(x) = aix + bi, Fi(x, y) = 𝛼i(x)y + f (Li(x)) − 𝛼ib(x), i ∈ NN−1,
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where 𝛼i, i ∈ NN−1 are continuous functions on I satisfying max{||𝛼i||∞ ∶ 𝚤 ∈ NN−1} < 1. The corresponding 𝛼-fractal

function is the fixed point of the RB-operator

(Tg)x = 𝛼i(L
−1
i (x))g(L−1i (x)) + f (x) − 𝛼i(L

−1
i (x))b(L−1i (x)), x ∈ Ii, i ∈ NN−1. (6)

Consequently, the 𝛼-fractal function f 𝛼 corresponding to f satisfies the self-referential equation

f 𝛼(x) = 𝛼i(L
−1
i (x))f 𝛼(L−1i (x)) + f (x) − 𝛼i(L

−1
i (x))b(L−1i (x)), x ∈ Ii, i ∈ NN−1. (7)

3 QUANTUM FRACTAL APPROXIMATION

From (7), we get the following inequality:

||f 𝛼 − f ||∞ ≤ ||𝛼||∞
1 − ||𝛼||∞ ||f − b||∞, (8)

where ||𝛼||∞ = max{||𝛼i||∞ ∶ i ∈ NN−1}. For a fixed base function b, the 𝛼-fractal function f 𝛼 converges uniformly to f ∈(I) if ||𝛼||∞ → 0. To get the convergence of the 𝛼-fractal function f 𝛼 toward f without altering the scaling functions, we

choose the base function b as q-Bernstein polynomial Bn,q(f ,x) of f , that is, b=Bn,q(f ,x) (see for instance Reference 33),

Bn,q(f , x) =
1

(xN − x1)n

n∑
k=0

(
n

k

)

q

(x − x1)
kf

(
x1 + (xN − x1)

[k]q

[n]q

) n−k−1∏
s=0

(xN − x1 − qsx), x ∈ I, (9)

where q ∈ (0, 1),n ∈ N, [k]q =
1−qk

1−q
,

[k]q! =

{
[k]q[k − 1]q[k − 2]q … [2]q[1]q, if k ≠ 0,

1, if k = 0,(
n

k

)

q

=
[n]q!

[k]q![n − k]q!
, f ∈ (I), Bn,q(f , x1) = f (x1), Bn,q(f , xN) = f (xN).

When q→ 1, Bn,q(f ,x) coincides with the classical nth Bernstein polynomial. If we take the base function as b=Bn,q(f ,x)

in (9), then the corresponding fractal function q,𝛼
Δ,Bn

(f ) = f
(q,𝛼)
n is called a quantum Bernstein fractal function associated

with f ∈ (I), and
f
(q,𝛼)
n (x) = f (x) + 𝛼i(L

−1
i (x))[f

(q,𝛼)
n (L−1i (x)) − Bn,q(f ,L

−1
i (x))], x ∈ Ii, i ∈ NN−1, n ∈ N. (10)

Therefore, from (10), it is easy to notice that shape and properties of the quantum fractal function f
(q,𝛼)
n depend on

the choice of q∈ (0,1) apart from the choice of scaling functions. Note that the quantum fractal function f
(q,𝛼)
n ,n ∈ N, of

f ∈ (I) is obtained via the IFS defined by
n = {I × R, (Li(x),Fn,i(x, y)) ∶ i ∈ NN−1}, n ∈ N, (11)

where Fn,i(x, y) = f (Li(x)) − 𝛼i(x)(y − Bn,q(f , x)).

Theorem 1. Let f ∈ (I). There exists a sequence of quantum Bernstein fractal functions {f
(q,𝛼)
n (x)}∞n=1 that converges

uniformly to f on I. Furthermore, f
(q,𝛼)
n ,n ∈ N, satisfies the following inequalities:

1 − ||𝛼||∞
1 + ||𝛼||∞ ||f ||∞ ≤ ||f (q,𝛼)n || ≤ 1 + ||𝛼||∞

1 − ||𝛼||∞ ||f ||∞. (12)
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Proof. Let f
(q,𝛼)
n ,n ∈ N, be the quantum fractal function corresponding to f . Then, from (10), it is easy to deduce that

||f (q,𝛼)n − f ||∞ ≤ ||𝛼||∞||f (q,𝛼)n − Bn,q(f , .)||∞,
≤ ||𝛼||∞[||f (q,𝛼)n − f ||∞ + ||f − Bn,q(f , .)||∞].

