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a b s t r a c t

Tensegrities are cable-strut assemblies which find their stiffness and self-equilibrium states from the in-

tegrity between tension and compression. Low stiffness and coinciding natural frequencies are known issues.

Their stiffness can be regulated and improved by changing the level of pre-stress. In vibration health moni-

toring, the first natural frequency is used as an indicator of better stiffness, but coinciding natural frequencies

will be an obstacle in measuring and analysing the correct resonance. In this paper, the above two issues

have been considered for modular tensegrity structures. The finite element model used considers not only

the axial vibration of the components, but also the transversal vibration where non-linear Euler–Bernoulli

beam elements are used for simulations. A genetic algorithm is used to solve the optimization problem, with

a multi-objective criterion combination. The optimum self-stress of the tensegrity structures can be cho-

sen such that their lowest natural frequency is high, and separated from others. Two approaches are used

to find the optimal self-stress vector: scaling from a base module or considering all modules at once. Both

approaches give the same optimum solutions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Tensegrities are cable-strut assemblies, which find their stiffness

and self-equilibrium states from the integrity between tension in ca-

bles and compression in bars. The pre-decided tension in cables and

compression in bars are known as unilateral properties of the compo-

nents. They are classified as class one, where bars do not touch, and

class n, where at most n of the bars connect at joints (Motro, 2003;

Pinaud et al., 2004).

In the design of these assemblies, normally a Form-Finding pro-

cess is adapted to which an important contribution was made by

Tibert and Pellegrino (2002). Form-Finding is commonly defined as

the process of finding an equilibrium and a stable geometry (Faroughi

and Tur, 2015). Form-Finding, however, can be seen from different

viewpoints, where some methods require the topology and coordi-

nates of the nodes. This is the case when using non-linear program-

ming and force density methods, while other methods use other in-

formation sets. For instance, Koohestani (2013) proposed an uncon-

strained optimization approach for Form-Findingwhich requires only

the connectivity data and a random set of force densities, to form a

wide variety of tensegrities with different geometrical and mechani-

cal characteristics.
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Although differently defined in literature, Form-Finding is here

seen to include the construction of an equilibrium matrix from a

given topology and nodal coordinates. Then, the singular value de-

composition (SVD) of the equilibrium matrix gives the number of

mechanisms m (if any exist) and the dimension of the space of inde-

pendent self-stress states s. If this self-stress dimension is one, then

both the equilibrium and unilateral properties of cables and bars will

be easily satisfied by scaling of this single self-stress vector s, for

a correct design (Schek, 1974; Tran and Lee, 2010a; 2010b). On the

other hand, if the dimension of the independent self-stress space is

greater than one, feasible self-stress vectors g can be calculated by

linear combinations of the calculated self-stress vectors si (Schek,

1974; Tran and Lee, 2010b). These must be checked for unilateral con-

ditions, but within these restrictions any linear combination of the si
vectors is a valid self-stress state. From construction, the basis vectors

si must be seen as random mutually orthogonal basis vectors for the

self-stress state, the linear combinations of which satisfy an internal

equilibrium state without external forces.

Tensegrities normally consist of several modules, or stages

(Murakami and Nishimura, 2001; Nishimura and Murakami, 2001).

These modules, when attached to each other, compose the final

tensegrity structure. In the Form-Finding process of multi-module

tensegrity structures, there are normally two options:

(i) The first one is to consider the equilibrium matrix of one

module and find its feasible self-stress vectors. Then, the com-

plete self-stress vector of the whole structure can be evaluated,

http://dx.doi.org/10.1016/j.ijsolstr.2015.11.017
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taking into account the sharing components between modules, e.g.,

adding/superposing the values of the elements in the self-stress vec-

tor that are corresponding to these sharing elements (Dalilsafaei and

Tibert, 2012; Schlaich, 2004) or by scaling the self-stress vector of

the basic module and applying it to the other modules. The scaling

factors can be chosen based on criteria which lead to an optimum de-

sign, or be based on the application requirements (Dalilsafaei et al.,

2014; Dalilsafaei and Tibert, 2012). Each module then has a low di-

mension of its self-stress space, which simplifies this evaluation. On

the other hand, the superposition of the results from the module re-

sults will demand careful consideration of the support conditions for

the modules.

(ii) The second one is to consider the equilibrium matrix of

the whole structure (all modules) at once, and to find the self-

stress vector by the method described above. For analytical pur-

poses, this option has been commonly adapted as a basic of Form-

Finding of tensegrity structures in most of the literature about this

subject (Koohestani, 2012; Koohestani and Guest, 2013; Murakami

and Nishimura, 2001; Nishimura and Murakami, 2001; Tran and

Lee, 2011). This option obviously simplifies the consideration of the

support conditions, which can be immediately recognized from the

real-life situation, but typically leads to high-dimensional self-stress

spaces represented by some excessive s which physically can be in-

terpreted as, some components can be independently pre-stressed.

There are some other consideration which can be adapted to enhance

this basic approach such as grouping, where grouping can be auto-

mated or manual. Recently, Koohestani (2015) developed an auto-

mated method for element’s grouping and self-stress identification.

However, in this study we have used this approach without any pre-

defined grouping of elements. In addition finding a feasible grouping

could be an important parameter in the design and optimization of

tensegrity structures (Koohestani, 2015).

Both approaches mentioned above for finding the optimum self-

stress vector of multi-module tensegrity structure were considered,

i.e., we have investigated the impact of following each of the ap-

proaches on the optimum design for maximum lowest natural fre-

quency and mode separation requirements. Dalilsafaei et al. (2014)

investigated the first approach using bar elements for the modelling,

where only axial vibration can be represented. They maximized the

lowest natural frequency, without treatment of the coinciding nat-

ural frequency problem. Masic and Skelton (2006) demonstrated a

method for self-stress optimization.

