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This article presents the numerical studies on predicting onset of flow separation

and vortex shedding in flow past unconfined two-dimensional elliptical cylinders for

various Axis Ratios (AR) and a wide range of Angles of Attack (AOA). An efficient

Cartesian grid technique based immersed boundary method is used for numerical

simulations. The laminar separation Reynolds number (Res) that marks separation of

flow from surface and the critical Reynolds number (Recr) which represents transition

from steady to unsteady flow are determined using diverse methods. A stability anal-

ysis which uses Stuart-Landau equation is also performed for calculating Recr. The

shedding frequency (Stcr) that corresponds to Recr is calculated using Landau con-

stants. The simulated results for circular cylinder are found to be in good agreement

with the literature. The effects of AR and AOA on Res, Recr, and Stcr are studied.

It is observed that the Res, Recr, and Stcr exhibit a direct/inverse relationship with

AR depending upon the given AOA. Correlations of Res, Recr, and Stcr with respect

to AR and AOA are proposed with good accuracy. C© 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4866454]

I. INTRODUCTION

Fluid flow over a streamlined/bluff body usually exhibits a rich set of flow physics. Dimensional

analysis revealed that these flows are characterized by a single dimensionless parameter, Reynolds

number (Re). Re is the ratio of inertial forces to viscous forces and it is defined as Re = U∞dH/ν,

where U∞ and dH are the velocity and length scales. When fluid passes over an arbitrarily shaped

body, boundary layer is developed on the surface of the body. This boundary layer and its stability

cause significant changes to flow characteristics. For very low Re, the boundary layer remains

attached to the body. However, when Re is increased to a particular value, the boundary layer gets

detached from the surface, and forms a closed loop in the immediate downstream of the body.1

The Re at which the flow separates from the surface is termed as laminar separation Reynolds

number (Res). The concept of separation is an interesting fluid mechanics phenomena, and a range

of analytical, experimental, and numerical techniques can be found in the literature to estimate Res.

A recent article by Sen et al.30 compares the values of Res for circular cylinder predicted by different

authors through different techniques. They reported a large scatter in the literature values of Res.

As Re is increased beyond Res, the separated boundary layer starts shedding periodically from

top and bottom surfaces of the body. This periodic shedding of vortices gives rise to the appearance

of the so called “von-Karman vortex street” in the downstream of the body. Thus, a steady flow

is bifurcated into an unsteady flow. The Re at which this bifurcation occurs is termed as critical

Reynolds number (Recr) and the vortex shedding frequency caused by this transition is termed as

critical Strouhal number (Stcr). Zielinska et al.3 analyzed the mean velocity profiles of the unsteady

wake and showed that the mean oscillatory flow is the result of nonlinear coupling between the basic
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flow and the fundamental unstable mode. From the literature, it is observed that the value of Recr for

flow past circular and square cylinder is in the range of 47–50.1

Unsteady forces start to act on the body when the flow alters from steady to unsteady. As

a result, the transition causes vibrations on the body.4 Therefore, it is imperative to know the

onset of bifurcation (i.e., Recr) and the magnitude of shedding caused by the bifurcation (i.e., Stcr)

a priori for a given flow condition. The literature reveals that the prediction of Recr and Stcr have

been performed theoretically,5 experimentally,6–10 and numerically5, 11–13 for flow around circular

cylinders. Sohankar et al.14 determined the values of Recr and Stcr for flow past square cylinders

at different angles of attack (AOA). Their study reported a decrease in both Recr and Stcr for

increasing AOA. There are also some studies on the effect of blockage ratio on onset of vortex

shedding from circular cylinders.12, 15 However, literature on predicting the onset of vortex shedding

for elliptic cylinder is very limited. Jackson11 carried out stability analysis to predict the onset of

vortex shedding for confined flow past different body shapes like ellipse, triangle, and prisms. It was

observed that Recr is sensitive to blockage ratio.