Hence we obtain

||f (q,𝛼)n − f ||∞ ≤ ||𝛼||∞
1 − ||𝛼||∞ ||f − Bn,q(f , .)||∞. (13)

From Reference 33, we have

||Bn,q(f , .) − f ||∞ → 0 as n → ∞. (14)

Using (14) in (13), we conclude that the sequence {fn,q(x)}∞n=1 of quantum fractal functions converges uniformly to f .

Again from References 34, we have

||Bn,q(., .)||∞ = 1, q ∈ (0, 1]. (15)

We can rewrite (13) as

||f (q,𝛼)n ||∞ − ||f ||∞ ≤ ||f (q,𝛼)n − f ||∞ ≤ ||𝛼||∞
1 − ||𝛼||∞ {||f ||∞ + ||Bn,q(f , .)||∞}. (16)

Using (15) in (16), we get the right-side inequality of (12). Next, from (10), we obtain

|f (q,𝛼)n (x) − f (x)| ≤ ||𝛼i||∞{||f (q,𝛼)n ||∞ + ||Bn,q(f , .)||∞}, x ∈ Ii, i ∈ NN−1,n ∈ N,

which implies that

||f ||∞ − ||f (q,𝛼)n ||∞ ≤ ||f (q,𝛼)n − f ||∞ ≤ ||𝛼||∞{||f (q,𝛼)n ||∞ + ||Bn,q(f , .)||∞}.

Using (15) in the above inequality, we get the left-side inequality of (12). ▪

Proposition 2. If we consider p-norm ||f ||p =
(∫

I
|f (t)|pdt)1∕p, 1< p<∞, for f ∈ (I), the following inequality holds.

||f (q,𝛼)n − f ||p ≤ ||𝛼||∞
1 − ||𝛼||∞ ||f − Bn,q(f )||p . (17)

Proof. From (10), we have

||f (q,𝛼)n − f ||pp = ∫I|(f
(q,𝛼)
n − f )(x)|pdx

=

N−1∑
i=1

∫
xi+1

xi

|𝛼i(L−1i (x)|p|(f (q,𝛼)n − Bn,q(f ))◦L
−1
i (x)|pdx

=

N−1∑
i=1

∫Iai|𝛼i(x̃)|
p|(f (q,𝛼)n − Bn,q(f ))(x̃)|pdx̃

≤
N−1∑
i=1

ai||𝛼||p∞∫I|(f
(q,𝛼)
n − Bn,qf )(x)|pdx

= ||𝛼||p∞||f (q,𝛼)n − Bn,q(f )||pp .

In the above computation, we have used the change of variable x̃ = L−1
i
(x) at the third step and

∑i=1
N−1 ai = 1 at the final

step. From the above estimation, we have

||f (q,𝛼)n − f ||p ≤ ||𝛼||∞||f (q,𝛼)n − Bn,q(f )||p

≤ ||𝛼||∞(||f (q,𝛼)n − f ||p + ||f − Bn,q(f )||p).
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F IGURE 1 The quantum fractal

approximants of x1/4,x∈ [0,1]

Further simplification of the above inequality gives the desired estimation in (17). ▪

Examples. Now, we want to see some examples of q-fractal functions for a given function f (x)= x1/4,x∈ [0,1]. The

quantum fractal functions in Figure 1A-C are generated with respect to the partition Δ = {0, 0.25, 0.5,1} of [0,1]. The

quantum fractal functions f (0.2,𝛼)
2

, f (0.7,𝛼)
2

, and f (0.7,𝛼)
98

are generated at the sixth iteration, respectively, in Figure 1A-C with

the choice of the scaling functions 𝛼i(x) =
1

1+e−10x
, x ∈ [0, 1], i ∈ N3. By comparing the quantum fractal functions f (0.2,𝛼)