In literature, researchers focused on minimizing the mass of the

structure with consideration of the static situation of the struc-

ture. Nagase and Skelton (2014a) provided a unified framework

for minimal mass design of tensegrity structures where the design

variables were the force densities and the cross-section areas of

the components. Good analytical formulas can be found in Skelton

and de Oliveira (2009) about the mass minimization of tenseg-

rity structures, where algorithms are given to design an optimal

(minimum mass) self-similar structure using self-similar iterations

rules.

An important design parameter, which comes into the picture

when designing any tensegrity structure is the level of pre-stress.

The level of pre-stress can be defined and introduced to tensegrity

structures in different ways. But, in general it means an increase or a

decrease of the internal forces in the externally unloaded structure.

The level of pre-stress represented by ψ , is normally seen as a scalar

used to synchronously increase or decrease the internal forces in all

components by scaling the self-stress vector g, normally expressed

as a unit vector. More details about how the pre-stress level can be

altered can be found in Ashwear and Eriksson (2014).

The question arises when discussing the optimal self-stress vec-

tor, at what level of pre-stress ψ the optimum self-stress vector was

found? To generalize the solution, there are two options for setting

up the level of pre-stress in the optimization programme: The first

one is to normalize the self-stress vector g during the optimization

and introduce the level of self-stress ψ as an extra design variable in

the optimization, so that the programme will converge to a ĝ which

is a unit vector scaled by the level of pre-stress ψ . The second op-

tion is to consider the constructed gwithout normalization, in which

case the self-stress vector itself contains the level of pre-stress ψ
given by the norm of the converged vector gψ = ψ ĝ. In this study we

followed the second option and below we will use gψ to represent

the self-stress vector, including magnitude and distribution between

components.

The performed simulations were based on the following assump-

tions concerning the design. A final topology and geometry was de-

fined, and was connected to a specified pre-stress reference vector,

chosen such that the pre-stress forces in the components are found

from the scaled vector gψ . This is considered as implemented by

components which are lengthened or shortened from an unstrained

length L, introducing axial forces when reaching their design lengths

Ls consistent with the externally unloaded geometry of the struc-

ture. The nominal design thereby includes a specified exact pre-stress

force distribution for a specified exact geometry.

Tensegrity structures are geometrically non-linear structures

(Kebiche et al., 1999). Their stiffness can be somewhat regulated and

improved by changing the level of pre-stress. In simulations, it is easy

to synchronously monitor the lowest natural frequency as an indica-

tor of a high stiffness design, while regulating the level of pre-stress

(Ashwear and Eriksson, 2014).

In practice, there are some difficulties. One of these difficulties is

that the resonance spectrum of a tensegrity structure normally in-

cludes sets of coinciding or very closely situated frequencies, which

are resulting from a high degree of symmetry, or repetitivity in the

structure. This is particularly true in cases of added modules. In the

vibrational health monitoring (VHM) context, where normally only

the first natural frequency of the structure is utilized (Guechaichia

and Trendafilova, 2011), coinciding natural frequencies will be an ob-

stacle inmeasuring and analysing the correct resonance. For the VHM

purposes, it would be advantageous if the lowest natural frequency of

the structure could be easily measured and filtered from the whole

spectrum. This aspect has been considered in this paper, where a

multi-objective criterion is considered for usage in the optimization

programme.

The sensitivity of the first natural frequency to the level of pre-

stress in tensegrity structures can be very low depending on the de-

sign. For a certain range of pre-stress, the sensitivity of the first natu-

ral frequency can sometimes completely vanish (Ali et al., 2010), i.e.,

this frequency is independent of pre-stress level. The opposite is also

true for other tensegrity structures where the higher natural frequen-

cies have a very low sensitivity to the level of pre-stress, while the

first natural frequency is very sensitive (Moussa et al., 2001). For this

reason, it is not always possible to use the first natural frequency ω1

in VHM as an indicator of the pre-stress level. We will distinguish

the frequencies which are dependent on pre-stress as the sensitive

ones.

Unlike the structural optimization problems found in literature

which can be classified into, size, shape and topology optimization

(Barbosa et al., 2015), with the optimization problem considered in

this study, the structure shape, size, and topology will not be one of

the optimization variables. The aim of this study was to find the opti-

mum internal force distribution, represented by the scaled self-stress

vector gψ , such that the lowest sensitive natural frequency ωk of the

structure is as high as possible but still well separated from the next

higher one ωk+1. The two approaches above were considered and

compared. In other words, we discussed how the optimal self-stress

vector gψ (in the Form-Finding process) of tensegrity structures can

be chosen such that their lowest sensitive natural frequency is on one

hand relatively high, but on the other hand also well separated from

the others. The first objective will ensure that the designed structure
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has a relatively high stiffness (Dalilsafaei et al., 2014), while the sec-

ond objective serves for the VHM purposes (Peeters and De Roeck,

2001).With similar ideas, separation of the natural frequencies is also

needed when the objective is to increase the accuracy of the classical

damping approximation process (Sultan, 2009).

2. Method of study

In this section, methods for Form-Finding, finite element formu-

lation and optimization setup will be discussed.

2.1. Form and force finding

We here used the Force Density Method (FDM) (Schek, 1974; Tran

and Lee, 2010b) (valid for 2-D and 3-D) to find a set of independent

self-stress vectors si, the number dependent on the equilibrium ma-

trix. In this method, the equilibrium matrix A constructed from a

known topology and coordinates of one or all the modules (depend-

ing on which approach will be followed to find the self-stress vector

state gψ ). A singular value decomposition (SVD) of A gives the num-

ber of mechanisms m and the independent self-stress states s. The

built-in Matlab1 (version 2013a) function SVD is used, but it is noted

that the output from SVD can vary with algorithm, giving different

basis vectors of the space.

Support conditions were applied such that they did not create any

redundancy in the structure, i.e., if the self-standing structure (with

a single module or several modules) has s linearly independent, or-

thonormalized self-stress vectors, we constrain the structure such

that the number s remains.