From the discussed literature, it is observed that most of the studies concentrated on onset of

separation and vortex shedding in flow past circular, square, and confined elliptic cylinders. On

the other hand, many of the engineering applications such as flow past wings, missiles, and heat

exchanger tubes require the problem to be modeled as unconfined flow past elliptic cylinders. In

flow past elliptic cylinders, many parameters like Axis Ratio (AR) which is defined as the ratio of

major to minor axes, AOA, and Reynolds number (Re) greatly influence the flow behavior. Circular

cylinder is a form of elliptic cylinder when AR = 1.0. A recent article by Radi et al.16 showed

that changing the AR from 0 to 1 for an elliptic cylinder kept at AOA = 0◦ changes the charac-

teristics of St-Re curves. However, the study of onset of separation and vortex shedding for flow

past elliptic cylinders is largely unexplored. Sen et al.2 calculated Res values for elliptic cylinders

of various AR and AOA. Nevertheless, there is no detailed study on the combined effect of AR

and AOA on critical parameters such as Recr and Stcr as well as no agreement on Res values. This

article aims to provide these data. For this purpose, flow past two-dimensional elliptic cylinders

of AR = 0.1, 0.4, 0.6, 0.8, and 1.0 are simulated. Here, AR = 0.1 resembles a flat plate, whereas

AR = 1.0 represents a circular cylinder. The AOA is varied as 0◦, 30◦, 45◦, 60◦, and 90◦. Three

distinct techniques are used for predicting Res: (i) Flow Visualization Method (FVM), (ii) Wake

Length Method (WLM), and (iii) Flow Separation Criteria Method (FSCM). Similarly, another

three distinct techniques are adopted for calculating Recr and Stcr. They are: (i) FVM, (ii) Satura-

tion Amplitude Analysis (SAA), and (iii) Hopf Bifurcation Analysis (HBA). The details of these

methods will be discussed in Secs. V and VI. The Res, Recr, and Stcr are computed using these tech-

niques and the values are compared. Stuart-Landau equation is solved numerically to obtain Landau

constants.

II. GOVERNING EQUATIONS AND NUMERICAL METHODOLOGY

In this paper, Computational Fluid Dynamics (CFD) is used to predict Res, Recr, and Stcr. In

conventional CFD approach, a surface grid which confronts to the solid surface is generated first.

Based on boundary condition applied on the surface grid, a volume grid which covers the fluid

domain is generated next. The physical problem discussed in this article requires a new grid to be

generated for every case (because of AR and AOA) which is time consuming and computationally

demanding. In order to avoid this, Immersed Boundary Method (IBM) is used in this present study.

In IBM, volume grid (an Eulerian grid) is generated first and then the solid body is immersed in the

fluid domain through a set of Lagrangian marker points. Thus, the Eulerian grid is used for the fluid

domain and the Lagrangian marker points are used to represent the solid body. Interaction between

Eulerian domain and Lagrangian marker points is achieved through a Dirac delta function. The

solid body is modeled by a forcing term which is added to the governing equations of flow. Thus,

the governing equations of fluid flow around an arbitrarily shaped body in vector form for IBM

are

∇ · u = 0, (1)
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∂u

∂τ
+ (u · ∇) u = −∇p +

1

Re
∇2u + f , (2)

where u is the non-dimensional velocity vector (u = u/u∞, u – dimensional velocity vector in m s−1,

u∞ – free stream velocity in m s−1), p is the non-dimensional pressure (p = p/ρu2
∞, p – dimensional

pressure in N/m2, ρ – dimensional density in kg/m3), and τ is non-dimensional time (τ = ttu∞/dH,

tt = dimensional time in s and dH is hydraulic diameter which is defined as dH = 4A/P, A is the

area and P is the perimeter of the elliptic cylinder). The Reynolds number (Re) is defined as Re = ρ

u∞dH/μ, where μ – viscosity of fluid. Hydraulic diameter (dH) is taken as the characteristic length.

The additional term in Eq. (2) (f) is known as forcing function which is used to model the solid body

in fluid domain.

The governing equations are solved on a Cartesian grid using projection method based on IBM

which uses a finite difference discretization on a staggered grid. To impose boundary conditions on

solid body, singular forces are applied on each Lagrangian marker point in such a way that, forcing

will result in enforcement of required boundary condition. These singular forces are then distributed

to the nearby Eulerian points so that the presence of solid body will be felt in the fluid domain. Thus,

the singular forces applied on Lagrangian marker points determine the forcing term.