2

and f (0.7,𝛼)
2

, one can observe the effects of q in the shape of the quantum fractal function. According to Theorem 1,

the quantum fractal function f (0.7,𝛼)
31

provides a better approximation for x1/4,x∈ [0,1] than that obtained by f (0.7,𝛼)
2

. By

observing Figure 1B,C, one can ask why the fractal functions f (0.7,𝛼)
2

and f (0.7,𝛼)
98

do not have the same sort of irregu-

larity even if their scaling functions are same. This is due to the following reason: The fractal function f (0.7,𝛼)
2

exhibits

irregularity on all scales, whereas the fractal function f (0.7,𝛼)
31

exhibits irregularity on small scales. Furthermore, small

scales of irregularity of the fractal function f (0.7,𝛼)
98

can be observed from Figure 1D, which is a part of f (0.7,𝛼)
98

under

magnification.

4 MULTIVALUED QUANTUM FRACTAL OPERATOR

The definition of quantum 𝛼-fractal function  (q,𝛼)
Δ,Bn

(f ) = f
(q,𝛼)
Δ,Bn

= f
(q,𝛼)
n corresponding to each f ∈ (I) yields a multivalued

quantum fractal operator  (q,𝛼) ∶ (I) ⇉ (I) defined by
 (q,𝛼)(f ) = { (q,𝛼)

n (f )}∞n=1 = {f
(q,𝛼)
n }∞n=1.
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Let us record some definitions which are needed for our further investigations.

Definition 1 (35). Let X and Y be two real normed linear spaces over R. For a multivalued map T :X→Y , the domain

of T is defined by Dom(T)={x∈X :T(x)≠ ∅}. Then T ∶ X ⇉ Y is

• convex if for all x1, x2 ∈Dom(T) and for all 𝜆 ∈ [0, 1],

𝜆T(x1) + (1 − 𝜆)T(x2) ⊆ T(𝜆x1 + (1 − 𝜆)x2).

• process if for all x∈Dom(T) and for all 𝜆 > 0,

T(𝜆x) = 𝜆T(x) and 0 ∈ T(0).

• linear if for all x1, x2 ∈Dom(T) and for all 𝛽, 𝛾 ∈ R,

𝛽T(x1) + 𝛾T(x2) ⊆ T(𝛽x1 + 𝛾x2).

• Lipschitz if there exists a constant 𝜈 > 0 such that for all x1, x2 ∈Dom(T)

T(x1) ⊆ T(x2) + 𝜈||x1 − x2||UY ,

where UY is the closed unit ball in Y .

Theorem 2 (36, corollary 1.4). Let X and Y be real vector spaces and P0(Y ) be the collection of all nonempty subsets of Y .

Amultivalued map T :X→P0(Y ) is linear and T(0)={0} if and only if T is single-valued map.

Theorem 3 (36, corollary 1.4). Let X and Y be real vector spaces and P0(Y ) be the collection of all nonempty subsets of Y .

If a multivalued map T :X→P0(Y ) is such that T(x0) is a singleton for some x0 ∈X , then T :X→P0(Y ) is convex if and only

if T is single-valued and affine.

Theorem 4. The multivalued quantum fractal operator  (q,𝛼) ∶ (I) ⇉ (I) defined by  (q,𝛼)(f ) = {f
(q,𝛼)
n }∞n=1 is not linear.

Proof. Clearly  (q,𝛼) is multivalued. Also, from definition  (q,𝛼)(0) = {0}. Hence, by Theorem 2,  (q,𝛼) is not linear. ▪

Remark 1. Note that Bn,q ∶ (p, || ⋅ ||p) → (p, || ⋅ ||p) is not bounded on (p(I), || ⋅ ||p). Thus, we cannot use the stan-
dard density argument to extend the continuous quantum Bernstein fractal functions to (p(I), || ⋅ ||p). Therefore,
we will construct p-quantum fractal Bernstein fractal functions by using Kantorovich-Bernstein polynomials in

the following.