In the mentioned examples below, two tensegrity structures have

been considered and are here used to demonstrate the basic setting.

The first is a 2-D four-module X-frame tensegrity, Fig. 1(b), the sec-

ond a 3-D four-module (four prisms) T-3 tensegrity, Fig. 2(b). The

base modules of both structures were designed and supported to

have a single state of self-stress (s = 1) and one infinitesimal mech-

anism (m = 1). Hence, when constructing a structure of more than

one module, any additional module will add one self-stress state to

the structure, i.e., in our case s = 4 for both cases. The overall self-

stress vector gψ will be evaluated from s0 of one-module or si of

the whole structure, by following one of the approaches explained

below.

2.1.1. Scaling the base module

In this approach, the equilibrium matrix A is constructed from a

known topology and coordinates of the single ‘base module’. Then,

the SVD of A (with support conditions applied such that s = 1 and

m = 1) gives the unique self-stress unit vector s0 for the base mod-

ule. Thus, both the equilibrium and the unilateral properties of the

components will be easily satisfied by this single self-stress vector s0,

for a correct module design.

The self-stress vector si of each individual module is then seen as

a scaling of the self-stress vector of the base module s0 according to:

si = ais0 (1)

where ai are the scaling factors for modules, i = 1,2, . . .. The number

of scaling factors equals the number of modules n, i.e., if the tenseg-

rity structure is composed from four modules, there will be four scal-

ing factors, which will be the design variables in the optimization be-

low.

If several or all scaling factors are equal, as implicitly used in

literature (grouping), (Tran and Lee, 2010b, 2010c, and many oth-

ers), then symmetrically located members in the structure will

1 The MathWorks, Inc., Natick, U.S.A.
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Fig. 1. Topology, coordinates and the numbering scheme of (a) The X-frame basemod-

ule, (b) Four-module X-frame tensegrity structure.

have the same internal force magnitudes. In practice, the scal-

ing factors can be different, according to the application or design

requirements.

With this approach, the scaled self-stress vector gψ of the whole

structure can be written as function of scaling factors ai and the self-

stress vector of the base module s0:

gψ = gψ (ai, s0). (2)

It is worth noting that in Eq. (2), the pre-stress values of the shared

elements (force density (gψ )i) between modules are being added to-

gether. For example, in the 2-D numerical example given in this study,

the value of (gψ )11 corresponding to the component number 11 in

Fig. 1(b) is found by adding s21 to s42,where sm
i
heremeans the element

m in si of the module i, as explained in Appendix A. With this setup,

the free optimization parameters are the scaling factors ai. From con-

struction, these are demanded to be non-negative.

2.1.2. All modules at once

In this approach, the equilibrium matrix A valid for the whole

structure is constructed from a known topology and the coordinates

of all the modules. Then the SVD of A gives a set of s independent

self-stress vectors si and the number of mechanisms m. For the 2-D

and the 3-D examples considered in this study, there were four inde-

pendent self-stress vector states, s = 4. Hence, the feasible self-stress

vectors gψ can be calculated by any linear combination of the basis

vectors si.

gψ =

s
∑

i=1

bisi (3)
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(a) (b)

Fig. 2. Topology and the numbering scheme of (a) The base module of T-3 tensegrity,

(b) Four-module T-3 tensegrity structure.

where bi are the coefficients of independent self-stress modes si. As

the basis vectors must be seen as random outputs from the SVD algo-

rithm used, these coefficients can well be negative, as long as unilat-

eral constraints are fulfilled for the whole. With si combined, and the

unilateral and stability conditions being satisfied, the free optimiza-

tion parameters are the coefficients bi.

It is noted that the number of design variables is equal in the

two approaches, but refer to different basic self-stress vectors. One

also notes that the so contributions in the first approach, suitably

combined, gives one way to define the basis of the space. It is

worth to mention that only this approach is possible to use in the

case of a general tensegrity (non modular) with several states of

self-stress.

In the present work, the aim is to find gψ , Eq. (2) or (3) by finding

the scaling factors ai in Eq. (2), or the linear combination coefficients

bi in Eq. (3), such that the lowest sensitive natural frequency ωk is

high andwell separated from the next higher natural frequencyωk+1.

This was achieved by applying a Genetic Algorithm (GA) (Holland,

1975), from the built-in functions of Matlab, as explained in the opti-

mization section below.

2.2. Finite element formulation

Having found a scaled self-stress vector gψ by means of either

of Eq. (2) or (3), the unstrained length of a jth component Lj can

be found. Each element (gψ )j in the self-stress vector gψ represents

the force density corresponding to component j in the structure,

(gψ ) j = N j/L
s
j
, (Vassart and Motro, 1999), where Nj is the axial in-

ternal force and Ls
j
is the designed length of the component j, which

is known in advance. But N j = EA j(L
s
j
− L j)/L j from which the un-

strained length Lj can be calculated as:

L j = EA jL
s
j/(N j + EA j) (4)

where, N j = (gψ ) jL
s
j
. This can be seen as a definition of an initial

strain of the defined geometry.

When each component of the structure is divided into several

computational finite elements (Ashwear and Eriksson, 2014; Eriks-

son, 1997), the unstrained length for each finite element l can be

found from l = L j/n, where n is the number of elements per compo-

nent. In the present implementation, n = 4 for compressedmembers,

and n = 2 for tensioned members.

The members of tensegrity structures are commonly in literature

seen as pin-jointed bar elements, where no bending moments affect

components. With this formulation, only the axial response can be

captured. In a health monitoring context, where essentially the res-

onance spectrum is triggered by external excitation, the most visi-

ble modes will, however, be the transversal modes of vibration. In

simulations, this consideration must see the components as having

a bending behaviour, and a member stiffness affected by the current

axial force.

We have used a non-linear Euler–Bernoulli beam element for

modelling both compressed (bar) and tensioned (cable) elements

with assumed physical data for sectional properties. In a tensioned

component the (low) bending stiffness will to a very low degree af-

fect the response.