The algorithm and validation of the code are reported for circular and elliptic cylinders in

Sudhakar and Vengadesan17 and Raman et al.,18 respectively. The same algorithm is extended for

studying natural convection from an elliptic cylinder in an enclosure by Raman et al.19 and for forced

convective heat transfer from elliptic cylinders by Paul et al.20

III. COMPUTATIONAL DOMAIN AND GRID DETAILS

The computational domain along with the boundary conditions is depicted in Figure 1. An

uniform streamwise velocity profile and fully developed flow conditions are imposed at the inlet

and outlet of the computational domain, respectively. The top and bottom sides of the computational

domain are considered as free-slip walls. The two-dimensional elliptic cylinder is discretized with

315 Lagrangian marker points. The size of the computational domain is chosen as −8dH ≤ x

≤ 25dH, −8dH ≤ y ≤ 8dH. The Eulerian domain is discretized with a non-uniform grid with 381

and 299 grid points along x and y directions, respectively. An uniformly spaced grid is embedded

around the elliptic cylinder for the effective use of Dirac delta function. The size of the uniform grid

sized computational domain is (−1.0dH ≤ x ≤ 1.0dH, −1.0dH ≤ y ≤ 1.0dH) with the mesh size of

�x = �y = 0.01 (obtained using grid independence study).

FIG. 1. Computational domain with boundary conditions.
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TABLE I. Comparison of L/dH and θ s obtained using different mesh sizes

�x.

Re = 30 Re = 40

�x L/dH θ s L/dH θ s

0.04 2.995 129.003 4.661 127.108

0.025 2.984 129.098 4.652 127.120

0.01 2.982 129.120 4.647 127.128

0.005 2.980 129.126 4.645 127.126

TABLE II. Comparison of CLrms with the literature for flow around circular

cylinder.

Re Norberg26 Present study

50 0.034 0.035

100 0.233 0.234

150 0.361 0.369

200 0.457 0.461

Re

L
/d

H
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Dennis and Chang (1970)
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(a)
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s

0 5 10 15 20 25 30 35 40 45
110
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130

140
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160

170

Homann (1936)

Thom (1933)

Wu et al. (2004)

Present

(b)

FIG. 2. Comparison of L/dH and θ s with the literature values for flow around circular cylinder: (a) Wake length, (b) separation

angle.

IV. GRID INDEPENDENCE AND VALIDATION STUDIES

Meshes with different values of �x = 0.04, 0.025, 0.01, and 0.005 are generated for grid

independence study, and flow over a circular cylinder is simulated at Re = 30 and 40. The values of

wake length (L/dH) and separation angle (θ s) for each case is compared in Table I. From Table I, it

is observed that there is not much variation in the value L/dH and θ s after �x = 0.01.

Now, the solver is validated for steady flow around circular cylinder. Comparison of simulated

values of L/dH and θ s with the literature results are shown in Figures 2(a) and 2(b), respectively.

It is observed from the figures that the present simulation results are in good agreement with the

available literature values of L/dH
21, 22 and θ s.

23–25 Values of CLrms
are considered for the validation

of unsteady case, and the present study is found to be matching with the literature26 as shown in

Table II. Some more grid independence studies and unsteady case validations pertaining to fluid

flow around inclined elliptic cylinders (Cd av and St) using this algorithm can be found in Paul27

and Paul et al.28
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V. CALCULATION OF LAMINAR SEPARATION REYNOLDS NUMBER

A. Flow visualization method

Streamline patterns are utilized to predict Res in this method. Simulations are initially performed

from Re = 1 in steps of 1. For every Re, the streamline pattern is analyzed. For symmetric bodies,

separation is identified by a set of counter-rotating attached vortices behind the cylinder. This well-

established concept is applied for circular cylinder as shown in Figure 3(a) where closed loop

vortices are first observed at Re = 7. Therefore, the Res for circular cylinder is found out to be

6.5 ± 0.5.

This method is now extended to asymmetric elliptic cylinders as shown in Figure 3(b) for the

case: AR = 0.1 kept at 30◦. It can be seen from the figure that at Re = 21, the flow leaves the

surface smoothly while at Re = 22, a small single recirculation vortex is observed over the leeward

surface of the cylinder. As a consequence, Res for AR = 0.1 and AOA = 30◦ is determined as Res

= 21.5 ± 0.5. This single recirculation bubble which marks the separated flow in asymmetric body

is remarkably different from closed loop vortices for the symmetric body. Formation of this kind of

single recirculation bubble also supports the earlier observation by Park et al.29

B. Wake length method

It is known that once the flow separated from the surface, it forms a separated flow region with

recirculation behind the cylinder. This separated flow region is known as wake. A typical wake is

characterized by its length (L/dH) which is a measurable quantity. In this article, L/dH is computed as

the horizontal length between the rear stagnation point and zero velocity point in the centerline mean

u-velocity profile. A typical wake length measurement using centerline mean u-velocity profile is

shown in Figure 4 for flow around circular cylinder. In the figure, the zero velocity points on the

mean velocity profile is identified by drawing a constant line of zero velocity value.