5 Kantorovich-Bernstein fractal functions in p spaces

In this section, for a given function f ∈ p(I), 1 ≤ p ≤ ∞, using q-Kantorovich-Bernstein operatorΦq,n
33 as base function,

we develop (q, 𝛼)-Kantorovich-Bernstein fractal functions in the following:

It is known33 that for f ∈ p(I), 1 ≤ p ≤ ∞, ||f − Φq,n(f )||p → 0 as n→∞, where

Φq,n(f ; x) =
1

(xN − x1)n

n∑
k=0

(
n

k

)
q
(x − x1)

k(xN − x)n−k[n + 1]q ∫
x1+

(k+1)(xN−x1)

[n+1]q

x1+
k(xN−x1)

[n+1]q

f (t)dqt,

where dqt denotes the q-integration.37

The proof of the following theorem can be obtained using the arguments similar to those used in Reference 38.

Theorem 5. Let f ∈ p(I), 1 ≤ p ≤ ∞. Suppose Δ = {x1, x2, … , xN} be a partition of I satisfying x1 < x2 < … <

xN , Ii ∶= [xi, xi+1), i ∈ NN−2, IN−1 = [xN−1, xN]. Let Li(x)= aix+ bi satisfy (1). If 𝛼i ∈ ∞(I) for all i ∈ NN−1 and b(x) =

Φq,n(f ; x) ∈ p(I), then the RB-operator given in (6) maps p(I) onto itself. Furthermore, if the scaling function satisfies the
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condition

⎧⎪⎨⎪⎩

[
∑

i∈NN−1

ai||𝛼i||p∞
] 1

p

< 1 if 1 ≤ p < ∞,

||𝛼||∞ < 1 if p = ∞,

then T is a contraction on p, and gives a fixed point f
(q,𝛼)
n ∈ p(I) for each n ∈ N, which satisfies the self-referential

equation (4).

From here we will assume that these conditions on the scaling functions are satisfied.

We define a (q, 𝛼)-Kantorovich-Bernstein fractal function as the solution of the fixed point equation:

f
(q,𝛼)
n (x) = f (x) + (f

(q,𝛼)
n (L−1i (x)) − Φq,n(f ;L

−1
i (x)))𝛼i(L

−1
i (x)) ∀x ∈ Ii, n ∈ N, i ∈ NN−1. (18)

Theorem 6. For f ∈ p(I) and the scaling functions satisfying the conditions given in Theorem 5, there exists a sequence

{f
(q,𝛼)
n (x)}∞n=1 of (q, 𝛼)-Kantorovich-Bernstein fractal functions that converges uniformly to f on I.

Proof. From (18) for 1≤ p<∞, we obtain

||f (q,𝛼)n − f ||pp = ∫I|(f
(q,𝛼)
n − f )(x)|pdx

=
∑

i∈NN−1

∫Ii |(f
(q,𝛼)
n (L−1i (x)) − Φq,n(f ;L

−1
i (x)))𝛼i(L

−1
i (x))|pdx

=
∑

i∈NN−1

ai∫I|(f
(q,𝛼)
n (t) − Φq,n(f ; t))𝛼i(t)|pdt

≤ ∑
i∈NN−1

ai||𝛼i||p∞∫I|(f
(q,𝛼)
n (t) − Φq,n(f ; t))|pdt

=
∑

i∈NN−1

ai||𝛼i||p∞||f (q,𝛼)n − Φq,n(f )||pp.

Taking pth root in both sides, we have

||f (q,𝛼)n − f ||p ≤
⎡
⎢⎢⎣
∑

i∈NN−1

ai||𝛼i||p∞
⎤
⎥⎥⎦

1

p

||f (q,𝛼)n − Φq,n(f )||p,

≤
⎡
⎢⎢⎣
∑

i∈NN−1

ai||𝛼i||p∞
⎤
⎥⎥⎦

1

p

[||f (q,𝛼)n − f ||p + ||f − Φq,n(f )||p],

and further implication gives

||f (q,𝛼)n − f ||p ≤
[∑

i∈NN−1
ai||𝛼i||p∞

] 1

p

1 −
[∑

i∈NN−1
ai||𝛼i||p∞

] 1

p

||f − Φq,n(f )||p. (19)

A similar calculation as in Proposition 2, we obtain

||f (q,𝛼)n − f ||∞ ≤ ||𝛼||∞
1 − ||𝛼||∞ ||f − Φq,n(f )||∞. (20)

