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Toric codes and color codes are two important classes of topological codes. Kubica, Yoshida, and Pastawski
showed that any D-dimensional color code can be mapped to a finite number of toric codes in D-dimensions.
In this paper we propose an alternate map of 3D color codes to 3D toric codes with a view to decoding 3D
color codes. Our approach builds on Delfosse’s result for 2D color codes and exploits the topological properties
of these codes. Our result reduces the decoding of 3D color codes to that of 3D toric codes. Bit flip errors
are decoded by projecting on one set of 3D toric codes while phase flip errors are decoded by projecting onto
another set of 3D toric codes.

I. INTRODUCTION

Three dimensional (3D) toric codes [1, 2] and color codes
[3] are topological quantum codes defined on 3D lattices. Like
their 2D counterparts, they are also Calderbank-Shor-Steane
(CSS) codes [4] where the bit flip and phase errors can be cor-
rected independently. Three dimensional topological codes
are inherently asymmetrical in their error correcting capabili-
ties for the bit flip errors and the phase flip errors, which is per-
haps one of the reasons why they have not received as much
attention as their 2D analogues. However, the growing interest
in asymmetric error models [5–7] motivates us to study them
in closer detail.

Another reason for studying 3D codes, specifically the 3D
color codes, comes from the fact that in some ways they are
also richer than 2D codes. Certain 3D color codes also possess
a transversal non-Clifford gate [3]. This is not possible for 2D
codes or 3D toric codes. While the 3D toric code on a cubic
lattice has been studied in [1, 2, 8], the general case of an
arbitrary lattice has not been investigated as much.

For these codes to be useful for fault tolerant quantum com-
puting it is necessary to develop efficient decoding algorithms.
However, there appears to be no previous work on the decod-
ing of 3D color codes. While we do not solve this problem
in this paper, we make some progress in the decoding of 3D
color codes by reducing it to the decoding of the 3D toric
codes. Errors corresponding to chains in the lattice can be
easily decoded on a 3D toric code. But efficient decoders are
not known for errors corresponding to surfaces except in the
case of cubic lattice. In this case a decoder similar to the de-
coder for the 4D toric code in [9] can be used.

The central result of our paper is a mapping from 3D color
codes to 3D toric codes. By exploiting the topological proper-
ties of color codes, we establish a mapping between 3D color
codes and 3D toric codes. The work most similar to ours
is that of Kubica, Yoshida, and Pastawski [10] who showed,
among other things, that the 3D color code can be mapped to
three copies of 3D toric codes. Our results give a different
mapping from the color code to the toric codes. Our map also
preserves the CSS nature of the color code. We project the
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X errors and Z errors onto different sets of toric codes unlike
[10] which employs just one set of toric codes. Their map
also implies that a 3D color code can be decoded via 3D toric
codes. The question of which map is better for decoding is
not yet known. This will be investigated in a later work.

Another work related to ours is that of Delfosse who
showed that 2D color code can be projected onto surface codes
[11] using the machinery of chain complexes derived from hy-
pergraphs. Our results generalize his approach to 3D. We take
a somewhat simpler approach and do not explicitly make use
of chain complexes based on hypergraphs. In passing we men-
tion that similar mappings were known in 2D [12–14]. Their
approaches can also be generalized to 3D.

The paper is structured as follows. In Section II we give a
brief review of 3D toric codes and color codes. In the subse-
quent section we present the central result of the paper show-
ing how to project a 3D color code onto a collection of 3D
toric codes and propose a novel decoding scheme for color
codes. We then conclude with a brief discussion and outlook
for further research. We assume that the reader is familiar with
stabilizer codes [15, 16].

II. PRELIMINARIES

A. 3D toric codes

We briefly review 3D topological codes. A 3D toric code
is defined over a cell complex (denoted Γ) in 3D. We assume
that qubits are placed on the edges of the complex. For each
vertex v and face f , we define stabilizer generators as follows:

Av =
∏
e∈ι(v)

Xe and Bf =
∏

e∈∂(f)

Ze, (1)

where ι(v) is the set of edges incident on v and ∂(f) is the
set of edges that constitute the boundary of f . When there
are periodic boundary conditions, the stabilizer generators Av
and Bf are constrained as follows:∏

v

Av = I and
∏

f∈∂(ν)

Bf = I, (2)

where ν is any 3-cell and ∂(ν) is the collection of faces that
form the boundary of ν. If Γ has boundaries, then the con-
straints have to be modified accordingly. Additional con-
straints could be present depending on the cell complex.
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Sometimes it is useful to define the (3D) toric codes using
the dual complex. We denote the dual of Γ by Γ∗. Qubits
are placed on the faces of the dual complex. The stabilizer
generators for a 3-cell ν and an edge e in the dual complex are
defined as

Aν =
∏

f∈∂(ν)

Xf and Be =
∏

f :e∈∂(f)

Zf , (3)

where ∂(ν) is the boundary of ν and ∂(f) the boundary of f .
Phase flip errors on the toric code are detected by the opera-

tors Av . Phase flip errors can be visualized as paths or strings
on the lattice. The nonzero syndromes always occur in pairs.
The bit flip errors on the other hand are detected by the op-
erators Be. They are better visualized in the dual complex.
Since qubits are associated to faces in the dual complex, an X
error can be viewed as a surface obtained by union of faces
(with errors) and the (nonzero) syndrome as the boundary of
the surface. Also note that since the boundary of each face
is a cycle of trivial homology, the syndrome of X errors is a
collection of cycles of trivial homology in Γ∗.

B. 3D color codes

Consider a complex with 4-valent vertices and 3-cells that
are 4-colorable. Such colored complexes are called 3-colexes,
[3]. A 3D color code is a topological stabilizer code con-
structed from a 3-colex. The stabilizer generators of the color
code are given as

BXν =
∏
v∈ν

Xv and BZf =
∏
v∈f

Zv (4)

where ν is a 3-cell and f a face. It turns out that for each
3-cell ν we can define a (dependent) Z stabilizer as BZν =∏
v∈ν Zv . A 3-colex complex defines a stabilizer code with

the parameters [[v, 3h1]] where h1 is the first Betti number of
the complex, [3, 17].

We can also define the color code in terms of the dual com-
plex. Now qubits correspond to 3-cells, X-stabilizer genera-
tors to vertices and Z-stabilizer generators to edges of Γ∗.