Since wake length maintains a linear relationship with Re, it is possible to predict the Res by

measuring the wake length. The simulations are carried out for a wide range of Re in steps of 1. For

every case, the wake length is measured. A least square curve fit is performed on L/dH-Re curve to

(a)

(b)

FIG. 3. Streamline contours of: (a) Circular cylinder (AR = 1.0), Re = 6 (left), Re = 7 (right), (b) AR = 0.1, AOA = 30◦,

Re = 21 (left), Re = 22 (right).
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x/d
H

u

0.5 0.55 0.6 0.65 0.7 0.75 0.8

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Re = 4
Re = 5
Re = 6
Re = 7
Re = 8
Re = 9
Re = 10

(a) (b) (c) (d)

FIG. 4. Measurement of wake lengths from u-velocity profiles for flow around circular cylinder. The numerical values of

L/dH in the figure for (a) 0.0507, (b) 0.1282, (c) 0.1953, (d) 0.2676.

find the Re at which L/dH becomes zero. This Re is referred as Res. This is shown in Figure 5(a) for

circular cylinder and Figure 5(b) for elliptic cylinder (AR = 0.4 and AOA = 90◦). The predicted

value of Res for circular cylinder by this technique is 6.27, and it is in good agreement with

Sen et al.30 which reported as 6.29. However, the present technique adopted in this study is not

robust enough to predict value of Res for asymmetric cylinders.

C. Flow separation criteria method

FSCM makes use of an analytical condition derived by Srinivasan31 in order to calculate Res.

It was proposed that at Res, the value of ∂2u
∂x2 becomes zero at the rear stagnation point. Using this

concept, the value of ∂2u
∂x2 for each Re is calculated at the rear stagnation point for circular and

symmetric elliptic cylinders. The calculated values of ∂2u
∂x2 are then plotted against Re. The Re at

which ∂2u
∂x2 becomes zero is marked as Res. For this purpose, the least square curve fit is performed

on Re- ∂2u
∂x2 curve as shown in Figure 6(a) for circular, and in Figure 6(b) for elliptic cylinders to mark

FIG. 5. Wake length method: (a) circular cylinder (AR = 1.0), (b) AR = 0.4 with AOA = 90◦.
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FIG. 6. Flow separation criteria analysis: (a) circular cylinder (AR = 1.0), (b) AR = 0.4 with AOA = 90◦.

TABLE III. Comparison of calculated Res obtained by FSCM with the

literature for AR = 0.8.

AOA (deg) Sen et al.2 Present study

0 9.90 7.081

30 10.95 9.843

45 9.46 7.614

60 7.93 5.204

90 4.99 4.977

Res. This technique predicts Res for circular cylinder as 6.738 which is reasonably matching with

the literature value of 6.29 reported by Sen et al.30

It is interesting to note from the literature that FSCM has been applied only to symmetric elliptic

cylinders, and the authors of this present study have now extended this technique to asymmetric

cylinders as well. For asymmetric cylinders, the value of ∂2u
∂x2 is calculated at a surface point which

coincides with the geometric centerline of the computational domain. The values of Res obtained

through this method are compared with that of Sen et al.2 in Table III. It is observed from Table III

that a considerable amount of discrepancy is observed for results of elliptic cylinder even though a

good agreement was obtained for circular cylinder. However, the reliability of the results obtained

by FSCM are defended by the results obtained from FVM and WLM as shown in Table VIII.

VI. ESTIMATION OF CRITICAL REYNOLDS NUMBER

A. Flow visualization method

Vorticity contours and streamlines patterns are examined in this method to identify the Recr.

In the first step of this method, for each combination of AR and AOA, simulations are carried

out for a sequence of random Reynolds numbers as the Re at which the bifurcation occurs is not

known a priori. At the end of the first set of simulations, shedding range of Re is obtained for a

given case. This process is explained for circular cylinder as follows. Assuming that there is no

information available regarding when the shedding will occur for flow around circular cylinder, the

simulations are initially performed for Re = 30, 35, 40, 45, 50, 60, 65, 70, and 75. Simulation time

is checked whether it is long enough so that all the initial transients would be died and the shedding
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(a)

(b)

(c)

(d)

FIG. 7. Instantaneous vorticity contours and streamlines pattern of: (a) Circular cylinder (AR = 1.0), Re = 48, (b) AR =

1.0, Re = 49, (c) AR = 0.4, AOA = 60◦, Re = 31, (d) AR = 0.4, AOA = 60◦, Re = 32. [The contour levels for vorticity are

−0.5 (0.1) 0.5.]

pattern is fully periodic. Accordingly, simulations are carried out up to non-dimensional time units

of τ = 900.

