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ON THE STRICT MONOTONICITY

OF THE FIRST EIGENVALUE

OF THE p-LAPLACIAN ON ANNULI

T. V. ANOOP, VLADIMIR BOBKOV, AND SARATH SASI

Abstract. Let B1 be a ball in RN centred at the origin and letB0 be a smaller
ball compactly contained in B1. For p ∈ (1,∞), using the shape derivative

method, we show that the first eigenvalue of the p-Laplacian in annulus B1\B0

strictly decreases as the inner ball moves towards the boundary of the outer
ball. The analogous results for the limit cases as p → 1 and p → ∞ are also
discussed. Using our main result, further we prove the nonradiality of the
eigenfunctions associated with the points on the first nontrivial curve of the
Fučik spectrum of the p-Laplacian on bounded radial domains.

1. Introduction

Let Ω ⊂ RN be a bounded domain with N ≥ 2. We consider the following
nonlinear eigenvalue problem:

(1.1)
−Δpu = λ|u|p−2u in Ω,

u = 0 on ∂Ω,

}

where λ ∈ R and Δp is the p-Laplace operator given by Δpu := div(|∇u|p−2∇u),

p > 1. A real number λ is called an eigenvalue of (1.1) if there exists u in W
1,p
0 (Ω)\

{0} satisfying
∫

Ω

|∇u|p−2 〈∇u,∇v〉 dx = λ

∫

Ω

|u|p−2 u v dx ∀ v ∈ W
1,p
0 (Ω),

and u is said to be an eigenfunction associated with λ.
It is well known that (1.1) admits a least positive eigenvalue λ1(Ω) which has

the following variational characterization:

λ1(Ω) = inf

{∫

Ω

|∇u|p dx : u ∈ W
1,p
0 (Ω) \ {0} with ‖u‖p = 1

}
.

In this article we consider Ω of the form BR1
(x) \ BR0

(y) with BR0
(y) ⊂ BR1

(x),
where Br(z) denotes the open ball of radius r > 0 centred at z ∈ RN . Since the
p-Laplacian is invariant under orthogonal transformations, it can be easily seen that

λ1(BR1
(x) \BR0

(y)) = λ1(BR1
(0) \BR0

(se1))
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for any x, y ∈ RN such that |x− y| = s, where e1 is the first coordinate vector. Let

the annular region BR1
(0) \BR0

(se1) be denoted by Ωs and let

λ1(s) := λ1(Ωs).

We are interested in the behaviour of λ1(s) with respect to s (in other words, with
respect to the distance between centres of the inner and outer balls). The main
objective of this article is to show that λ1(s) is strictly decreasing on [0, R1 − R0)
for any p > 1.

Apparently, the first result in this direction was obtained by Hersch in [16],
where he proved (in the case N = 2, p = 2 and even for more general annular
domains) that λ1(s) attains its maximum at s = 0. In [23], Ramm and Shivakumar
conjectured1 that λ1(s) is strictly decreasing and they gave numerical results to
support this claim. Later this conjecture and its higher dimensional analogue were
proved independently by Harrell et al. [14] and Kesavan [19]. Their proofs mainly
rely on the following expression for λ′

1(s) obtained using the Hadamard perturbation
formula (see [12, 24]):

(1.2) λ′
1(s) = −

∫

x∈∂BR0
(se1)

∣∣∣∣
∂us

∂n
(x)

∣∣∣∣
2

n1(x) dS(x),

where us is the positive eigenfunction associated with λ1(s) with the normalization
‖us‖2 = 1, and n1 is the first component of n = (n1, . . . , nN ), the outward unit
normal to Ωs. In [14, 19], the authors used the above formula in conjunction with
reflection techniques and the strong comparison principle to show that λ′

1(s) is
negative on (0, R1 − R0). For further reading and related open problems on this
topic, we refer the reader to the books [2, 15].

For general p > 1, it is natural to anticipate that λ1(s) is strictly decreasing on
[0, R1 −R0). Indeed, we have the following generalization of formula (1.2):

(1.3) λ′
1(s) = −(p− 1)

∫

x∈∂BR0
(se1)

∣∣∣∣
∂us

∂n
(x)

∣∣∣∣
p

n1(x) dS(x).