BXv =
∏
ν:v∈ν

Xν and BZe =
∏
ν:e∈ν

Zν (5)

We quickly review some relevant colorability properties of
3-colexes. The edges of such a 3-colex can also be 4-colored:
the outgoing edges of every 3-cell can be colored with the
same color as the 3-cell. We can color the faces based on
the colors of the 3-cells. A face is adjacent to exactly two 3-
cells. A face adjacent to 3-cells colored c and c′ is colored cc′.
This means that the 3-colex is 6-face-colorable. In view of the
colorability of the 3-colex we refer to a c-colored 3-cell as c-
cell without explicitly mentioning that it is a 3-cell. Likewise
we can unambiguously refer to the cc′-colored faces as cc′-
cells or cc′-faces, c-colored edges as c-edges and c-colored
vertices as c-vertices. We denote the i-dimensional cells of a
complex Γ as Ci(Γ) and the i-dimensional cells of color c as
Cci (Γ).

III. PROJECTING A 3D COLOR CODE ONTO 3D TORIC
CODES

In this section we state and prove the central result of the
paper, namely, 3D color codes can be projected onto a finite
collection of 3D toric codes. A more precise statement will
be given later. First, we give an intuitive explanation and then
proceed to prove it rigorously.

A. Intuitive explanation through the decoding problem

The main intuition behind the projection of color codes onto
toric codes is that any such mapping should preserve the error
correcting capabilities of the color code and enable decoding.
From the point of view of a decoder, the information avail-
able to it is simply the syndrome information. In a topological
code this syndrome information can be represented by the cell
complex. Our main goal is to preserve the syndrome infor-
mation on the 3-colex while translating it into a different cell
complex.

In a 3-colex, qubits reside on the vertices while the checks
correspond to faces and volumes. If we look at the dual com-
plex, the qubits correspond to 3-cells which are tetrahedrons;
the X-type checks to vertices and the Z-type checks to edges.
Due to this correspondence we often refer to the boundary of
a qubit or a collection of qubits wherein we mean the bound-
ary of the 3-cells which correspond to those qubits in the dual
complex.

We address the bit flip and phase flip errors separately. Sup-
pose that an X error occurs. Since the qubits correspond to
volumes, error correction is equivalent to (i) identifying the
boundary which encloses the qubits in error and (ii) specifying
whether the erroneous qubits lie inside or outside the bound-
ary. The second step is necessary because the qubits with er-
rors have the same boundary as the qubits without errors. In
case of bit flip errors, the syndrome information is present on
the edges; this is clearly not the boundary of a volume. The
question then arises how do we recover the boundary of the
erroneous qubits when we appear to be in possession of some
partial information about the boundary.

To see how we might solve this problem, let us assume that
there is just one bit flip error, see Fig. 1 for illustration. This
causes all the six edges of the tetrahedron to carry nonzero
syndromes. While these edges are contained in the bound-
ary of the tetrahedron it is not the surface we are looking for.
One way to recover the boundary of the tetrahedron is as fol-
lows. Imagine we deleted one vertex of the tetrahedron, then
we would also be deleting three of the four faces of the tetra-
hedron and we would end with just one face. All the edges of
this remaining face carry nonzero syndromes. These edges are
precisely the boundary of that face. Similarly deleting other
vertices of the tetrahedron (separately) we would be able to re-
cover all the faces of the tetrahedron. Since the union of these
faces constitutes the boundary of the erroneous qubit we are
able to recover the boundary of the error. However, error cor-
rection is not complete. Both the single qubit in error and the
collection of the qubits without error have the same boundary.
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πr

πg

πy

πb

Figure 1: We can recover the boundary of a tetrahedron from the
edges by reconstructing the faces and then combining the faces.

To complete error correction we also need to choose which of
these sets of qubits are in error. We can decide on the volume
which contains fewer number of qubits. In the present case we
would choose the qubit in error completing the error correc-
tion. Let us identify the key ideas in the previous procedure:

(i) We construct a collection of complexes obtained by
deleting c-vertices of tetrahedrons.

(ii) Then in each complex, from the edges carrying nonzero
syndrome we recover part of the boundary of the erro-
neous qubits.

(iii) Then we combine the boundary pieces found in (ii) to
recover the boundary of the erroneous qubits.

(iv) Finally we decide whether the interior or the exterior set
of qubits enclosed by the boundary are in error.

Step (ii) is key to making the connection with the 3D toric
codes. This step is identical to the correction of the X-type
errors in 3D toric codes.

A similar idea will lead us to the procedure for decoding
the phase flip errors, see Fig. 2. In this case the syndromes
that detect the phase flip errors correspond to the vertices in
the dual complex. Suppose now that there is a single phase
flip error. The vertices of the erroneous tetrahedron will carry
the syndrome information about the error. Now we seem to
have even lesser information about the boundary of the erro-
neous tetrahedron than before. However, we can recover the
boundary by the following procedure. Delete any pair of ver-
tices of the tetrahedron. We will be left with one edge and two
vertices. We can first identify the edge as piece of the bound-
ary we are looking for. Deleting all the six possible pairs of
vertices, we are able to recover the six edges which are in the
boundary of the tetrahedron. Now the problem is identical to
the one we solved for correcting bit flip errors. We summarize
the key steps:

(i) We construct new complexes from the original complex
by deleting pairs of vertices of each tetrahedron.

(ii) Then we recover the edges which are in the boundary of
the erroneous qubits.

(iii) At this point the problem is same as the problem of de-
coding bit flip errors which can be solved using the pre-
vious procedure.

In correcting the Z-type errors the connection to the toric
codes happens in (ii). This is precisely the process used to

πby

πgy

πgb

πry

πrb

πrg

Figure 2: We can recover the boundary of a tetrahedron from the
vertices by first recovering the edges in the boundary of the
tetrahedron. With the edges recovered we can proceed as illustrated
in Fig.1 to recover the boundary of the tetrahedron.

decode Z-type errors in 3D toric codes.
The procedures we outlined are heuristic and somewhat im-

precise; they need a rigorous justification as to correctness
and efficiency. We also need to consider the cases where the
boundary recovery procedure can fail. We now turn to address
these issues in the next section.

B. 3-colexes, duals and minors

As we saw in the previous section, our approach to decod-
ing color codes leads us to duals and minors of complexes.
So we begin by studying the properties of the 3-colexes and
their minors. First we state some properties of the dual of a
3-colex. Since they are immediate from the properties of the
3-colex we omit the proof. For the rest of the paper we assume
that Γ is a 3-colex.

Lemma 1. Let Γ be a 3-colex. Then the dual complex Γ∗ is
4-vertex-colorable, 6-edge-colorable, 4-face-colorable.