The vorticity contours and the streamlines patterns are then examined whether shedding is

there or not. It is observed for the circular cylinder case that shedding occurs at Re = 50 but there

is no shedding observed at Re = 45. Therefore, the shedding range of Re for circular cylinder is

defined as 45–50. Within this shedding Re range, the Re is varied in steps of 1. Vorticity contours

are analyzed for the appearance of symmetric bubble behind the cylinder. If there is a symmetric

bubble, then the flow is said to be in stable condition. If not, the flow is said to be time dependent. To

support the results obtained by vorticity contours, streamlines patterns are analyzed for appearance

of alleyways which are instantaneous pathways that appear in the streamlines pattern along which

the fluid is drawn from top/bottom side of the cylinder into the circulation region.32 It is well known

that alleyways are formed in streamlines pattern when there is a vortex shedding. This fundamental

concept is utilized for streamlines pattern analysis. Typical results are shown in Figure 7 .

The symmetric bubble behind the circular cylinder is observed at Re = 48 (Figure 7(a)). The

streamlines pattern also supports the vorticity contour result as there is no alleyway visible for

Re = 48 (Figure 7(a)). This confirms that there is no shedding and the flow is stable at Re = 48.

When Re is increased to 49, the symmetric bubble disappears in the vorticity contour, and alleyways

are visible in the streamlines pattern as depicted in Figure 7(b). This reveals that the flow is unstable

and time dependent at Re = 49. Since Re has been varied in steps of 1, the Recr for circular cylinder

is 48.5 ± 0.5. Our result for circular cylinder is in good agreement with the literature.5

This technique is now applied for flow past elliptic cylinders as shown in Figures 7(c) and 7(d).

The Recr for the combinations AR = 0.4 with AOA = 60◦ is found out to be 31.5 ± 0.5.

B. Saturation amplitude analysis

In this method, instantaneous lift curves are considered to determine the onset of vortex shedding.

When the flow is stable, the amplitude of CL with respect to time decreases as shown in Figure 8(a).

When the flow is fully periodic, the amplitude grows in time and reaches to a saturated value as

depicted in Figure 8(b). This value is referred as saturation amplitude (�sat). A plot between Re

and �2
sat reveals that saturation amplitude grows as Re increases. Therefore, it can be understood

that the Re at which �2
sat vanishes corresponds to Recr. For this purpose, simulations are performed

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

81.242.54.148 On: Wed, 02 Apr 2014 15:18:02



023601-9 Paul, Prakash, and Vengadesan Phys. Fluids 26, 023601 (2014)

C
L

200 250 300 350 400
-5.04

-5.03

-5.02

-5.01

-5

-4.99

-4.98

-4.97

(a)

C
L

0 100 200 300 400 500
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

sat

(b)

FIG. 8. (a) Signal with decaying amplitude, (b) signal with saturated amplitude (�sat).

FIG. 9. Saturation amplitude analysis: (a) AR = 1.0, (b) AR = 0.6 with AOA = 0◦.

for above the threshold of Recr. Considering circular cylinder case, the simulations are carried out

for Re = 49, 50, 51, 52, and 53. The corresponding �2
sat for each case is computed and plotted

as a function of Re as shown in Figure 9(a). A least square curve fit as shown as dotted line in

Figure 9(a) is performed on the data points. The least square fit curve crosses �2
sat = 0 at 48.34.

Therefore, the Recr for circular cylinder is found to be 48.34 which is in good agreement with the

literature.5 SAA is applied to all the cases considered in this study to predict Recr. Figure 9(b) shows

one such example of how SAA is applied to calculate Recr for an elliptic cylinder of AR = 0.6 kept

at AOA = 0◦. The Recr for this case is calculated as 87.57.

C. Hopf bifurcation analysis

Mathis et al.33 and Sreenivasan et al.6 proved experimentally that the bifurcation which occurs

during transition from steady to unsteady flow is of super-critical Hopf bifurcation. The post-critical

state of any unstable system which undergoes Hopf bifurcation is effectively modeled by Landau
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TABLE IV. Values of Landau constants obtained for transverse velocities taken at different locations at Re = 49.