The geometric non-linearity has been considered in the inter-

nal forces. This gives consequences for the tangent element stiff-

ness matrix kT, which has been decomposed into an element elas-

tic stiffness matrix kE and a geometric stiffness matrix kG, according

to:

kT = kE + kG (5)

It is well known that a string is tuned to its right resonance by

introduction of an axial force. Similarly, the resonance is affected by

a compressive force, and the resonance frequency lowered with in-

creasing force magnitude. The element geometric stiffness matrix kG

was formulated to include the effect of the axial force on the transver-

sal stiffness of the beam element. The one-way coupling between the

axial force and the transversal stiffness emphasized the non-linearity

of the tensegrity structure response.

The structural tangent stiffness matrix KT is conventionally as-

sembled according to the symbolic expression:

KT =
∑

LTkTT
TLT (6)

where L is the element connectivity matrix, defined from topology,

and kT the element tangent stiffness matrix Eq. (5), while T is the

transformation matrix from local to global degrees of freedom, for-

mulated for 2-D and 3-D as in Kattan (2007, Chaps. 8 and 10), respec-

tively. The sum extends over all elements.

For the 2-D case, using No as the elastic normal force, A the cross-

sectional area, l the element unstrained length and I the relevant
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moment of inertia, the formulation of kE and kG is well-known and

can be found in Paultre (2010, Chap. 14), and their mathematical ex-

pressions can be found in Ashwear and Eriksson (2014).

The linear 2-D beam element mass matrix m was formulated ac-

cording to well-known expressions, (Argyris andMlejnek, 1991, chap.

3), and its mathematical expression can be found in Ashwear and

Eriksson (2014) using ρ as the material density. This consistent mass

matrix is used for all elements. The structural mass matrixM is simi-

larly assembled according to the symbolic expression:

M =
∑

LTmT TLT (7)

For the 3-D case, the same formulation steps can be followed to find

the tangent stiffness and mass matrices. The 3-D elastic, geometric

and mass matrices are given in Appendix B.

Having KT and M assembled at a non-linear equilibrium state

(more details about equilibrium iterations can be found in Ashwear

and Eriksson (2014)) for a chosen internal pre-stress gψ , but no exter-

nal forces, the vibration problem of the structure can be linearized.

The small free undamped vibrations of the structure around the eval-

uated equilibrium state are thereby obtained from the generalized

eigenproblem:

−ω2
kMφk + KTφk = 0 (8)

whereω2
k
is one of the n eigenvalues andφk the corresponding eigen-

vector, with n the number of active degrees of freedom. The eigenval-

ues were ordered so that ω1 ≤ ω2��� ≤ ωn. The spectral decompo-

sition thereby gives n natural frequencies ωk and the related eigen-

vectors φk of the structure at the considered equilibrium state. As the

tensegrity structures normally contain a high degree of symmetry,

the resonance solutions will normally contain sets of closely situated

frequencies, and possibly eigenspaces of higher dimensions (Strang,

1988).

2.3. Optimization problem

The optimal scaling factors ai in Eq. (2) and the linear combination

coefficients bi in Eq. (3), have been found using a genetic algorithm in-

cluded in the Matlab software. Being in formulation a two-objective

optimization, where a Pareto front is the complete result, (Caramia

and Dell’Olmo, 2008), a weighted summethod for making the multi-

objective optimization into a single objective one has been used

as:

minimize
α

ωk

(

gψ

) +
β

ωk+1

(

gψ

)

− ωk

(

gψ

)

gψ = gψ (ai, s0) or gψ =

s
∑

i=1

bisi

subject to
(

gψ

)

j
> 0 ∀ j ∈ Cables

(

gψ

)

j
< 0 ∀ j ∈ Bars

ai > 0 (if Eq. (1) is used)

(9)

where α and β are the objective function weights. More details about

multi-objective optimization can be found in Barbosa et al. (2015).

While using the first approach the only constraint applied is that

the variables ai are positive, as the unilateral constraints are immedi-

ately fulfilled. In the second approach, the constraints in the GA were

handled as follows. Let

si =

[

sc
i

sb
i

]

where sc
i
and sb

i
are the component parts of the self-stress vector si

corresponding to the cables and bars, respectively. Then, the input

Table 1

Basic parameters of the genetic algorithm used in this study.

Parameter name Type and value

Bounds of variables To be positive in the first approach, no bounds in the

second approach

Population (type, size) Double vector, see figures for the sizes

Selection (function) Stochastic uniform

Crossover (type, ratio) Heuristic, 1.2 (the default value)

Mutation (function) Adaptive feasible

Stopping criterion The number of generation

linear inequality constraints to GA can be given in the form AX ≤ 0,

where

A =

[

−sc1 −sc2 · · · −scs

sb1 sb2 · · · sbs

]

and X = [b1, b2, · · · , bs]
T.

The tangent stiffness matrix singularity was handled by assigning a

large fitness value (estimated from multiple runs).

The eigenvalue ωk is the lowest natural frequency that is sensitive

to the change in the level of pre-stress ψ defined as before (normally

it is the first natural frequency ω1, but for some cases it is the higher

natural frequency ω2 when the lowest frequency is independent of

pre-stress). Following usual practice to choose weights summing to

one, in this study we chose α = 0.2 and β = 0.8, but other choices

are fully possible. However, depending on the nature of the structure,

the values of the objective function weights (α and β) are decided.

For instance, in both examples considered in this study, it was more

difficult to separate the first sensitive natural frequencies than maxi-

mizing the first one, and for this reason β is greater than α. It is noted

that the obtained optimal solutions normally will vary continuously

with the choice of α and β = 1 − α, allowing an easy tuning of ob-

tained results, if the balance between the relative weighting of the

criteria is re-considered. Such a change of weighting will essentially

represent a movement along the Pareto front representing the solu-

tion to the two-criterion optimization.