Every qubit in the 3-colex is identified with a tetravalent
vertex incident on four 3-cells which are 4-colorable. There-
fore in the dual complex, every qubit corresponds to a tetrahe-
dron whose vertices are of different colors. Similarly the four
faces of each tetrahedron are also of different colors. (Follows
from Lemma 1.) Let us denote the minor complex of Γ∗, i.e.
the complex obtained by deleting all the vertices of color c, by
Γ∗\c. We denote this operation as πc so that

πc(Γ
∗) = Γ∗\c (6)

The resulting structure Γ∗\c is a well defined complex.
Clearly, its vertices and edges are a subset of the parent com-
plex Γ∗. The structure of the faces and 3-cells is not so obvi-
ous. A face in Γ∗ that is incident on a c-vertex will not survive
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in Γ∗\c. Therefore only the c-faces of Γ∗ which are not inci-
dent on a c-vertex will be faces of Γ∗\c. The 3-cells of Γ∗\c

are formed by merging all the tetrahedrons that are incident
on a c-vertex.

We can now extend the action of πc to the individual cells
of Γ∗, there is some freedom on how to extend as long as
we retain the information needed for error correction. We are
primarily interested in extending πc so that it captures the in-
formation about (i) the qubits, (ii) the errors on them and (iii)
the associated syndrome.

A vertex that is not colored c will be mapped to a vertex
in Γ∗\c. An edge that is not incident on a c-vertex will be
mapped to an edge in Γ∗\c. Edges that are incident on a c-
vertex can be thought as being mapped to the empty set. A
c-face in Γ∗ will continue to be a face in Γ∗\c as it is not
incident on any c-vertices. A 3-cell has exactly 4 faces and
on the deletion of a c-vertex just the c-face in its boundary
will be left in Γ∗\c. A 3-cell in Γ∗ corresponds to a qubit,
so we can interpret the c-face in its boundary as the qubit in
Γ∗\c. Since every face is shared between two 3-cells, there
exist two distinct cells ν1 and ν2 such that πc(ν1) = πc(ν2).
The following equations summarize the preceding discussion.

πc(v) = v if v ∈ C0(Γ∗) \ Cc0(Γ∗) (7a)

πc(e) = e if e ∈ C1(Γ∗) \ Ccc
′

1 (Γ∗) (7b)
πc(f) = f if f ∈ Cc2(Γ∗) (7c)
πc(ν) = f c3ν = ∂ν ∩ Cc2(Γ∗); ν ∈ C3(Γ∗) (7d)

where f c3ν is the unique c-face in ν. From these relations we
can write the boundary of a 3-cell as

∂(ν) =
∑
c

πc(ν) =
∑
c

f c3ν , (8)

where the summation is carried addition modulo 2. The
boundary of a collection of 3-cells can be extended linearly.

Some relevant properties of the minor complexes are con-
sidered next. They concern both the structure and coloring
properties of the minor complexes.

Lemma 2. Let Γ be a 3-colex and c ∈ {r, b, g, y}. Then the
minor complex Γ∗\c has only c-colored faces and dd′-edges
where d, d′ ∈ {r, b, g, y} \ {c}.

Proof. Suppose that we delete the vertices colored c in Γ∗\c;
this leads to the deletion of the edges and faces that are
incident on these vertices. On any c-colored vertex only
the c-colored faces are not incident. Any face colored with
c′ ∈ {r, b, g, y} \ c is incident on some c-vertex. This leads
to deletion of all but one face of each tetrahedron incident on
any c-colored vertex. The remaining face is colored c. Thus
Γ∗\c contains only c-colored faces. Since only d, d′-vertices
are present in Γ∗\c, the edges connecting them are colored
dd′.

Lemma 3. The 3-cells of Γ∗\c can be indexed by the c-
vertices of Γ∗ and the boundary of a 3-cell νv ∈ C3(Γ∗\c)
is the sum of c-faces of tetrahedrons incident on v.

Proof. The deletion of a c-vertex causes all the tetrahedrons
incident on it to be combined into one single 3-cell in Γ∗\c.
Since the four vertices of each tetrahedron are different colors,
two tetrahedrons can be merged only if they are incident on
the same c-vertex. Thus two distinct c-vertices lead to distinct
3-cells. Hence, the 3-cells of Γ∗\c can be indexed by the c-
vertices of Γ∗. The deletion of the c-vertex v, creates a 3-cell
and leaves behind a c-face for every tetrahedron incident on v.
These c-faces enclose the 3-cell formed by merging the qubits
incident on v, therefore they must form its boundary. Denote
by νv such a 3-cell. Then its boundary ∂(νv) is given by

∂(νv) =
∑
ν:v∈ν

∂(ν)
(a)
=
∑
ν:v∈ν

f c3ν +
∑
ν:v∈ν

∑
i 6=c

f i3ν (9)

(b)
=
∑
ν:v∈ν

f c3ν , (10)

which is precisely the sum of c-faces of tetrahedrons incident
on v. Note that (a) follows from Eq. (8) while (b) is due to
the fact that every c′-face incident on v is shared between ex-
actly two qubits incident on v causing the second summation
to vanish.

Let Γ∗\cc
′

denote the minor of Γ∗ obtained by deleting all
vertices colored c and c′. We assume that c 6= c′ for the rest
of the paper. Denote this operation as πcc′ . Then we have

πcc′(Γ
∗) = Γ∗\cc

′
. (11)

Note that the order of deletion of vertices does not matter,
therefore we have

πcc′(Γ
∗) = πc′c(Γ

∗). (12)

As in case of Γ∗\c, the vertices and edges of of Γ∗\cc
′

are
a subset of Γ∗\cc

′
and can be easily identified. The faces and

3-cells are not so obvious. The faces of Γ∗\cc
′

are not faces in
the parent complexes Γ∗ or Γ∗\c. We need to define the faces
and 3-cells of Γ∗\cc

′
. We make one small observation before

defining them.

Lemma 4. Let Γ be a 3-colex and c, c′ ∈ {r, b, g, y}.
Then Γ∗\cc

′
has only dd′-colored edges where {d, d′} =

{r, b, g, y} \ {c, c′}.

Proof. Suppose that we delete all the vertices colored c, c′ in
Γ∗, then all edges incident on c-vertices and c′-vertices will
be deleted. Thus only edges between d and d′ colored vertices
will remain. These edges are colored dd′.

Let e be a cc′-edge e in Γ∗ and Ve the qubits containing e.

Ve = {ν | e ∈ ν} (13)

Let edd
′

3ν be the unique dd′-edge in ν. For each of the qubits
in Ve, exactly one dd′-edge will survive in Γ∗\cc

′
. No two

qubits in Ve share the same dd′-edge. Further, the surviving
dd′ edges will form a cycle in Γ∗\cc

′
, see Fig. 3 for illustration.