The above expression was derived in [8] using the Hadamard perturbation formula
(shape derivative formula) for λ′

1(s) obtained in [13]. However for p 
= 2, one lacks
a strong comparison principle that guarantees the strict monotonicity of λ1(s).
More precisely, the strong comparison principle that is applicable for the nonlinear
nonhomogeneous problems of the following type:

(1.4) −Δpu = λ|u|p−2u in Ω, u = g on ∂Ω.

Thus one cannot directly extend the ideas of [14, 19, 23] to the nonlinear case and
establish the strict monotonicity of λ1(s) for general p > 1. Nevertheless, in [8],
Chorwadwala and Mahadevan could show that λ′

1(s) ≤ 0 for all s ∈ [0, R1 − R0)
using a weak comparison principle proved in [9] for problems of the form (1.4).
However, the authors of [8] could not rule out even the possibility of λ1(s) being a
constant, due to the absence of the strong comparison principle. In this article, we
bypass the usage of the strong comparison principle and prove the following result.

1Later a proof for this conjecture using an argument attributed to M. Ashbaugh was published
in arXiv:math-ph/9911040 by the same authors.
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Theorem 1.1. Let p ∈ (1,∞) and let λ1(s) be the first eigenvalue of −Δp on Ωs.

Then

λ′
1(0) = 0 and λ′

1(s) < 0 ∀ s ∈ (0, R1 −R0).

In particular, λ(s) is strictly decreasing on [0, R1 −R0).

For our proof, we derive another formula for λ′
1(s) (in terms of the normal

derivative of us on the outer boundary) in the following form:

(1.5) λ′
1(s) = (p− 1)

∫

x∈∂BR1
(0)

∣∣∣∣
∂us

∂n
(x)

∣∣∣∣
p

n1(x) dS(x).

We obtained the above expression by considering the perturbations of Ωs generated
by shifts of the outer ball. On the other hand, formula (1.3) was obtained in [8] by
considering the perturbations generated by shifts of the inner ball. If we assume
λ′
1(s) = 0 for some s ∈ (0, R1 −R0), then formulas (1.3) and (1.5) help us to show

that the first eigenfunction us associated with λ1(s) is radial (up to a translation)
in some annular neighbourhoods of the inner and outer boundaries of Ωs. This
eventually leads to a contradiction.

Next we study the monotonicity property of the corresponding limit problems.
To avoid the ambiguity, for each p > 1, here we denote the first eigenvalue λ1(s)

by λ1(p, s). It is known that lim
p→∞

λ
1/p
1 (p, s) and lim

p→1
λ1(p, s) exist; see [17, 18]. We

denote the limit functions as below:

Λ∞(s) := lim
p→∞

λ
1/p
1 (p, s) and Λ1(s) := lim

p→1
λ1(p, s).

Now we state results analogous to Theorem 1.1.

Theorem 1.2. Let Λ∞(s) and Λ1(s) be defined as before. Then Λ∞(s) and Λ1(s)
are continuous on [0, R1 −R0) and

(i) Λ∞(s) is strictly decreasing on [0, R1 −R0);
(ii) Λ1(s) is decreasing on [0, R1−R0). Moreover, there exists s∗ ∈ [0, R1−R0)

such that Λ1(0) = Λ1(s
∗) > Λ1(s) for all s ∈ (s∗, R1 −R0).

We use a geometric characterization of Λ∞(s) given in [17] for proving part (i),
and for the existence of s∗ in part (ii) we use a variational characterization of Λ1(s)
given in [18].

Finally, we study the following Fučik eigenvalue problem:

(1.6)
−Δpu = α(u+)p−1 − β(u−)p−1 in Ω,

u = 0 on ∂Ω,

}

where α, β are real numbers (spectral parameters) and u± := max{±u, 0}. If prob-
lem (1.6) possesses a nontrivial solution for some (α, β), then we say that (α, β)
belongs to the Fučik spectrum of (1.6).