When a self-stress vector gψ is computed, the unilateral proper-

ties of each component and the stability of the structure are evalu-

ated. With the finite element formulation used, approaching the crit-

ical load of buckling is very well detected by at least one of the eigen-

values of the tangent stiffness matrix approaching zero. But we also

applied a factor of safety of 20% such that in the final design (the op-

timal), the internal forces in the bars will always be well below their

Euler buckling loads.

The optimal design must fulfil not only the VHM requirements

(natural frequencies separation) but also the load carrying capacity of

the structure. It is noted that if we run the optimization programme

with only the conditions mentioned above and the constraints men-

tioned in Eq. (9), the programme will converge to a solution where

the top module will have very low internal forces, limiting the struc-

ture load carrying capacity, and perhaps even more the stiffness, due

to low pre-stress in the top module. For this reason, another condi-

tion has been added such that the horizontal static displacement in

the x direction (δx) of the top nodes resulting from the application of

specified external load Fx at these nodes, must be less than a certain

value δx, where in reality the application requirements prescribe the

values of Fx and δx. In the present work, the value of δx has been taken

as for the structure with symmetric self-stress design, so that the op-

timization dose not lead to a less functional structure. For self-stress

vectors gψ not fulfilling the above requirements, a very large objec-

tive function value was assigned so that they have very low chance to

pass to the next generations.

It is well known that the performance and efficiency of a genetic

algorithm depends on some basic parameters. The parameters used

in this study are given in Table 1, related to the specification of the

Matlab GA tool, where, e.g., the binary coding of variables is inherent.



302 N. Ashwear et al. / International Journal of Solids and Structures 80 (2016) 297–309

Fig. 3. Deformed and undeformed (dashed line) shape of the cable girder (deflections enlarged for visibility).

While solving the optimization problem given in Eq. (9) using GA,

the algorithm provided different results in different runs. For this rea-

son we have run the algorithm in each example several times. But for

brevity we only give a typical run for each example, which converged

towards what we have good reasons to believe is the global optimum.

3. Finite element verification

The objective of this section is only to verify the 3-D finite element

formulation used in this study. The verification of the 2-D formulation

can be found in Ashwear and Eriksson (2014).

The 2-D pre-stressed cable girder, Fig. 3, and the 3-D hyperbolic

paraboloid, Fig. 5, were analysed by Buchholdt (1969); Lewis et al.

(1984) and others, to find the displacements under joints in the di-

rection of applied load P. For the verification purpose of the 3-D finite

element formulation, we have analysed both structures. We also used

the tangent stiffness matrix evaluated at the pre-stressed but exter-

nally unloaded equilibrium state, and themassmatrix to solve for the

eigenvalues ω2
k
, Eq. (8).

3.1. Pre-stressed cable girder example

A 2-D pre-stressed cable girder, Fig. 3, is symmetric about the ver-

tical and horizontal centre lines.

The girder was here seen as a tensegrity structure. It gains its sta-

bility from the integrity between compression force in bars and ten-

sion force in cables, and there is no bending moment effect at its

physical joints. It is unsymmetrically loaded by the load P = 44.8kN,

cf. Fig. 3. The girder has a span and depth of 91.44 m and 9.14 m, re-

spectively. Bars, top cables and bottom cables have a cross sectional

area of 1290.3 mm2, 1045.2 mm2 and 2090.3 mm2, respectively. The

same material was used for top and bottom cables with Young’s

modulus E = 165.55GPa, while for bars E = 209.92GPa, with ρ =

7500kg/m3 and Poisson’s ratio ν = 0.30 for all components. More

details about the structure can be found in Buchholdt (1969), Lewis

et al. (1984). It is worth noting that all the degrees of freedom in the

z direction were constrained for this 2-D example. The rotational de-

grees of freedom must be released at joints where several elements

meet (Ashwear and Eriksson, 2014, 2015). The tension coefficient ap-

plied was 35.016 kN/m.

The joint displacements calculated by the finite element formula-

tion used in this study, the dynamic relaxation method (Lewis et al.,

1984) and the steepest descent method (Buchholdt, 1969) are shown

in Table 2 and they are in very good agreement. The three lowest

natural frequencies and the corresponding mode shapes of the cable

girder are shown in Fig. 4. The mode shapes are found to be similar to

those for a simply supported beam.

3.2. Hyperbolic paraboloid network

The 3-D hyperbolic paraboloid shown in Fig. 5 was analysed by

many researchers to find the deflection under the applied load P =

0.0157kN. Lewis et al. (1984) numerically analysed this structure by

using the dynamic relaxation method, and experimentally verified

the results. Another solution was found by Kwan (1996). We analysed

Table 2

Comparison of cable girder displacements relative to the unloaded structure’s coordinates.

Displacements of the top cable (m)

Node no. Beam elements

(present)

Steepest descent

(Buchholdt, 1969)

Dynamic relaxation

(Lewis et al., 1984)

2 0.4984 0.4946 0.4980

3 0.7777 0.7804 0.7762

4 0.8342 0.8338 0.8362

5 0.6677 0.6700 0.6668

6 0.2795 0.2791 0.2795

7 −0.1293 −0.1270 −0.1294

8 −0.3604 −0.3542 –0.3588

9 −0.4145 −0.4144 −0.4126

10 −0.2938 −0.2926 −0.2920
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 Mode 2  - 1.617 Hz Mode 1 - 1.559 Hz  Mode 3 - 1.73 Hz

Fig. 4. The first three mode shapes of the cable girder.
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Fig. 5. Hyperbolic paraboloid network.

the hyperbolic paraboloid as another verification example of the 3-D

finite element formulation used in the present work.

The hyperbolic paraboloid cables have a cross sectional area of

0.785 mm2, Young’s modulus E = 128.30GPa with ν = 0.30, and

ρ = 7500kg/m3, for all components. The corner rise was chosen as

H = 0.45m and an average pre-stress of 0.20 kN was applied in all

members. Results from the present and other studies are presented in

Table 3. Results for the lowest natural frequencies and mode shapes

are shown in Fig. 6.