This can be seen as follows. Let Vcc′(Ve), denote the vertices
of Ve that remain in Γ∗\cc

′
. Every such vertex v is incident
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on exactly two qubits of Ve. Therefore, two dd′-edges are
incident on v. Hence, the dd′-edges of Ve form a cycle. This
cycle is of trivial homology since it is on the boundary of a
3-cell (formed by the qubits in Ve). We can associate a face
to this cycle such that it lies entirely in the 3-cell. In other
words, to every cc′-edge in Γ∗, we can associate a face in
Γ∗\cc

′
. The boundary of this face is the collection of the dd′-

edges belonging to the qubits incident on e, alternatively,

∂fe =
∑
ν∈Ve

edd
′

3ν . (14)

e fe

Figure 3: Face in Γ∗\cc
′
. Consider the by-edge (in bold) and the

qubits incident on it. Since only r, g-vertices (i.e. red and green)
will survive in Γ∗\by , each of these surviving vertices will have
exactly two rg-edges incident on them. Therefore these rg-edges
form a cycle.

The qubits incident on distinct cc′-edges e1 and e2 will be
disjoint intersecting in either edges or vertices, so the faces
associated to them, i.e. fe1 and fe2 , will also be disjoint and
intersect in edges or vertices. Therefore the faces are well
defined. The preceding discussion proves the following result.

Lemma 5. Let Γ be a 3-colex and c, c′ ∈ {r, b, g, y}. Then
the faces of the minor complex Γ∗\cc

′
are in one to one corre-

spondence with cc′ edges of Γ∗.

With faces of Γ∗\cc
′

defined, the 3-cells of Γ∗\cc
′

can be
identified. Let v be a c or c′-vertex. Consider the edges inci-
dent on v. Each of these edges corresponds to a face in Γ∗\cc

′
,

by Lemma 5. We define the volume enclosed by these faces,
such that it contains v, to be a 3-cell of Γ∗\cc

′
. Since every

such v leads to a 3-cell in Γ∗\cc
′
, we have the following.

Lemma 6. Let Γ be a 3-colex and c, c′ ∈ {r, b, g, y}. Then
3-cells of the minor complex Γ∗\cc

′
are in one to one corre-

spondence with vertices in Cc0(Γ∗) ∪ Cc
′

0 (Γ∗).

We can also extend πcc′ to the cells of Γ∗ as we did for πc.
Then we can write

πcc′(v) = v if v ∈ C0(Γ∗) \ (Cc0(Γ∗) ∪ Cc
′

0 (Γ∗)) (15a)

πcc′(e) = e if e ∈ Cdd
′

1 (Γ∗); d, d′ 6∈ {c, c′} (15b)

πcc′(ν) = edd
′

3ν = ∂(πc(ν)) ∩ Cdd
′

1 (Γ∗); ν ∈ C3(Γ∗)(15c)

where edd
′

∈ν is the unique dd′-edge in ν. In these equations and
henceforth we assume d, d′ ∈ {r, b, g, y} \ {c, c′} and d 6= d′.
None of the faces of Γ∗\c or Γ∗ will survive in Γ∗\cc

′
. Since

the faces of Γ∗ do not carry any information about the qubits
and the Z error syndromes, we are not particularly interested

in them; we have some freedom as to how to define πcc′ for
faces in Γ∗\c.

We define the edge boundary of a 3-cell in Γ∗ as

δν =
∑
cc′

πcc′(ν) =
∑
cc′

edd
′

3ν (16)

We call it the edge boundary because πcc′(ν) is an edge, see
Eq. (15c). We extend δ to multiple 3-cells linearly.

A simple example of 3-colex and related complexes are
shown in Fig. 4. We can relate the various complexes and
the objects of interest for us as follows.

Γ Γ∗ Γ∗\c Γ∗\cc
′

Qubit vertex tetrahedron triangle edge
Z-check face edge edge —
X-check 3-cell vertex vertex vertex

The preceding lemmas lead to the following corollary.

Corollary 7. Let Γ be a 3-colex with v vertices, e = 2v edges,
fcc′ cc

′-faces, νc c-cells. Let the total number of faces be
f =

∑
cc′ fcc′ and 3-cells be ν =

∑
c νc. The following

table summarizes the number of cells in Γ∗\c and Γ∗\cc
′

where
c, c′, d, d′ ∈ {r, b, g, y} are distinct.

Γ Γ∗ Γ∗\c Γ∗\cc
′

3-cells ν v νc νc + νc′

Faces f 2v v/2 fcc′

Edges 2v f fdc′ + fc′d′ + fdd′ fdd′

Vertices v ν νc′ + νd + νd′ νd + νd′

Proof. The i-cells in dual complex Γ∗ are in one to one corre-
spondence with the (3− i)-cells of Γ. Now suppose that Γ∗ is
modified so that all vertices colored i are deleted. Then all 3-
cells incident on it will be merged to form a new 3-cell. Since
all the 3-cells in Γ∗ are incident on some i-vertex, they will
be part of some new 3-cell and Γ∗\c will contain ci 3-cells.
On deleting the i-vertices, exactly one face will remain from
each 3-cell in Γ∗. Since each of these faces will be shared be-
tween two 3-cells there will be v/2 faces. The edges in Γ∗\i

are those that are incident on vertices other than i-vertices.
Similarly in Γ∗\cc

′
, only the d-vertices, d′-vertices and the

dd′-edges will survive. These are precisely νd + νd′ vertices
and fdd′ edges. The number of faces and 3-cells of Γ∗\cc

′
is

immediate from Lemmas 5 and 6.

Remark 1. The minor complexes defined here are the duals
of the shrunk complexes defined in [17]. For example, Γ∗\b is
the exactly the dual of b-shrunk complex and Γ∗\ry is the dual
of ry-shrunk complex.

C. X type errors on 3D color codes

Let us now see how to perform error correction on a color
code. It is helpful to see the (topological) structure of the er-
rors in the dual of the 3-colex. We analyze the bit flip and
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Figure 4: A 3-colex Γ and its dual Γ∗; i-cells of Γ∗ correspond to the 3− i cells of Γ. The minor complexes Γ∗\r and Γ∗\ry are also shown.

phase flip errors separately. Suppose that we have X errors
on some set of qubits. In the dual colex the erroneous qubits
correspond to a volume. Through πc we can associate qubits
to faces of the minor complex Γ∗\c. Thus we can project er-
rors from Γ∗ to Γ∗\c.

If a qubit ν has a bit flip error, then we place an X-error on
the image of ν in Γ∗\c. In other words,

πc(Xν) = Xπc(ν), (17)

where πc(Xν) gives an X error acting on the qubits in Γ∗\c.
A consequence of Eq. (17), together with linearity of πc, is

that for two adjacent qubits ν1 and ν2 sharing a c-colored face
f , we have πc(Xν1Xν2) = Xπc(ν1)Xπc(ν2) = I , where we
used the fact that πc(ν1) = πc(ν2) = f . In other words, a
c-face common to two qubits in error corresponds to an error
free qubit in Γ∗\c.