In [10], the authors considered a set of critical values c(t) given by

(1.7) c(t) := inf
γ∈Γ

max
u∈γ[−1,1]

⎛
⎝
∫

Ω

|∇u|p dx− t

∫

Ω

(u+)p dx

⎞
⎠ ,
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where

Γ := {γ ∈ C([−1, 1],S) : γ(−1) = −ϕ1, γ(1) = ϕ1},(1.8)

S := {u ∈ W
1,p
0 (Ω) : ‖u‖p = 1},

and ϕ1 is the first eigenfunction of (1.1) with the normalization ‖ϕ1‖p = 1. Note
that c(0) = λ2(Ω), the second eigenvalue of (1.1). Using c(t), the authors gave a
description of the first nontrivial curve C of the Fučik spectrum of (1.6) as the
union of the points (t + c(t), c(t)), t ≥ 0, and their reflections with respect to the
diagonal (t, t). Further, they showed that C is continuous and each eigenfunction
associated with a point on C has exactly two nodal domains (see Theorem 2.1
of [11]).

In [5], Bartsch et al. conjectured that in the linear case (p = 2) any eigenfunction
corresponding to a point on C is nonradial in a bounded radial domain (i.e., Ω is
a ball or annulus). In the same article, they showed that the conjecture holds in a
neighbourhood of (λ2(Ω), λ2(Ω)) (see Remark 5.2 of [5]). A complete proof of this
conjecture was given by Bartsch and Degiovanni in [4] by estimating generalized
Morse indices of corresponding eigenfunctions. In [6], Benedikt et al. gave a different
proof for this conjecture for a ball in RN with N = 2 and N = 3. In this article, we
provide another proof for this conjecture for any bounded radial domain and even
extend this result for general p ∈ (1,∞).

Theorem 1.3. Let p ∈ (1,∞) and Ω be a bounded radial domain in RN , N ≥ 2.
Then any eigenfunction associated with a point on the first nontrivial curve C of

the Fučik spectrum of the problem (1.6) is nonradial.

We obtain the above result as a simple consequence of Theorem 1.1. Moreover,
Theorem 1.3 gives a generalization and a simpler proof for Theorem 1.1 of [1] which
states the nonradiality of second eigenfunctions of the p-Laplacian on a ball.

2. Preliminaries

In this section, we first introduce the reflections with respect to the hyperplanes
and the affine hyperplanes. Then we briefly describe the shape derivative formula
of [13] and derive the formulas (1.3) and (1.5) for λ′

1(s). Finally we state some
results which will be required in the latter parts of this article.

For a nonzero vector a ∈ RN , let Ha be the hyperplane perpendicular to a, i.e.,

Ha = {x ∈ RN : 〈a, x〉 = 0}.

Further, we define the half-spaces

H+
a := {x ∈ RN : 〈a, x〉 > 0}, H−

a := {x ∈ RN : 〈a, x〉 < 0}.

Let σa be the reflection with respect to the hyperplane Ha, i.e.,

σa(x) = x− 2
〈a, x〉

|a|2
a = x

[
I − 2

aTa

|a|2

]
∀x ∈ RN ,(2.1)

where the last expression is the matrix product of the vector x and the matrix

σa = I−2aT a
|a|2 . Let σ̃a be the reflection about the affine hyperplane se1+Ha. Then

σ̃a is given as below:

σ̃a(x) = x− 2
〈a, x− se1〉

|a|2
a = σa(x) + 2

〈a, se1〉

|a|2
a.
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Now we recall the set Ωs = BR1
(0)\BR0

(se1) and for each nonzero vector a in RN ,
consider the following subsets of Ωs:

O+
a := Ωs ∩H+

a ; Õ+
a := Ωs ∩

(
H+

a + se1
)
;

O−
a := Ωs ∩H−

a ; Õ−
a := Ωs ∩

(
H−

a + se1
)
.