From the last two inequalities, we get the desired result. ▪

Theorem 7. The (q, 𝛼)-Kantorovich-Bernstein fractal operator  (q,𝛼)
Δ,Φq,n

∶ p(I) → p(I), 1 ≤ p ≤ ∞, n ∈ N defined by

 (q,𝛼)
Δ,Φq,n

(f ) = f
(q,𝛼)
n is linear and bounded.
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Proof. Let f and g be in p(I) and 𝜆1, 𝜆2 be real scalars. The functional equations for the corresponding

(q, 𝛼)-Kantorovich-Bernstein fractal functions are given by

f
(q,𝛼)
n (x) = f (x) + 𝛼i(L

−1
i (x))(f

(q,𝛼)
n (L−1i (x)) − Φq,n(f ;L

−1
i (x))),

g
(q,𝛼)
n (x) = g(x) + 𝛼i(L

−1
i (x))(g

(q,𝛼)
n (L−1i (x)) − Φq,n(g;L

−1
i (x))) ∀x ∈ Ii, i ∈ NN−1.

Thus, we can write

(𝜆1f
(q,𝛼)
n + 𝜆2g

(q,𝛼)
n )(x) = (𝜆1f + 𝜆2g)(x) + 𝛼i(L

−1
i (x))[(𝜆1f

(q,𝛼)
n + 𝜆2g

(q,𝛼)
n )(L−1i (x))

− Φq,n(𝜆1f + 𝜆2g;L
−1
i (x))] (21)

from which we obtain that 𝜆1f
(q,𝛼)
n + 𝜆2g

(q,𝛼)
n is a fixed point of the operator

(Th)(x) = (𝜆1f + 𝜆2g)(x) + 𝛼i(L
−1
i (x))(h − Φq,n(𝜆1f + 𝜆2g;L

−1
i (x)).

Now using the uniqueness of fixed point, we get

 (q,𝛼)
Δ,Φq,n

(𝜆1f + 𝜆2g) = 𝜆1f
(q,𝛼)
n + 𝜆2g

(q,𝛼)
n = 𝜆1 (q,𝛼)

Δ,Φq,n
(f ) + 𝜆2 (q,𝛼)

Δ,Φq,n
(g).

Again with help of (19) and (20), we have

|| (q,𝛼)
Δ,Φq,n

(f )||p = ||f (q,𝛼)n ||p
≤ ||f (q,𝛼)n − f ||p + ||f ||p
≤ R

1 − R
||f − Φq,n(f )||p + ||f ||p

≤ R

1 − R
||Id − Φq,n||p||f ||p + ||f ||p, (22)

where

R =

⎧
⎪⎨⎪⎩

[
∑

i∈NN−1

ai||𝛼i||p∞
] 1

p

, for 1 ≤ p < ∞,

||𝛼||∞, for p = ∞.

(23)

Since ||Id − Φq,n||p → 0 as n→∞, so for given 𝜖 = 1, there existsM ∈ N such that

||Id − Φq,n||p < 1 ∀ n > M.

Consider 𝜂 = max{||Id − Φq,1||p, ||Id − Φq,2||p, … , ||Id − Φq,M||p, 1}. Then from (22) we get

|| (q,𝛼)
Δ,Φq,n

|| ≤ 1 +
R

1 − R
𝜂,

which implies  (q,𝛼)
Δ,Φq,n

is bounded operator for each n ∈ N. ▪

Theorem 8. Consider a scaling function which satisfies

⎡
⎢⎢⎣
∑

i∈NN−1

ai||𝛼i||p∞
⎤
⎥⎥⎦

1

p

< min{1, ||Φq,n||−1}, if 1 ≤ p < ∞,

||𝛼||∞ < min{1, ||Φq,n||−1}, if p = ∞.
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Then the corresponding fractal operator is bounded below. In particular,  (q,𝛼)
Δ,Φq,n

is injective and has a closed range.