4. Numerical examples

Two tensegrity structures have been considered, a 2-D T13C8 four-

module X-frame tensegrity structure, Fig. 1(b), where the notation

Tx and Cy gives the numbers of tensile and compressive components

in the structure, and a 3-D four-module (four prisms) T-3 tensegrity

structure, Fig. 2(b). In each example, the self-stress vector gψ in the

optimization problem Eq. (9), was calculated using the above two ap-

proaches of study.

For both examples, we have presented the optimum solution

based on two approaches and compared themwith an non-optimum

solution. In the optimum frequency spectrum, the lowest pre-stress

sensitive natural frequency is well separated from the next level of

frequencies and higher than the non-optimal solution.

The equilibrium matrix A for the base module or for the whole

structure in both examples below, was calculated by using the

method in Tran and Lee (2010b), Schek (1974) with topology and co-

ordinates known in advance.

In the numerical calculations below, thematerial for all cables and

bars was defined by the elastic modulus E = 210GPa, Poisson’s ratio

ν = 0.30, and density ρ = 7850kg/m3.

By the symmetry of the structures considered for the present anal-

ysis, the force density in the bars in eachmodule are equal. In the first

approach, the self-stress vector of the base module so is normalized

with the force density of the bars. For this reason the values of scal-

ing factors ai and the force density (gψ )i of the bars in each module

are equal. In the second approach, the values of the linear coefficients

change with self-stress basis si, which are highly dependent on the

computation algorithm for SVD of the equilibrium matrix. Therefore,

we have presented non-optimal and optimal solutions from both ap-

proaches in the form of the force density in one diagonal bar for each

module; from these, the whole pre-stress pattern can be calculated.

4.1. Example 1, a 2-D four-module tensegrity

The plane tensegrity structure shown in Fig. 1(b) is composed of

four X-frame modules, with a designed size of 1×2m2 for each mod-

ule, Fig. 1(a).When allmodules are connected together, they compose

the target structure with a designed size of 1×8m2. Massive circular

bars and cables were used with a diameter of 0.05 m and 0.015 m, re-

spectively. It was assumed that the structure was designed to carry an

external horizontal load Fx = 4kN equally divided on the top nodes

5 and 6. The maximum horizontal static displacement allowed was

chosen to be δx = 0.052 m. For support conditions, node number 1 is

fixed in X and Y directions and node number 10 is fixed in Y direction.

With these design parameters, it was observed that the first nat-

ural frequency of this structure is almost independent of the level

of pre-stress, and relates to a global bending mode of vibration. This



304 N. Ashwear et al. / International Journal of Solids and Structures 80 (2016) 297–309

Table 3

Comparison of hypar displacements relative to the unloaded structure’s coordinates.

Deflection Z (mm)

Node no. Beam elements

(present)

Another method (Kwan,

1996)

Dynamic relaxation

(Lewis et al., 1984)

Experimental (Lewis

et al., 1984)

1 19.29 19.52 19.30 19.50

2 25.46 25.35 25.30 25.30

3 23.27 23.31 23.00 22.80

4 25.68 25.86 25.90 25.40

5 33.83 34.05 33.80 33.60

6 29.46 29.49 29.40 28.80

7 25.74 25.79 26.40 25.20

8 31.32 31.31 31.70 30.60

9 21.57 21.42 21.90 21.00

10 21.54 21.48 21.90 21.00

11 20.25 20.00 20.85 19.80

12 14.90 14.40 14.80 14.20

Mode 2 - 51.32 HzMode 1 - 44.43 Hz Mode 3 - 90.23 Hz

Fig. 6. The first three mode shapes of the hypar net.

frequency is well separated from the other higher frequencies. There-

fore, we used ωk = ω2 in the optimization problem Eq. (9), i.e., we

maximized ω2 and separated it from ω3.

Using the first approach, the self-stress vector for the separated

base module s0 was calculated from the SVD of the equilibrium ma-

trix A for known topology and coordinates, Fig. 1(a). Then, the self-

stress vector gψ of the whole structure was found by using Eq. (2).

Symmetrical force density distribution pattern such as (gψ )i = 50

kN/m in all the bars (diagonals), gives close to coinciding natural fre-

quencies, f2 = 10.318Hz and f3 = 10.347Hz ( fk = ωk/2π ).

The force density distribution in the bars for each module

from bottom to top obtained using the optimum scaling factors ai,

is (gψ )i = (4.650,4.612,4.252,4.151) kN/m, respectively. The opti-

mum natural frequencies obtained for this force density distribution

are f2 = 18.558Hz and f3 = 19.316 textHz. They are relatively high

and well separated compared with the above values for non-optimal

design. The results of the first six lowest natural frequencies for both

the arbitrary (non-optimal) design and for the optimal design are

shown in Fig. 7(a). Fig. 7(b) illustrates the history of fitness function

vs the generations for a typical run of this example using scaling from

a base module approach.

In the second approach, the equilibrium matrix A of the whole

structure was considered with the topology and coordinates shown

in Fig. 1(b). The SVD of A gave four independent self-stress vectors

si. Hence, there are four linear combination coefficients bi. Then, the

self-stress vector gψ was calculated using Eq. (3). An example of non-

optimal design is when the linear combination coefficients chosen

such that they give a symmetric self-stress vector. For instance, when

the force density in all bars (gψ )i = 40 kN/m, the natural frequencies

are f2 = 12.681Hz and f3 = 12.733Hz, which are very close. How-

ever, it is interesting to compare the two non-optimal examples given

for this structure. The natural frequency decreased with increase in

the prestress (from 40 kN/m to 50 kN/m), because of the bar dom-

inated mode of vibration for this frequency (Ashwear and Eriksson,

2014).