The syndrome corresponding to bit flip errors is associated
to edges of Γ∗. In Γ∗\c not all edges are present. But if an
edge is present, we associate to that edge the same syndrome
as in Γ∗. Syndromes in the minor complex are essentially the
restriction of the syndromes in Γ∗. Let se be the syndrome on
edge e, then

πc(se) = sπc(e) = se. (18)

This is consistent with Eq. (7b).
At this point we have qubits living on the faces and syn-

dromes on the edges of Γ∗\c just as we would have in a 3D
toric code. But it needs to be shown that indeed that we truly
have the structure of a 3D toric code and not merely the ap-
pearance of it. This we shall take up next.

First let us consider the edge type checks on Γ∗\c. Consider
an edge e in Γ∗\c. Then e is also present in Γ∗. For each qubit
incident on e there is an c-colored face incident on e. These
c-faces exhaust all the faces incident on e in Γ∗\c. Thus in
the 3D toric code associated to Γ∗\c, every face incident on
e participates in that check on e as required for the edge type
checks in the 3D toric code. Next we look at the projected
syndromes on the minor complex.

Theorem 8 (Projection ofX errors onto toric codes). Let s be
the syndrome for an X error E on the 3D color code defined
on a 3-colex Γ and πc(s) the restriction of s on Γ∗\c. Then the
error πc(E) in Γ∗\c produces the syndrome πc(s) in the toric
code associated to Γ∗\c.

Proof. We now will show that in Γ∗\c the syndrome produced
by πc(E) is same as πc(s). Consider any edge in Γ∗\c; by
definition πc(se) = se where se is the syndrome on e with
respect to Γ∗. Since Γ is 3-colex, an even number of qubits
are incident on e, say 2m. Then se = ⊕2m

i=1qi where qi =
1 if there is an X error on the ith qubit and zero otherwise.
Each of these qubits (tetrahedrons) incident on e are projected
to a qubit in Γ∗\c. But note that two qubits which share a
face are mapped to the same qubit in Γ∗\c. Thus there are m
qubits (triangles) incident on e with respect to Γ∗\c. These
(projected) qubits are in error if and only if one of the parent
qubits in Γ∗ are in error. Let rj = 1 if there is an an error on
the projected qubit and zero otherwise. Then rj = q2j−1⊕q2j ,
where 2j − 1 and 2j are the qubits which are projected onto
the jthe qubit in Γ∗\c. The syndrome on e as computed in the
3D toric code is ⊕mj=1rj = ⊕mj=1(q2j−1 ⊕ q2j) = se. Thus
the projected error πc(E) produces the same syndrome as the
projected syndrome πc(s).

Corollary 9. Let s be the syndrome for an X error on the 3D
color code defined on a 3-colex Γ and πc(s) the restriction of
s on Γ∗\c. Then πc(s) is a valid syndrome for (anX error on)
the toric code on Γ∗\c.

Proof. By Theorem 8, πc(s) is the same as the syndrome pro-
duced by an X error on Γ∗\c. Therefore, it must be a valid
syndrome for an X error for the 3D toric code on Γ∗\c.

Lemma 10. Let v be a c-vertex in Γ∗ and νv be the 3-cell in
Γ∗\c obtained by merging all the qubits incident on v. Then
the X-type stabilizer BXv of the color code on Γ∗ is mapped
to an X-type stabilizer generator of the toric code on Γ∗\c.

πc(B
X
v ) = BXνv and πc′(BXv ) = I for c′ 6= c (19)

Proof. We have BXv =
∏
ν:v∈ν Xν . Then

πc(B
X
v ) = πc

( ∏
ν:v∈ν

Xν

)
=
∏
ν:v∈ν

Xπc(ν) (20)

(a)
=

∏
f∈∂(νv)

Xf = BXνv . (21)

where (a) follows from Lemma 3. Thus πc(BXv ) is exactly
the X-type stabilizer generator defined on the 3-cell νv .
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Now consider a c′-face incident on v. Such a face is in
the boundary of two qubits incident on v. This means that
for every qubit ν incident on v, there exists another qubit
ν′ incident on v such that πc′(Xν) = πc′(Xν′). Therefore
πc′(B

X
v ) =

∏
ν:v∈ν Xπc(ν) = I .

Note that the previous lemma implies that for a c′-vertex
πc(B

X
v ) = I .

Corollary 11. Let S be an X-type stabilizer on the color
code. Then πc(S) is an X-stabilizer on the toric code defined
by Γ∗\c. Conversely for every X-stabilizer S on Γ∗\c, there
exists anX-stabilizer generator S on Γ∗ such that πc(S) = S
and πc′(S) = I .

Proof. The first statement is a consequence of Lemma 10 as
{BXv } generate all X-stabilizers of the color code. Further,
{πc(BXv )} = {BXνv}, where v ∈ Cc0(Γ∗). By Lemma 3,
{BXνv} generate the X-type stabilizers of the toric code on
Γ∗\c. Thus the converse also holds.

Let the support of an error E be defined[18] as

supp(E) =
∑
i:Ei 6=I

i, (22)

where i could be a 3-cell, face, or an edge depending on where
the qubits are located. It follows that

supp(EE′) = supp(E) + supp(E′). (23)

We define the boundary of an error in Γ∗ to be the boundary
of the volume that corresponds to the collection of qubits on
which the error acts nontrivially. In other words,

∂E =
∑

ν:Eν 6=I

∂ν = ∂(supp(E)). (24)

We use the same notation ∂ for boundary of cells as well as
operators. Note that ∂(EE′) = ∂E + ∂E′.

Lemma 12 (X error boundary). Using the same notation as
in Theorem 8, the boundary of an error E in Γ∗ is

∂E =
∑
c

supp(πc(E)). (25)

Proof. Let Eν denote the error on the 3-cell corresponding to
the νth qubit. Then we can write

∂E
(a)
=

∑
ν:Eν 6=I

∂ν
(b)
=

∑
ν:Eν 6=I

∑
c

πc(ν) (26)

=
∑
c

∑
ν:Eν 6=I

πc(ν)
(c)
=
∑
c

∑
ν:Eν 6=I

supp(πc(Eν))(27)

(d)
=
∑
c

supp(πc(E)) (28)

where (a) follows from the definition of the boundary of an
error; (b) follows from the fact that the boundary of a single
qubit is the collection of four faces of the tetrahedron that cor-
respond to the qubit; (c) follows from rearranging the order of
summation and the observation that πc(ν) is the c-face in the

boundary of ν, see Eq. (7d), and if Eν 6= I , then this is the
same as the support of πc(Eν); (d) follows from Eq. (23) and
completes the proof.