Point γ α ω β c∞ �ω

1 0.007884 0.546 0.8130 −1.3001 −2.381 0.01877

2 0.007841 0.181 0.8111 −0.4246 −2.346 0.01839

3 0.007880 0.171 0.8104 −0.3951 −2.311 0.01821

4 0.007812 0.134 0.7984 −0.3221 −2.404 0.01878

5 0.007897 0.112 0.8014 −0.2675 −2.389 0.01886

6 0.007809 0.384 0.8173 −0.3143 −2.381 0.01859

7 0.007912 0.147 0.8114 −0.3491 −2.377 0.01882

8 0.007831 0.138 0.8087 −0.3196 −2.316 0.01813

9 0.007834 0.176 0.8199 −0.4171 −2.370 0.01856

equation.34 According to Landau, the evolution equation of any perturbed signal is given as

d(ln(�))

dt
= γ − α�2, (3)

dθ

dt
= ω − β�2, (4)

where γ represents the amplification rate, and ω represents the angular frequency of perturbations

having varying amplitudes. These constants are global, in the sense that they are almost constant for

the entire computational domain (proved in Table IV). Whereas, the constants α and β are not global.

These real constants (γ , ω, α, and β) are known as Landau constants. Computing these constants

will give deeper insight to complex flow systems which undergo the super-critical Hopf bifurcation.

Equations (3) and (4) are referred as fundamental equations of Landau model. They represent the

amplitude and phase evolution of the perturbed signal.

For a system to be stable, d�
dt

(Eq. (3)) should be negative, that is, the amplitude should decay.

Therefore, stable condition of a system is defined by γ < 0 and α > 0. When the system becomes

unstable, γ changes sign from negative to positive. The Re at which this sign change occurs is

referred as critical Reynolds number.

The objective here is to solve Eqs. (3) and (4) numerically. For this purpose, simulation is

performed for Re = 49 (above the Recr). The transverse velocity signals at different locations

along the flow axis in the downstream are monitored. Variations of instantaneous amplitude and

frequency with respect to time should be extracted first from these signals. A Complex Demodulation

Technique35 (CDT) is used to extract the envelope and frequency domain of a given signal. In CDT,

a complex signal is generated first. This complex signal contains the original signal information as

its real part and the Hilbert transform of original signal as its imaginary part. The absolute value

of the generated complex signal gives the instantaneous amplitude (envelope of the signal). Taking

argument for the generated complex signal results in instantaneous phase. Differentiation of phase

with respect to time gives the instantaneous frequency variation with time. Figure 10(a) shows the

signal and its envelope. The oscillations observed in the curve is due to the boundary conditions

related to CDT. However, these oscillations are small and become negligible as only the derivative

of the envelope is considered for the further analysis. The extracted frequency domain using the

complex demodulation technique for this signal is depicted in Figure 10(b).

Once the instantaneous values of amplitude and frequency is known, the plots of d(ln(�))/dt

vs �2 and St vs �2 can easily be obtained by performing least square fit on the data points. These are

shown in Figure 11 . The results of least square fit (slope and intersects) give the values of constants

γ , α, ω, and β. In Figures 11(a) and 11(b), different lines resemble different sampling locations. The

calculated values of these constants at different downstream locations are tabulated in Table IV. The

last two columns of Table IV represent the constant of saturation (c∞) and the angular frequency

at saturation (�ω). c∞ is defined as the ratio of β/α and �ω is given as �ω = −c∞γ . From the

table, it can be seen that the amplification rate (γ ), the angular frequency (ω), and the variation of
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FIG. 10. Complex demodulation technique applied to a signal: (a) Instantaneous amplitude, (b) instantaneous frequency.

FIG. 11. (a) Plot between d(ln(�))/dt and �2, (b) plot between St and �2.

TABLE V. Comparison of calculated Landau constants with the literature.

Reference γ ω c∞ �ω

Dušek et al.5 0.007931 0.7411 −2.709 0.02144

Kumar and Biswas12 0.011434 0.8341 −1.817 0.01967

Present 0.007414 0.8130 −2.381 0.01874

angular frequency at saturation (�ω) are identical at all the points considered for this study. This

shows that the constants γ and ω are global in nature. On the other hand, Table IV also reveals that

α and β are not identical in all the points and hence they are not constants. The necessary condition

for an amplitude to grow is that the value of α should be high so that amplification at saturation is

small. This is observed in Table IV. From this, it can be understood that Landau constants predict

the super-critical Hopf bifurcation. The Landau constants calculated in this study are compared with

the previous works (Table V) and found to be in good agreement with the literature values.
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TABLE VI. Variation of γ and ω with respect to Re for flow past circular

cylinder.