Optimum values of the linear combination coefficients

were found to give a force density in the bars (gψ )i =

(4.647,4.599,4.201,4.099) kN/m, respectively, gives natural fre-

quencies of f2 = 18.592Hz and f3 = 19.218Hz. It is interesting to

note that these natural frequencies are very close to the optimum

values obtained from the first approach. It is obvious that the ap-

proaches would converge to the same optimal solution, and that the

small differences in results shown rather give an indication of the

accuracy in the GA algorithm. Results from the linear combination

approach for both non-optimal and optimal solutions are shown in

Fig. 8(a) for the first six lowest natural frequencies. The history of

fitness function vs the generations for a typical run of this example is

depicted in Fig. 8(b).

4.2. Example 2, a 3-D four-module T-3 tensegrity prism

The T-3 based tensegrity structure shown in Fig. 2(b) was chosen

as a 3-D example in this study. It consists of four T-3 prisms, Fig. 2(a).

It is made up of 39 components, 12 bars and 27 cables, with 15 nodes

whose coordinates are listed in Table 4. All bars and cables were mas-

sively circular with diameters of 0.065 m and 0.015 m, respectively.

Support conditions applied here are essential to the six rigid body

mechanisms. We defined node 1 as completely fixed, node 2 fixed in

Y and Z directions and node 3 fixed in Z direction.

The external load Fx applied at each node of the top triangle was

assumed to be 700 N. The maximum horizontal static displacement

allowed for each of them was chosen to be δx = 0.032 m.

In the first approach, the equilibrium matrix A of the base mod-

ule was calculated following the method in Tran and Lee (2010b),
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Fig. 7. (a) Natural frequencies distribution for non-optimal and optimal designs of the structure in Fig. 1(b) using the scaling from a base module approach, where the second and

third natural frequencies are separated. (b) History of fitness vs generation number for a typical run.
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Fig. 8. (a) Natural frequencies distribution for non-optimal and optimal designs of the structure in Fig. 1(b) using the linear combination approach, the second and third natural

frequencies are separated. (b) History of fitness vs generation number for a typical run.

Schek (1974), with the topology of the base module as shown in

Fig. 2(a) with coordinates for the six nodes in Table 4. Then, the SVD

of A gives the self-stress vector s0 which satisfies the unilateral con-

ditions of both the bars and the cables. The self-stress vector gψ for

the whole structure was calculated following the same strategy ex-

plained in the 2-D example above. As this structure consists of four

modules, there will be four scaling factors, a1, a2, a3 and a4.

One example of non-optimal structure with symmetrical self-

stress vector (commonly used in literature when a grouping strategy

is adapted), e.g., if the forces densities (gψ )i in all bars are equal to

40 kN/m. The symmetric self-stress vector gives almost coinciding

natural frequencies f1 = 0.734Hz and f2 = 0.744Hz. This situation,

however, can be avoided by the proposed method of optimization.

The optimum design, using α = 0.2 and β = 0.8 in Eq. (9), was

obtained with the force density in all bars of each module from

bottom to top, (gψ )i = (142.701,122.130,94.100,41.952) kN/m, re-

spectively. The corresponding natural frequencies obtained are f1 =

2.577Hz and f2 = 2.957Hz, which are higher and more well sepa-

rated than those for the non-optimal pre-stress. The six lowest natu-

ral frequencies for both the symmetrical self-stress vector and for the

optimal design are shown in Fig. 9(a). The history of fitness function

vs the generations for one typical run of this example using the first

approach is showing in Fig. 9(b).

When using the second approach, the equilibriummatrix A of the

whole structure was calculated from the topology and coordinates of

the whole structure given in Fig. 2(b) and Table 4, respectively. Then,

the SVD of A gives four independent self-stress vectors si. The self-

stress vector gψ can be any linear combination between si, Eq. (3).

Four linear combination coefficients bi are sought, such that the re-

sulting gψ satisfies the unilateral conditions, the stability of the struc-

ture and the static displacement δx (defined as before), with higher

natural frequencies, and with the first ones being separated.
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Table 4

Nodal coordinates of the three-module T-3

tensegrity structure shown in Fig. 2(b).

Coordinates (m)

Node no. X Y Z

1 0.50 0.00 0.00

2 −0.25 0.433 0.00

3 −0.25 −0.433 0.00

4 0.433 0.25 2.00

5 −0.433 0.25 2.00

6 0.00 −0.50 2.00

7 0.25 0.433 4.00

8 −0.50 0.00 4.00

9 0.25 −0.43 4.00

10 0.00 0.50 6.00

11 −0.433 −0.25 6.00

12 0.433 −0.25 6.00

13 −0.25 0.433 8.00

14 −0.25 −0.433 8.00

15 0.50 0.00 8.00

With the self-stress base vectors obtained from Matlab SVD,

choosing linear combination coefficients bi that give a symmetric

self-stress vector, leads to coinciding natural frequencies. For exam-

ple, if the linear combination coefficients are chosen such that the

force density in all bars equal 40 kN/m, which found to give coincid-

ing natural frequencies as in the first approach.

The optimal solution obtained with α = 0.2 and β = 0.8 in

Eq. (9), gave the force density in the bars of each mod-

ule from the bottom to the top of the structure (gψ )i =

(141.150,121.519,93.470,41.626) kN/m, respectively. With this de-

sign, the natural frequencies are f1 = 2.552Hz and f2 = 2.939Hz.

These natural frequencies are relatively high andwell separated. They

are also approximately the same as the optimum natural frequencies

obtained from the first approach for this structure. The first six nat-

ural frequencies for both the arbitrary (non-optimal) design and for

the optimal one are shown in Fig. 10(a). Fig. 10(b) shows the history

of fitness function vs the generations for a typical run of this example

using the second approach.

5. Discussion

In the design of tensegrity structures, a process known as Form-

Finding is adapted. This process has been considered bymany authors

in literature, but with different strategies and definitions adapted.