By Lemma 12, the boundary of an error E can be broken
down into four surfaces each lying in a separate minor com-
plex Γ∗\c. We show that if these surfaces were modified by
the support of a stabilizer in the minor complexes, then these
modified surfaces form the boundary of an error E′ which is
equivalent to E up to a stabilizer i.e. E′ = ES for some X
stabilizer S on the color code.

Lemma 13 (X error boundary modulo stabilizer). Let E be
an error on Γ∗. Let Sc be X-stabilizer generators on Γ∗\c.
Then ∂E +

∑
c supp(Sc) is the boundary of ES, for some

X-stabilizer S on Γ∗ i.e.

∂E +
∑
c

supp(Sc) = ∂(ES) (29)

Proof. Since Sc is a stabilizer generator, by Corollary 11,
there exists an X-stabilizer Sc on Γ∗ such that πc(Sc) = Sc
and πc′(Sc) = I . By Lemma 12, ∂(Sc) = supp(Sc). Then
using ∂EF = ∂E + ∂F , we obtain ∂ESc = ∂E + ∂Sc. Re-
peating this for all c we have ∂(E

∏
c Sc) = ∂E +

∑
c ∂Sc.

Letting
∏
c Sc = S, we can write this as ∂(ES) = ∂E +∑

c supp(Sc) as claimed.

The importance of the previous result is that we can inde-
pendently estimate the four components of boundary of an er-
ror. With these results in hand we can estimate the boundary
of an X error.

Theorem 14 (Estimating face boundary of X errors). The
boundary an X-error E on the dual of color code can be esti-
mated by Algorithm 1. The algorithm estimates ∂E up to the
boundary of anX stabilizer of the color code, provided πc(E)
is estimated up to a stabilizer on Γ∗\c, where c ∈ {r, g, b, y}.

Proof. We only sketch the proof as it is a straightforward con-
sequence of the results we have shown thus far. By Lemma 12
the boundary of the error consists of support of πc(E) i.e. the
projections of the error on the 3D toric codes on Γ∗\c. By
Lemma 8, the syndrome of πc(E) is the restriction of the syn-
drome on Γ∗. Therefore, πc(E) can be estimated by decoding
on Γ∗\c. By Lemma 13, if the estimate for πc(E) is equivalent
up to a stabilizer on Γ∗\c, we can obtain the boundary of E up
to the boundary of a stabilizer on the color code.

Algorithm 1: Estimating (face) boundary of X type error

Input: A 3-colex Γ, Syndrome of an X error E
Output: F, an estimate of ∂E where F ⊆ C2(Γ∗)

1: for each c ∈ {r, b, g, y} do
2: for each edge e in Γ∗\c do // syndrome projection
3: sπc(e) = se // se is syndrome on edge e
4: end for
5: Using the projected syndrome on Γ∗\c, estimate the error Fc

by any 3D toric code decoder for X errors
6: end for
7: Return F =

⋃
c Fc
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If any of component decoders on the minor complexes
make a logical error, then Algorithm 1 may fail to produce
a valid boundary.

D. Z type errors on 3D color codes

One can prove results similar to previous section for the
Z-type errors also. As we noted earlier, the syndrome infor-
mation about Z errors resides on the vertices of Γ∗ while the
error corresponds to a volume. To recover the boundary of the
error, the objects of interest are the minor complexes Γ∗\cc

′
.

Recall that the edges of Γ∗\cc
′

are associated with qubits. So
we project the errors on cell ν to πcc′(ν) which is an edge in
Γ∗\cc

′
. We define

πcc′(Zν) = Zπcc′ (ν) (30)

Let syndrome on v ∈ C0(Γ∗) be sv . Then we define the
syndrome on v ∈ Γ∗\cc

′
as

πcc′(sv) = sπcc′ (v) = sv (31)

so the syndrome on πcc′(Γ∗) is simply the restriction of the
syndrome on Γ∗. To project the color code onto toric codes,
this syndrome must be a valid syndrome on the minor com-
plex.

We next show that both Z errors and their associated syn-
dromes can be projected consistently onto the minor com-
plexes Γ∗\cc

′
.

Theorem 15 (Projection of Z errors onto toric codes). Let E
be a Z-type error on Γ∗ and its associated syndrome s. Then
the error πcc′(E) in Γ∗\cc

′
produces the syndrome πcc′(s).

Proof. We only need to show the theorem for vertices v ∈
Γ∗\cc

′
. Suppose E produces the syndrome sv on v, then

sv =
⊕

ν:v∈ν qν , where qν = 1, if there is a Z error on ν
and zero otherwise. We need to show that πcc′(E) produces
the syndrome sv on v. Every qubit incident on v must have a
dd′-edge incident on v, since v must be a d or d′-vertex. Two
qubits incident on v can share at most one such edge. Then
we can partition the qubits incident on v depending on the dd′

edge on which they are incident. Let {e1, . . . , em} be these
dd′-edges. Then we can write

{ν : v ∈ ν} = ∪i{ν : v, ei ∈ ν} (32)

sv =
⊕
ν:v∈ν

qν =
⊕
i

⊕
ν:v,ei∈ν

qν =
⊕
i

ri, (33)

where ri =
⊕

i:v,ei∈νi qν .
The qubits containing ei are projected onto the dd′-edge ei

in the minor complex Γ∗\cc
′

and there is an error on ei if and
only if ri =

⊕
ν:v,ei∈ν qν = 1. Thus the syndrome on the

vertex v as computed with respect to the toric code on Γ∗\cc
′

is πcc′(E) =
⊕m

i=1 ri = sv = πcc′(sv) as required.

Corollary 16 (Validity of Z syndrome restriction). Let s be
the syndrome for a Z error on Γ∗. Then πcc′(s) is a valid
syndrome for a Z error on Γ∗\cc

′
.

Proof. From Theorem 15, we see that πcc′(s) coincides with
the syndrome produced by a Z error on Γ∗\cc

′
. Hence, πcc′(s)

must be a valid syndrome for aZ error on a 3D toric code.

Having projected both the error and the syndrome onto the
minor complexes, we recover the boundary of the error in
steps. To this end we define the edge boundary of an error
E as

δE =
∑

ν:Eν 6=I

δν =
∑

ν:Eν 6=I

∑
cc′

πcc′(ν) (34)

=
∑
cc′

supp(πcc′(E)), (35)

where Eq. (35) follows from interchanging the order of sum-
mation in Eq. (34). We see that the edge boundary of E can
be recovered by recovering πcc′(E). The next lemma shows
an interesting property of the edge boundary that will help us
in correcting Z errors.

Lemma 17 (Edge boundary corresponds to an X-syndrome).
Let EZ =

∏
ν∈Ω Zν and EX =

∏
ν∈ΩXν . Then the syn-

drome of EX is nonzero on the edges in δEZ .