The relation between some of the subsets of Ωs under the reflections are listed
below:
(2.2)

σa(O
+
a ) = O−

a , σ̃a(Õ
+
a ) = Õ−

a ∀ a ∈ RN \ {0} with 〈a, e1〉 = 0;

σa(O
+
a ) ⊂ O−

a , σ̃a(Õ
+
a ) ⊂ Õ−

a ∀ a ∈ RN with 〈a, e1〉 > 0;

σa(∂BR0
(se1) ∩ ∂O+

a ) ⊂ O−
a , σ̃a(∂BR1

(0) ∩ ∂Õ+
a ) ⊂ Õ−

a ∀ a ∈ RN

with 〈a, e1〉 > 0;

σa(∂BR1
(0) ∩ ∂O+

a ) = ∂BR1
(0) ∩ ∂O−

a ∀ a ∈ RN \ {0};

σ̃a(∂BR0
(se1) ∩ ∂Õ+

a ) = ∂BR0
(se1) ∩ ∂Õ−

a ∀ a ∈ RN \ {0}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Now for a function u defined on Ωs and for a vector a ∈ RN \{0} with 〈a, e1〉 ≥ 0

we define two new functions ua : O+
a → R and ũa : Õ+

a → R as below:

ua(x) := u(σa(x)); ũa(x) := u(σ̃a(x)).

By recalling the notation σa = I − 2aT a
|a|2 from (2.1), for u ∈ C1(Ωs) we see that

(2.3) ∇ua(x) = ∇u(σa(x))σa ∀x ∈ O+
a ; ∇ũa(x) = ∇u(σ̃a(x))σa ∀x ∈ Õ+

a .

Further, the normal vector satisfies the following relations:

(2.4)
n(σa(x)) = n(x)σa ∀x ∈ ∂BR1

(0) ∩O+
a ;

n(σ̃a(x)) = n(x)σa ∀x ∈ ∂BR0
(se1) ∩ O+

a .

Shape derivative formulas. For a smooth bounded vector field V on RN consider

the perturbation of Ωs given as Ω̃t = (I + tV )Ωs. It is known by Theorem 3 of [13]

that λ1(t, V ) := λ1(Ω̃t) is differentiable at t = 0 and the derivative is given by
(2.5)

λ′
1(0, V ) := lim

t→0

λ1(t, V )− λ1(0, V )

t
= −(p− 1)

∫

∂Ωs

∣∣∣∣
∂us

∂n
(x)

∣∣∣∣
p

〈V (x), n(x)〉 dS,

where n is the outward unit normal to ∂Ωs and us is the first eigenfunction corre-
sponding to λ1(s) normalized as

(2.6) us > 0 and ‖us‖p = 1.

In [8], the authors considered the vector field V as given below:
(2.7)
V (x) = ρ(x)e1, ρ ∈ C∞

c (BR1
(0)) and ρ(x) ≡ 1 in a neighbourhood of BR0

(se1).

For this choice of V and for t sufficiently small, the perturbations Ω̃t of Ωs are
generated by the shifts of the inner ball. More precisely,

Ω̃t = Ωs+t.
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Therefore, one gets λ1(t, V ) = λ1(s+ t), λ1(0, V ) = λ1(s) and hence (2.5) yields

(2.8) λ′
1(s) = −(p− 1)

∫

∂BR0
(se1)

∣∣∣∣
∂us

∂n
(x)

∣∣∣∣
p

n1(x) dS,

where n1 is the first component of n, the outward unit normal to ∂Ωs on ∂BR0
(se1)

(i.e., the inward unit normal to ∂BR0
(se1)).

To derive the expression (1.5) for λ′(s) (i.e., formula involving the normal deriv-
ative of us on the outer boundary), we consider the perturbations of Ωs generated
by the shifts of the outer boundary. Indeed, such perturbations can be obtained by
taking a vector field V (x) = −ρ(x)e1 with ρ ∈ C∞(RN ) and

(i) ρ = 0 in a neighbourhood of the inner sphere ∂BR0
(se1);

(ii) ρ = 1 in a neighbourhood of the outer sphere ∂BR1
(0).

For this choice of V, for t sufficiently close to 0, observe that

Ω̃t = BR1
(−te1) \BR0

(se1).

From the translation invariance of the p-Laplacian, we get

λ1(t, V ) = λ1

(
BR1

(0) \BR0
((s+ t)e1)

)
= λ1(s+ t).