The Form-Finding is employed to find the internal force distribution

for either pre-decided shape (Tran and Lee, 2010b; 2010c, and many

others), or to find it such that the internal equilibrium is satisfied

but for many different shapes and for a certain topology (Koohestani,

2013). Normally, these methods of Form-Finding lead to structures

with resonance spectra including sets of coinciding or very closely

situated frequencies, where the symmetric pre-stress vector yielded

from the Form-Finding process is one of the causes. This is particu-

larly the case for tensegrity structures built from modular units.

The Form-Finding in this study was performed for a known topol-

ogy and coordinates (final shape). Each approach used in this present

work to find the optimum self-stress vector gψ , can provide an infi-

nite number of solutions, which all satisfy the unilateral conditions

of cables and bars, but these need to be checked also for the structure

equilibrium requirement. The new aspect in this study is that, in ad-

dition to satisfying the unilateral properties of the components and

the stability of the structure, in the Form-Finding we choose the in-

ternal equilibrium such that the low frequencies of the structure are

separated and the lowest one is beingmaximised for a certain combi-

nation of a level of pre-stress ψ and a self-stress vector g represented

in this study by the scaled vector gψ .

We have used two approaches to describe the self-stress vector

gψ with different basis vectors, but with equal numbers of design

variables. A genetic algorithm was used to find the optimum vector

through finding ai in the first approach and bi in the second approach.

Results from both approaches were found to be approximately equal

in terms of natural frequencies values and separation. The minor dif-

ferences should be seen as a lack of final convergence of GA algorithm.

This observation increases the confidence in the optimum solutions

we have got.

It is noted that, the convergence of GA when using the first ap-

proach (scaling from a base module), is faster than when using the

second approach (linear combination), which attributed to the fact

that the variable space in the first approach is bounded to be positive.
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Fig. 9. (a) Natural frequencies distribution for non-optimal and optimal designs of the structure in Fig. 2(b) using the scaling from a base module approach, the first and second

natural frequencies are separated. (b) History of fitness vs generation number for a typical run.
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Fig. 10. (a) Natural frequencies distribution for non-optimal and optimal designs of the structure in Fig. 2(b) using the linear combination approach, where the first and the second

natural frequencies are separated. (b) History of fitness vs generation number for a typical run.

6. Conclusion and future work

Low stiffness and coinciding frequencies are known characteris-

tics of tensegrity structures, in particular when a symmetric self-

stress design is adapted. It has been proved that these two issues

can be avoided in the early stage of design (in the form-finding

stage).

The nature of the optimization problem is non-convex, implying

that there is no guarantee that the results given here represent global

optimal solutions. But we relied on repeated solutions and similar-

ity of the results from the two approaches to increase the confidence

of generalizing the solution. The following conclusions can be drawn

from this study.

• For the pre-decided topology and nodal coordinates (geometry) of

a tensegrity, it is possible to find an optimum self-stress state such

that the structure has relatively high stiffness with its low natural

frequencies being separated.

• Two approaches were used to construct the self-stress vector,

scaling from the self-stress of one module or a linear combina-

tion of the independent self-stress vectors of all modules. Then,

GA was used to find the optimum self-stress vector. It has been

shown, that the optimum self-stress vectors obtained by both ap-

proaches are approximately equal for the maximization and sep-

aration of the lower natural frequencies.

• It is important to introduce also functional constraints for the real

work of the structure, not only VHM criteria.

• The Genetic Algorithm can give practically relevant results for

the stated problem, even if final convergence and global optimal-

ity are difficult to prove. The weight factors used to bring the

multi-objective criteria into one fitness function can be tuned

to specific needs, relying on the assumed continuity of the

optima.

For future work, we suggest the following two points:

• When regulating the pre-stress level in each module to satisfy the

above requirements, the ratio between the internal forces and the

diameter of each component must be considered. This will reduce

the amount of material used and hence the weight of the struc-

ture. It is interesting to study the proposed optimization problem

with the aspects of tensegrity structures mass reduction (Nagase

and Skelton, 2014a, 2014b; Skelton and de Oliveira, 2009).

• In this study the focus was only on the separation of first two

sensitive natural frequencies. In the nearest future we will try

to separate at least the first 6 modes using different objec-

tive function but with the same constraints. It is fully conceiv-

able to introduce several septation criteria in the combined cost

function.

Appendix A

To find the self-stress vector of the whole structure gψ by scal-

ing the self-stress vector s0 of the base module, we first calculate the

self-stress vector s0 of the base module from the SVD of its equi-

librium matrix A, constructed from the topology, coordinates and

numbering scheme given in Fig. 1(a). The equilibrium matrix A was

constructed following the method in Tran and Lee (2010b), Schek

(1974). The SVD of A gives the unique self-stress vector s0 of the base

module.

s0 =
[

0.44721 0.22360 0.44721 0.22360 −0.50 −0.50
]T

and after normalization by |si| value of one of the bars, (here, s6) the

final vector s0 becomes:

s0 =
[

0.89442 0.44721 0.89442 0.44721 −1 −1
]T

Then, from Eq. (1) the self-stress vector of each module was found

as:

s1 = a1s0, s2 = a2s0, s3 = a3s0, and s4 = a4s0, with a size of each

vector of 6 × 1.

All modules have the same numbering scheme as the basemodule

in Fig. 1(a).

The structure self-stress vector gψ is constructed with shared

components between modules being added to gather and following

the numbering scheme of the whole structure in Fig. 1(b):

gψ =
[

s11, s
1
2, s

1
3, s

1
4, s

2
4, s

3
4, s

3
3, s

3
2, s

3
1, s

4
1, (s21 + s42), (s22 + s43),

× (s23 + s44), s
5
1, s

6
1, s

5
2, s

6
2, s

5
3, s

6
3, s

5
4, s

6
4

]

where sm
i
means the elementm in si of the module i.
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Appendix B

The mathematical expression of the 3-D element elastic kE, geo-

metric kG and massm matrices:

kE =
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