Proof. Consider the syndrome of EX on an edge e. Then

se 6= 0 iff. |{ν ∈ Ω | e ∈ ν}| is odd (36)

In other words, se is nonzero if and only if the number of
qubits in Ω incident on e is odd. From Eq. (34), we see that e
will be present in the edge boundary of EZ if and only if an
odd number of qubits are incident on e. Thus the syndrome of
EX is nonzero on the edge boundary of EZ .

We cannot always expect to estimate the edge boundary ex-
actly because the estimates for πcc′(E) on the minor com-
plexes could be off. The next lemmas show this will not be
problem as long as the estimates for πcc′(E) are off by stabi-
lizer elements.

Lemma 18. Suppose S is a Z-stabilizer on Γ∗\cc
′
, then there

exists a Z-stabilizer S in Γ∗ such that πcc′(S) = S and
πcd(S) = I for xy 6= cc′.

Proof. A Z-stabilizer in Γ∗\cc
′

generated by the face type sta-
bilizers in Γ∗\cc

′
. Therefore, it suffices to consider when S

is a face type stabilizer. By Lemma 5, the faces of Γ∗\cc
′

are in correspondence with the cc′-edges of Γ∗. So we can
let S = BZfe for some face fe in Γ∗\cc

′
and cc′-edge e in

Γ∗. The stabilizer of the color code attached to e is given by
BZe =

∏
ν:e∈ν Zν . Then

πcc′(B
Z
e ) =

∏
ν:e∈ν

Zπcc′ (ν)
(a)
=
∏
ν:e∈ν

Zedd′3ν
, (37)

(b)
=

∏
t∈∂(fe)

Zt = BZfe = S, (38)

where (a) follows from Eq. (15c) and (b) from Eq. (14).
Denote by Ve the set of qubits incident on e. Every qubit

ν ∈ Ve contains a c′d′ edge. These edges must also be inci-
dent on the c′-vertex of e. Two qubits ν and ν′ which have
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the same c′d′ edge must share a face since they already share
e. Hence only two qubits ν, ν′ ∈ Ve can share a c′d′-edge.
For these qubits we have πcd(ν) = πcd(ν

′). This implies
πcd(B

Z
e ) =

∏
ν:e∈ν Zec′d′3ν

= I . Similar arguments can be

used to show that πcd(S) = I for other xy 6= cc′. We omit
the details.

Lemma 19 (Edge boundary modulo stabilizer). LetE be aZ-
type error on the color code and S a Z-stabilizer on Γ∗\cc

′
.

Then δE +
∑
e:Se 6=I e is the edge boundary of ES for some

Z-stabilizer S on Γ∗.

Proof. By Lemma 18, there exists a Z stabilizer S on Γ∗ such
that πcc′(S) = S and πxy(S) = I for xy 6= cc′. Therefore,

I = πxy(S) = πxy

 ∏
ν:Sν 6=I

Zν

 =
∏

ν:Sν 6=I

Zπxy(ν) (39)

From this we infer that for xy 6= cc′,∑
ν:Sν 6=I

πxy(ν) = 0 (40)

Therefore, the edge boundary of S has support only in Γ∗\cc
′
.

Furthermore, substituting for S and S in S = πcc′(S) we
obtain

∏
e:Se 6=I

Ze = πcc′

 ∏
ν:Sν 6=I

Zν

 =
∏

ν:Sν 6=I

Zπcc′ (ν) (41)

Eq. (41), implies that∑
e:Se 6=I

e =
∑

ν:Sν 6=I

πcc′(ν) (42)

=
∑

ν:Sν 6=I

πcc′(ν) +
∑
xy 6=cc′

∑
ν:Sν 6=I

πxy(ν) (43)

= δS (44)

Thus δS =
∑
e:Se 6=I e and δE +

∑
e:Se 6=I e = δ(ES).

With these results in hand we show how to estimate the
edge boundary of a Z-error from the minor complexes given
the syndrome on its vertices.

Theorem 20 (Estimating edge boundary of Z errors). Let Γ
be a 3-colex and E a Z-error on the associated color code.
Algorithm 2 estimates δE, the edge boundary of E, up to the
boundary of a Z stabilizer of the color code, provided πcc′(E)

is estimated up to a stabilizer on Γ∗\cc
′
.

Proof. By Corollary 16, the restriction of the syndrome of E
is a valid syndrome on Γ∗\cc

′
. By Theorem 15, πcc′(E) has

the same syndrome as the restriction and πcc′(E) can be es-
timated using a 3D toric decoder on Γ∗\cc

′
. We can recon-

struct the edge boundary from πcc′(E) using the Eq. (35). By
Lemma 19 if the estimates for πcc′(E) are upto a stabilizer on
Γ∗\cc

′
, the estimate for edge boundary of E will differ by the

boundary of a Z-stabilizer on the color code.

Algorithm 2: Estimating (edge) boundary of Z type error

Input: A 3-colex Γ, Syndrome of a Z error E
Output: E, an estimate of the edge boundary δE, where E ⊆

C1(Γ∗)
1: for each c, c′ ∈ {r, b, g, y} do
2: for each vertex v in Γ∗\cc

′
do //syndrome projection

3: sπcc′ (v) = sv //sv is syndrome on vertex v
4: end for
5: Estimate the error Ecc′ using any 3D toric code decoder for Z

errors on Γ∗\cc
′

6: end for
7: Return E =

∑
c,c′ Ecc′

What we have achieved so far is that we have taken a Z er-
ror whose syndrome is on vertices and converted it to a valid
syndrome on edges for an X error with the same support. We
can take this syndrome on edges and recover the face bound-
ary of the error using Theorem 14.

Note that the estimate for edge boundary returned by Al-
gorithm 2 need not be a valid edge boundary if any of the
component decoders fail. So we need a method to check the
validity of the edge boundary. Recall that the X-syndrome on
the toric code is boundary of a collection of faces. Therefore it
is a union of homologically trivial cycles. We can project the
edge boundary E obtained in Algorithm 2 onto each of the mi-
nor complexes Γ∗\c. If the edge boundary is valid, then all the
homologically nontrivial closed surfaces in (Γ∗\c)∗ will inter-
sect with the projected syndrome an even number of times.
This test can be carried out in linear time in the number of
qubits.

Theorem 21 (Estimating face boundary of Z type errors). Let
E be a Z-type error on Γ∗ whose edge boundary is estimated
using Algorithm 2. If the edge boundary is valid, then we can
estimate the face boundary of E up to a Z-stabilizer on the
color code using Algorithm 1.