Now (2.5) yields

(2.9) λ′
1(s) = lim

t→0

λ1(s+ t)− λ1(t)

t
= (p− 1)

∫

∂BR1
(0)

∣∣∣∣
∂us

∂n
(x)

∣∣∣∣
p

n1(x) dS,

where n1 is the first component of n, the outward unit normal to ∂Ωs on ∂BR1
(0)

(i.e., the outward unit normal to ∂BR1
(0)).

Next we rewrite the integral in (2.9) using certain symmetries of the domain Ωs.

Set u = us in (2.9) and express the integral as a sum of two integrals:

(2.10)

∫

∂BR1
(0)

∣∣∣∣
∂u

∂n
(x)

∣∣∣∣
p

n1(x) dS

=

∫

∂BR1
(0)∩∂O+

e1

∣∣∣∣
∂u

∂n
(x)

∣∣∣∣
p

n1(x) dS+

∫

∂BR1
(0)∩∂O−

e1

∣∣∣∣
∂u

∂n
(x)

∣∣∣∣
p

n1(x) dS .

From (2.3) and (2.4) we have ∂u
∂n (x

′) =
∂ue1

∂n (x) and n1(x
′) = −n1(x) on ∂BR1

(0)∩
O+

e1 , where x′ = σe1(x). Hence, we modify the second integral as below:
∫

∂BR1
(0)∩∂O−

e1

∣∣∣∣
∂u

∂n
(x)

∣∣∣∣
p

n1(x) dS =

∫

∂BR1
(0)∩∂O+

e1

∣∣∣∣
∂u

∂n
(x′)

∣∣∣∣
p

n1(x
′) dS

= −

∫

∂BR1
(0)∩∂O+

e1

∣∣∣∣
∂ue1

∂n
(x)

∣∣∣∣
p

n1(x) dS .(2.11)

Thus, by combining (2.9), (2.10), and (2.11) we get

(2.12) λ′
1(s) = (p− 1)

∫

∂BR1
(0)∩∂O+

e1

(∣∣∣∣
∂u

∂n

∣∣∣∣
p

−

∣∣∣∣
∂ue1

∂n

∣∣∣∣
p)

n1 dS .

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Similarly we can rewrite formula (2.8) as below:

(2.13) λ′
1(s) = −(p− 1)

∫

∂BR0
(se1)∩∂Õ+

e1

(∣∣∣∣
∂u

∂n

∣∣∣∣
p

−

∣∣∣∣
∂ũe1

∂n

∣∣∣∣
p)

n1 dS .

Auxiliary results. Next we state a few results that we require in the subsequent
sections. First we recall some results about the regularity of eigenfunctions of (1.1)
(cf. Theorem 1.3 of [3]).

Proposition 2.1. Let Ω be a smooth domain in RN and let u be a first eigenfunc-

tion of (1.1). Then the following assertions are satisfied :

(i) u ∈ C1(Ω).
(ii) There exists δ > 0 such that |∇u| > m > 0 in Ωδ := {x ∈ Ω : dist(x, ∂Ω) <

δ} for some m, and u ∈ C2(Ωδ).

The following version of the strong maximum principle is due to Vazquez [25,
Section 4].

Proposition 2.2. Let Ω be a domain in RN . Let w ∈ C1(Ω) be a positive function

satisfying

−div

(
aij(x)

∂w

∂xj

)
≥ 0 in Ω,

where aij ∈ W
1,∞
loc (Ω) and there exists α > 0 such that aij(x)ξiξj ≥ α|ξ|2 ∀ ξ ∈

RN \ {0} ∀x ∈ Ω. Then

(i) w ≡ 0 in Ω or else w > 0 in Ω.
(ii) Let x0 be a point on ∂Ω satisfying the interior sphere condition. If w > 0

in Ω and w(x0) = 0, then

∂w

∂n
(x0) < 0,

where n is the outward unit normal to ∂Ω at x0.

In the next proposition we state a weak comparison result; see Theorem 2.1 and
Proposition 4.1 of [9].