Re γ ω

48 −0.004 0.8120

49 0.0074 0.8128

50 0.0148 0.8132

51 0.0242 0.8136

52 0.0336 0.8139

53 0.0430 0.8141

TABLE VII. Variation of γ and ω with respect to Re for flow the case of

AR = 0.4 and AOA = 60◦.

Re γ ω

30 −0.0152 0.6883

31 −0.0039 0.6889

32 0.0097 0.6903

33 0.0218 0.6908

34 0.0347 0.6912

35 0.0475 0.6917

The same method is extended to calculate Recr and Stcr. Here, the simulations are carried out

for a range of Re given as Recr ± �Re, where �Re �= 0. For circular cylinder, the simulations are

performed for Re = 48, 49, 50, 51, 52, and 53. The transverse velocity signal at the particular point

in the computational domain or the lift signal is taken for calculating the Landau constants. Table VI

gives the values of γ and ω obtained for different Re. It is known that the Hopf bifurcation occurs

when the sign of γ changes from negative to positive. Therefore, the Re at which γ becomes zero

gives the value of Recr. A least square curve fit on the data gives Recr as 48.325 which is in good

agreement with the literature.5 The Stcr is found out to be 0.1221 from Figure 11(b). Calculation

of Landau constants and thus estimating Recr and Stcr from them is performed for all the cases

considered in this study and one such example for the case of elliptic cylinder of AR = 0.4 kept at

AOA = 60◦ is reported in Table VII .

VII. A COMPARATIVE ANALYSIS

The above explained and validated techniques are now applied to all the combinations of AR

and AOA considered in this study. The comparison of results is given in Table VIII. From the table,

it can be understood that all these three methods predict the same Res and Recr with only a marginal

difference.

VIII. EFFECT OF AXIS RATIO AND ANGLE OF ATTACK

The computed values of Res, Recr, and Stcr are given in Table VIII. This table is used to discuss

the effect of thickness and incidence on onset of laminar separation and vortex shedding Reynolds

numbers.

It is observed that Res maintains an inverse relationship with AR when AOA ≤ 45◦. This

observation proves that as the body becomes slender to bluff, the tendency of fluid to separate

increases. However, this trend is limited to smaller incidence. A direct relationship between Res

and AR is discovered for AOA ≥ 60◦. This trend is attributed to the physical fact that when the

incidence is high, the stagnation point moves away from the edges, and thus the fluid has to pass

through a sudden upheaval upon contacting the body surface. This sudden upheaval causes the loss of

momentum in fluid which leads to separation. However, when the thickness increases, the length of
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TABLE VIII. Comparison of Res and Recr obtained by different methods and computed Stcr values. (FVM – Flow Visual-

ization Method, WLM – Wake Length Method, FSCM – Flow Separation Criteria Method, SAA – Saturation Amplitude

Analysis, HBA – Hopf Bifurcation Analysis, NA – Not Applicable.)