Proof. By Theorem 20 we can estimate the edge boundary of
E up to a Z-stabilizer boundary. By Lemma 19 these edges
are precisely the syndrome for an X error. By Lemma 17,
this X error has the same support as E up to a X-stabilizer.
But in a color code for every X-stabilizer there exists a Z-
stabilizer with the same support. Thus the final boundary ofE
is estimated up to a Z-stabilizer provided all the intermediate
estimates from Algorithms 1 & 2 are all up to a stabilizer on
the respective 3D toric code decoders.

E. Decoding 3D color codes

The projection onto the toric codes allow us to decode the
3D color code. Before we can give the complete decoding
algorithm we need one more component. Following Theo-
rems 14 and 21, we only end up with the boundary of the
error. We need to identify the qubits which are in error. The
procedure for lifting the boundary to volume is given in Algo-
rithm 3. The main idea behind this algorithm is the fact that
the color code is connected and we can partition the qubits into
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two groups: those inside and those outside of the boundary.
The following lemma justifies the procedure in Algorithm 3.

Algorithm 3: Lifting a boundary to a volume

Input: Complex Γ∗, Set of faces F ⊆ C2(Γ∗)
Output: Ω ⊆ C3(Γ∗) such that F is the boundary of Ω

1: Set Ω = ∅;mν = 0 for all ν ∈ C3(Γ∗) // Initialization
2: Initialize Ω = {νo},mνo = 1 // For some 3-cell νo
3: while mµ = 0 for some µ ∈ Nν with mν 6= 0 do
4: for each µ ∈ Nν do //Nv := 3-cells sharing a face with ν
5: if mµ = 0 then
6: if µ ∩ ν ∈ F then
7: mµ = −mν //Qubits on different side of error

boundary
8: else
9: mµ = mν //Qubits on same side of error boundary

10: end if
11: if mµ = 1 then
12: Ω = Ω ∪ {µ}
13: end if
14: else
15: if µ ∩ ν ∈ F and mµ 6= −mν then
16: Ω = ∅; Exit // F not a valid boundary
17: end if
18: if µ ∩ ν 6∈ F and mµ 6= mν then
19: Ω = ∅; Exit // F not a valid boundary
20: end if
21: end if
22: end for
23: end while
24: if |Ω| > |C3 \ Ω| then
25: Ω = C3 \ Ω //Pick the smaller volume
26: end if

Lemma 22 (Lifting the boundary of error). Algorithm 3 will
give the smallest collection of 3-cells Ω ⊆ C3(Γ∗) such that
∂Ω = F. If F is not a valid boundary, then the algorithm
returns an empty set.

Proof. The algorithm takes as input a collection of faces sup-
posed to enclose a volume. If the faces enclose a volume, we
can label all the 3-cells inside and outside the boundary dif-
ferently. Cells adjacent to each other and enclosed within the
same boundary are labeled same. The algorithms proceeds by
labeling a random choice of initial qubit and then proceeds
to assign labels to all its adjacent qubits. If two qubits share
a face that is not in the boundary F, then they must have the
same label because one must cross the boundary to change
the label. Two qubits, that are adjacent and share a face that
is in the boundary must have different labels. The algorithm
stops when there are no more qubits to be labeled or when a
qubit is assigned contradicting labels, indicating that F is not
a boundary.

The running time of the algorithm is linear in the number of
qubits. The algorithm assumes that all qubits have the same
error probability. It can be modified so that it picks the most
likely qubits if the error probabilities are not uniform. We now
give the decoding procedure for color codes.

Theorem 23 (Decoding 3D color codes via 3D toric codes).
An error E on a color code can be estimated using Algo-
rithm 4. The estimate will be within a stabilizer on the color
code provided the intermediate decoders also estimate within
a stabilizer on the respective codes.

Proof. The proof of this theorem is straightforward given our
previous results. The decoding is performed separately for
X and Z errors and it makes use of the fact that the color
code is a CSS code. The algorithm proceeds by estimating the
boundary of the X-type errors and Z-errors separately. The
correctness of these procedures is due to Theorems 14 and 21.
Lemma 22 ensures that these boundaries can be lifted to find
the qubits that are in error. Decoding failure results if any of
the component decoders fail or make logical errors. This will
lead to either the failure of lifting procedure or an invalid edge
boundary in line 7. The validity of the edge boundary can
be checked by ensuring that the restricted syndrome πc(δEZ)
consists of homologically trivial cycles.

Algorithm 4: Decoding 3D color codes

Input: A 3-colex Γ and the syndrome
Output: Error estimate Ê

1: Let sX be syndrome for X type error EX
2: Obtain the face boundary ∂EX from Algorithm 1 with sX as

input
3: Lift the boundary ∂EX by running Algorithm 3 and obtain ΩX ,

the support of EX
4: if ΩX = ∅ and sX 6= 0 then
5: Declare decoder failure and exit
6: end if
7: Let sZ be syndrome for Z type error EZ
8: Estimate the edge boundary δEZ from Algorithm 2 with sZ as

input
9: Check πc(δEZ) consists of homologically trivial cycles only,

otherwise declare decoding failure and exit.
10: Obtain the face boundary ∂EZ from Algorithm 1 with δEZ as

input
11: Lift the boundary ∂EZ by running Algorithm 3 and obtain ΩZ ,

the support of EZ
12: if ΩZ = ∅ and sZ 6= 0 then
13: Declare decoder failure and exit
14: end if
15: Return Ê =

∏
ν∈ΩX

Xν
∏
ν∈ΩZ

Zν

Remark 2. The decoder could fail if any of the intermediate
decoders make a logical error.

The overall running time depends on the running time of the
3D toric code decoders. We can run them independently or we
can take advantage of the fact that the errors on component 3D
toric codes are correlated.

IV. CONCLUSION

In this paper we have shown how to project 3D color codes
onto 3D toric codes. The projection was motivated by the
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problem of decoding 3D color codes. The toric codes thus ob-
tained are linearly related to the size of the parent color code.
So if 3D toric codes on arbitrary lattices can be decoded ef-
ficiently, then so can the 3D color codes by projecting them
onto 3D toric codes using our map. Our work provides an al-
ternative perspective to that of [10] who also proposed a map
between color codes and toric codes. Our approach empha-
sizes the topological properties of color codes. At this point
there is no data available for performance of the decoders
based on our map as well as the map due to [10]. One dif-
ficulty to compare the performance of the decoders arising
out of these maps, as we mentioned earlier, is that we do not
have efficient decoders for 3D toric code on an arbitrary lat-

tice. (Decoders are known only for the cubic lattice.) So an
open question for further research is to study the decoding of
3D toric codes. This map could also find application in the
decoding of gauge color codes [19–21] by projecting onto 3D
toric codes. Another avenue for further research is to study the
possible use of this map for fault tolerant quantum computing
protocols.
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