Proposition 2.3. Let Ω be a domain in RN with Lipschitz boundary. Let u1, u2 ∈
C1(Ω) be positive weak solutions of −Δpu = λup−1 in Ω. If u1 ≥ u2 on ∂Ω, then

u1 ≥ u2 in Ω and
∂u1

∂n
≤

∂u2

∂n
on {x ∈ ∂Ω : u1(x) = u2(x) = 0}.

3. Main result

In this section we give the proof of Theorem 1.1. We will be considering various
annular regions apart from Ωs, for simplicity we denote them as

Ar1,r0(x, y) = Br1(x) \Br0(y).

In particular, AR1,R0
(0, se1) = Ωs. Throughout this section, unless otherwise spec-

ified, the eigenfunction us is the first eigenfunction of −Δp on Ωs normalized as in
(2.6), namely us > 0 and ‖us‖p = 1.

The following result is proved in [8] (see Theorem 3.1) using formula (2.13). Here,
for the sake of completeness, we present a proof by making use of formula (2.12).
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Lemma 3.1. Let s ∈ [0, R1 − R0) and let λ1(s) be the first eigenvalue of −Δp on

Ωs. Then λ′(s) ≤ 0.

Proof. By setting u = us and noting that σe1(O
+
e1) ⊂ O−

e1 and

σe1(∂BR0
(se1) ∩ ∂O+

e1) ⊂ O−
e1 ,

we easily see that ue1 and u weakly satisfy the following problems:

(3.1)

−Δpue1 = λ1(s) u
p−1
e1 ,

ue1 = 0,

ue1 = u,

ue1 > 0,

−Δpu = λ1(s) u
p−1 in O+

e1 ,

u = 0 on ∂BR1
(0) ∩ ∂O+

e1 ,

u = ue1 on He1 ∩ ∂O+
e1 ,

u = 0 on ∂BR0
(se1) ∩ ∂O+

e1 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Thus by applying the weak comparison principle (Proposition 2.3) we obtain ue1 ≥
u in O+

e1 . Moreover, as u = 0 on ∂BR1
(0) ∩ ∂O+

e1 , Proposition 2.2 yields

(3.2)
∂ue1

∂n
≤

∂u

∂n
< 0 on ∂BR1

(0) ∩ ∂O+
e1 .

Now since n1(x) is positive for x ∈ ∂BR1
(0)∩∂O+

e1 , from (2.12) and (3.2) we derive
that

λ′
1(s) = (p− 1)

∫

∂BR1
(0)∩∂O+

e1

(∣∣∣∣
∂u

∂n

∣∣∣∣
p

−

∣∣∣∣
∂ue1

∂n

∣∣∣∣
p)

n1 dS ≤ 0.

This completes the proof. �

Symmetries with respect to the hyperplanes. First we study symmetries of
the first eigenfunction of −Δp on Ωs. We show that for s ∈ (0, R1−R0) the associ-
ated first eigenfunction is symmetric with respect to the hyperplanes perpendicular
to He1 .

Lemma 3.2. Let s ∈ (0, R1 −R0) and let us be the first eigenfunction of −Δp on

Ωs. If a ∈ RN \ {0} with 〈a, e1〉 = 0, then

us(x) = us(σa(x)) ∀x ∈ Ωs.

In particular, for i = 2, 3, . . . , N

us(x) = us(σei(x)) = us(x1, x2, . . . , xi−1,−xi, xi+1, . . . , xN ) ∀x ∈ Ωs.

Proof. Clearly for a 
= 0 with 〈a, e1〉 = 0, O+
a = σa(O

−
a ) (see (2.2)). Thus u := us

and ua := us ◦ σa weakly satisfy the following problems, respectively:

−Δpua = λ1(s) u
p−1
a ,

ua = u,

−Δpu = λ1(s) u
p−1 in O+

a ,

u = ua on ∂O+
a .

Now by the weak comparison principle (Proposition 2.3), we obtain that ua ≡ u in
O+

a , which implies the desired assertions. �

In the next lemma we show that us is symmetric also with respect to He1 in a
neighbourhood of the outer boundary, provided λ′

1(s) = 0.