Res Recr Stcr

Flow no. AR AOA (deg) FVM WLM FSCM FVM SAA HBA HBA

1 0.1 0 437.5±0.5 437.18 437.311 512.5±0.5 512.21 512.284 0.4132

2 0.1 30 21.5±0.5 NA 21.132 68.5±0.5 68.44 68.411 0.1709

3 0.1 45 9.5±0.5 NA 9.121 35.5±0.5 35.21 35.184 0.1037

4 0.1 60 2.5±0.5 NA 2.018 27.5±0.5 27.15 27.247 0.1023

5 0.1 90 0.5±0.5 0.90 0.814 23.5±0.5 23.48 23.468 0.0971

6 0.4 0 12.5±0.5 12.68 12.628 231.5±0.5 231.38 231.415 0.2181

7 0.4 30 14.5±0.5 NA 14.005 63.5±0.5 63.42 63.455 0.1587

8 0.4 45 8.5±0.5 NA 8.781 36.5±0.5 36.08 36.112 0.1107

9 0.4 60 3.5±0.5 NA 3.213 31.5±0.5 31.29 31.287 0.1098

10 0.4 90 2.5±0.5 2.31 2.332 28.5±0.5 28.50 28.540 0.1077

11 0.6 0 8.5±0.5 8.28 8.125 87.5±0.5 87.57 87.567 0.1824

12 0.6 30 11.5±0.5 NA 11.811 56.5±0.5 56.44 56.444 0.1465

13 0.6 45 8.5±0.5 NA 8.081 37.5±0.5 37.04 37.118 0.1180

14 0.6 60 4.5±0.5 NA 4.189 34.5±0.5 34.37 34.398 0.1120

15 0.6 90 3.5±0.5 3.11 3.347 31.5±0.5 31.34 31.008 0.1104

16 0.8 0 7.5±0.5 7.12 7.081 64.5±0.5 64.21 64.208 0.1579

17 0.8 30 9.5±0.5 NA 9.843 53.5±0.5 53.98 53.957 0.1342

18 0.8 45 7.5±0.5 NA 7.614 38.5±0.5 38.84 38.711 0.1186

19 0.8 60 5.5±0.5 NA 5.204 37.5±0.5 37.36 37.384 0.1159

20 0.8 90 5.5±0.5 5.08 4.977 36.5±0.5 36.26 36.215 0.1121

21 1.0 ... 6.5±0.5 6.27 6.738 48.5±0.5 48.34 48.325 0.1221

surface along which the fluid travels increases, and it gives ample opportunity for the fluid to regain

its momentum. This is why Res exhibits a direct relationship with AR for higher AOA. Therefore, it

is clear that the variation of Res with respect to AR depends on AOA. It is also found out that there

exists a critical AOA, essentially in between 45◦ and 60◦ for which the relationship between Res

and AR changes from inverse to direct. Increase in Res with respect to AR at AOA = 90◦ is in good

agreement with the earlier observations of Park et al.29

The effect of AOA on Res can be seen in Table VIII. Res exhibits both monotonic and non-

monotonic behavior with AOA for a given AR. For any AR except AR = 0.1, upon increase in

AOA, Res increases till 30◦, and then it decreases. This kind of non-monotonic behavior is also

reported by Sen et al.2 However, monotonic decrease in Res is observed for increasing AOA at AR

= 0.1. This kind of monotonic behavior of Res is not reported in the literature. As a result, this

study concludes that change in Res with respect to AOA depends on AR which is contradictory from

previous observations.

In the case of Recr and Stcr, they keep an inverse relationship with AR for AOA ≤ 30◦. However,

Recr and Stcr maintain a direct relationship with AR for AOA ≥ 45◦. Consequently, variation of Recr

and Stcr with respect to AR depends on AOA.

The effect of increasing the AOA results decrease in Recr and Stcr for any given AR. Therefore,

the variation of Recr and Stcr with respect to AOA is completely independent of AR. The variation

also shows that as AOA is increased, the Hopf bifurcation occurs at small Re, however with a less

perturbation frequency.

IX. FUNCTIONAL RELATIONSHIP

Finally, functional relationships are obtained for Res, Recr, and Stcr as a function of AR and

AOA. In order to keep the equations in fully non-dimensional form, a variable λ = AOA/90◦ is

defined as a non-dimensional quantity for AOA. These correlations are valid for 0 ≤ AR ≤ 1 and 0◦
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TABLE IX. Comparison of obtained Stcr values between simulation and correlation equation.

AR AOA (deg) Values obtained through HBA Values obtained by Eq. (7) % error

0.1 30 0.171 0.157 − 14.8

0.4 45 0.110 0.122 10.9

0.6 60 0.112 0.118 5.4

0.8 90 0.112 0.128 14.2

1.0 ... 0.122 0.124 1.63

≤ AOA ≤ 90◦. The functional form for Res, Recr, and Stcr are given as

Res = 6.574AR(−2.032λ2+4.811λ−1.881), (5)

Recr = 43.513AR(−1.920λ2+3.197λ−1.023), (6)

Stcr = 0.124AR(−0.899λ2+1.476λ+0.493). (7)

The values of Res, Recr, and Stcr obtained through correlation equations are compared with the

numerical results and one such example is shown in Table IX for Stcr. The average percentage error

between the correlation and simulation values is ±15%.

X. CONCLUSIONS

This paper is aimed to study the onset of flow separation and vortex shedding in flow past

unconfined two-dimensional elliptic cylinders of various AR and AOA. Diverse methods including

a stability analysis to study the Hopf bifurcation are used to estimate Res, Recr, and Stcr. The Landau

equations are again proved to be necessary to analyze super-critical Hopf bifurcations. Typical Hopf

constants for circular cylinder are estimated and compared with the available literature. The values

of Recr and Stcr are found to be decreasing when AOA is increased. On the other hand, when AR

increases the nature of variation for Res, Recr and Stcr are found to be dependent on AOA. Functional

relationships are proposed for Recr and Stcr with respect to AR and AOA. This is the first ever

reported study that deals with prediction of Recr and Stcr for flow past unconfined elliptic cylinders

of various AR and AOA.
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