Proof. From the reverse triangle inequality and the proof of Theorem 6, we obtain

||f ||p − ||f (q,𝛼)n ||p ≤ ||f − f
(q,𝛼)
n ||p

≤ R||f (q,𝛼)n − Φq,n(f )||p
≤ R||f (q,𝛼)n ||p + R||Φq,n||||f ||p

⇒ ||f ||p ≤ 1 + R

1 − R||Φq,n|| ||f
(q,𝛼)
n ||p. (24)

Since ||Φq,n||−1 > R, the operator  (q,𝛼)
Δ,Φq,n

is bounded below and so injective. Now to prove  (q,𝛼)
Δ,Φq,n

has a closed range, let

f
(q,𝛼)
n,m be a sequence in  (q,𝛼)

Δ,Φq,n
(p(I)) such that f

(q,𝛼)
n,m → f̃ , and thus, f

(q,𝛼)
n,m is a Cauchy sequence. Now

||fm − fr||p ≤ 1 + R

1 − R||Φq,n|| ||f
(q,𝛼)
m,n − f

(q,𝛼)
r,n ||p,

which shows that {fm} is a Cauchy sequence in p(I). Since p(I) is a complete metric space, there exists f ∈ p(I) such

that fm→ f . Using the continuity of  (q,𝛼)
Δ,Φq,n

, we have f̃ =  (q,𝛼)
Δ,Φq,n

(f ) = f
(q,𝛼)
n . ▪

6 APPROXIMATION BY KANTOROVICH-BERNSTEIN FRACTAL
FUNCTIONS

DenoteΛ ∶= {𝜆i}
+∞
i=1
,𝜆i ≠ 𝜆j if i≠ j,𝜆i ∈ R+,𝜆0 = 0. The collectionΛm = {x𝜆0 , x𝜆1 , … , x𝜆m} is called a finiteMüntz system.

The linear span of Λm is known as Müntz space and denoted by Mm(Λ). Let I = [a, b], a> 0 and Δ ∶= {x1, … , xN} be a

partition of I satisfying a= x1 < … < xN = b. Choose the scaling function 𝛼 = (𝛼1, 𝛼2, … , 𝛼N−1) ∈ (∞(I))N−1 as per the

prescription given in Theorem 5. We know that Φq,n ∶ p(I) → p(I) is a bounded linear map and the Müntz monomial

x𝜆i ∈ p(I) even if 𝜆i >
−1

p
. Therefore, we can define the (q, 𝛼)-Kantorovich-Bernstein fractalMüntzmonomial (x𝜆i)

(q,𝛼)
n ∶=

 (q,𝛼)
Δ,Φq,n

(x𝜆i).

Definition 2. A (q, 𝛼)-Kantorovich-Bernstein fractal Müntz polynomial is a finite linear combination of the functions

(x𝜆i)
(q,𝛼)
n , where 𝜆i ∈ Λ, i ∈ N, and 𝛼 ∈ (∞(I))N−1 satisfies the condition of Theorem 5. In particular, when 𝛼 = 0, this

linear combination is called quantum Bernstein Müntz polynomial.

Let S = {(x𝜆i)
(q,𝛼)
n ∶ i,n ∈ N}. The set

M(q,𝛼)(Λ) ∶= Span(S)

is defined as the quantumBernstein fractalMüntz space associatedwithΛ.We need the following definition in the sequel:

Definition 3 (39). A set A is fundamental in a normed linear space B if the family of linear combinations of elements

of A is a dense set of B.

Theorem 9 (Quantum fractal version of first Müntz theorem). Let Δ be a partition of I = [a, b], b> 0. If the scaling vector

𝛼 is chosen according to Theorem 5, then the system S restricted to values 𝜆i such that −
1

2
< 𝜆i → ∞ is fundamental in 2(I),

whenever
∑

𝜆i≠0
1

𝜆i
= +∞.

Proof. Let g ∈ 2(I) and 𝜖 > 0 be given. From classical Müntz’s first theorem (see for instance Reference 39), it is known

that the set of functions {x𝜆1 , x𝜆2 , …}, where −
1

2
< 𝜆i → ∞ is fundamental in the least-square norm if and only if∑

𝜆i≠0
1

𝜆i
= +∞.

Thus, for 𝜖∕2 > 0, there exists a Müntz polynomial qm ∈ Span{x𝜆1 , x𝜆2 , …} such that

||g − qm||2 < 𝜖

2
. (25)
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With the scaling function 𝛼, we construct the (q, 𝛼)-Kantorovich-Bernstein fractal Müntz polynomial as (qm)
(q,𝛼)
n =

 (q,𝛼)
Δ,Φq,n

(qm) by using the linearity of  (q,𝛼)
Δ,Φq,n

. Since ||qm − Φq,n(qm)||2 → 0 as n→∞, there existsM1 ∈ N such that

||qm − Φq,n(qm)||2 <
𝜖

[
1 −

√∑
i∈NN−1

ai||𝛼i||2∞
]

2
√∑

i∈NN−1
ai||𝛼i||2∞

for n > M1. (26)

Using (26) in (19), we obtain

||(qm)(q,𝛼)n − qm||2 ≤
√∑

i∈NN−1
ai||𝛼i||2∞

1 −
√∑

i∈NN−1
ai||𝛼i||2∞

||qm − Φq,n(qm)||2 < 𝜖

2
for n > M1. (27)

Combining (25) and (27), we have

||g − (qm)
(q,𝛼)
n ||2 ≤ ||g − qm||2 + ||(qm)(q,𝛼)n − qm||2 < 𝜖 for n > M1.

Consequently (qm)
(q,𝛼)
n ∈ M(q,𝛼)(Λ) approximates to g in 2-norm and the set considered is fundamental in 2(I). ▪

Corollary 1. The system S is complete in 2(I) if the scaling vector 𝛼 is chosen according to the prescription of Theorem 5,

−
1

2
< 𝜆i → ∞ and

∑
𝜆i≠0

1

𝜆i
= +∞.

Proof. In the above theorem, we have proved that {(x𝜆i)
(q,𝛼)
n ∶ i,n ∈ N} where 𝜆i satisfy the conditions described is fun-

damental in the normed linear space 2(I). According to Banach’s theorem (see for instance Reference 40), the system S

is complete. ▪

We can generalize the above results for any fundamental system of p(I), 1 ≤ p < ∞. The proof follows similar lines

and hence it is omitted.

Theorem 10. Let Δ be a partition of I = [a, b], a> 0 and the scaling vector 𝛼 be chosen according to the prescription of

Theorem 5. If the system {fj ∶ j ∈ N} is fundamental in p(I), 1 ≤ p < ∞, then the corresponding quantum Bernstein fractal

system {(f
𝜆i
j
)
(q,𝛼)
n ∶ i, j,n ∈ N} is also fundamental whenever − 1

p
< 𝜆i → ∞ and

∑
𝜆i≠0

1

𝜆i
= +∞.

Now, we will state the full Müntz theorem in Lp[0, 1], 1≤ p≤∞ for quantum fractal Bernstein Müntz polynomials.

The proof follows similar steps as described in Theorem 9 with proper choice of classical Müntz polynomial, that is, the

exponents satisfy the condition prescribed by Borwein and Erdélyi.41

Theorem 11. Let 1≤ p≤∞ and Δ ∶= 0 = x0 < x1 < … xN = 1 be a partition of I = [0,1]. Let Λ ∶= {𝜆i}
∞
i=0

be a sequence

of distinct real numbers greater than −1

p
, and such that

∑∞
i=0

𝜆i+
1

p

(𝜆i+
1

p
)2+1

= ∞. Then, the system {(x𝜆i )
(q,𝛼)
n ∶ i,n ∈ N} is

fundamental in p(I).

7 CONCLUSION

In the present article, we have introduced a new approximationmethod using q-Bernstein polynomial as the base function

in the structure of fractal interpolants. For a given function f ∈ (I), the convergence of the sequence of the quantum
fractal functions toward f does not need any further condition on the scaling functions so that these approximants can be

smooth or nonsmooth depending on the norm of the scaling functions. The shape of the proposed fractal approximants

depends on the free variable q∈ (0,1) apart from the scaling functions. Hence, for the given continuous function f , the

proposed quantum fractal approximants provide a large number of approximants than that would be obtained by the

existing fractal approximants. It is observed that the multivalued quantum fractal operator  (q,𝛼) ∶ (I) ⇉ (I) is not
linear. The (q, 𝛼)-Kantorovich-Bernstein fractal functions in p spaces are developed and their approximation properties

(quantum analogue of Müntz theorems) are studied.
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