Lemma 3.3. If λ′
1(s) = 0 for some s ∈ (0, R1 −R0), then there exists r1 > 0 such

that

us(x) = us(σe1(x)) ∀x ∈ AR1,r1(0, 0).
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Proof. We set u = us. Since u ∈ C1(Ωs), u > 0, and u vanishes on ∂BR1
(0) and

∂BR0
(se1), there exists r∗ ∈ (R0 + s,R1) such that ∂u

∂x1
(r∗e1) = 0. Define

(3.3) r1 = sup {|x| > 0 : 〈∇u(x), x〉 = 0} .

As ∂u
∂n (x) < 0 on ∂BR1

(0) (by Proposition 2.2), 〈∇u(x), x〉 < 0 in a neighbourhood
of ∂BR1

(0). Thus clearly r1 ∈ [r∗, R1). By the construction, AR1,r1(0, 0) is the
maximal annular neighbourhood of ∂BR1

(0) on which 〈∇u(x), x〉 is nonvanishing.
Further, by the continuity of ∇u there must exist x1 ∈ ∂Br1(0) such that

(3.4) 〈∇u(x1), x1〉 = 0.

Set ue1 = u ◦ σe1 on O+
e1 . Now from (3.1) and Proposition 2.3, we have ue1 ≥ u

in O+
e1 . To show u ≡ ue1 in AR1,r1(0, 0) ∩ O+

e1 we linearize the p-Laplacian on the
domain AR1,r(0, 0)∩O+

e1 with r1 < r < R1 by setting w = ue1 −u. Then w weakly
satisfies the following problem:

−div(A(x)∇w) = λ
(
up−1
e1 − up−1

)
≥ 0 in AR1,r(0, 0) ∩ O+

e1 ,

w ≥ 0 on ∂(AR1,r(0, 0) ∩ O+
e1),

where the coefficient matrix A(x) = [aij(x)] is given by

aij(x) =

1∫

0

|(1− t)∇u(x) + t∇ue1(x)|
p−2

×

[
I + (p− 2)

[
(1− t)∇u(x) + t∇ue1(x)]

T [(1− t)∇u(x) + t∇ue1(x)
]

|(1− t)∇u(x) + t∇ue1(x)|
2

]

ij

dt.

Now we show that A(x) is uniformly positive definite on AR1,r(0, 0) ∩ O+
e1 . Since

〈∇u(x), x〉 does not vanish on AR1,r1(0, 0) and is negative near the boundary
∂BR1

(0), we see that 〈∇u(x), x〉 < 0 in AR1,r(0, 0). By the continuity, we can
find δr > 0 such that

〈∇u(x), x〉 < −δr in AR1,r(0, 0).

Notice that

〈∇ue1(x), x〉 = 〈∇(u(σe1(x))), x〉

= 〈∇u(σe1(x))σe1 , x〉

= 〈∇u(σe1(x)), σe1(x)〉 .

Thus, by the above inequality we have 〈∇ue1(x), x〉 < −δr in AR1,r(0, 0) ∩ O+
e1
.

Therefore,

(1− t) 〈∇u(x), x〉+ t 〈∇ue1(x), x〉 < −δr ∀t ∈ [0, 1] ∀x ∈ AR1,r(0, 0) ∩ O+
e1 .

Hence, for x ∈ AR1,r(0, 0) we get
(3.5)

|(1− t)∇u(x) + t∇ue1(x)| ≥

∣∣∣∣
〈
(1− t)∇u(x) + t∇ue1(x),

x

|x|

〉∣∣∣∣ >
δr

R1
= mr.

Further, since |∇u| is bounded in AR1,r(0, 0), there exists Mr > 0 such that

(3.6) |(1− t)∇u(x) + t∇ue1(x)| ≤ Mr.
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Note that for each a ∈ RN \ {0}, the matrix aT a has eigenvalues {0, |a|2}. Thus,
for any y ∈ RN ,

(3.7)

min{1, p−1}|a|p−2|y|2 ≤

〈
|a|p−2

[
I + (p− 2)

aTa

|a|2

]
y, y

〉
≤ max{1, p−1}|a|p−2|y|2.

From (3.5), (3.6), and (3.7), for x ∈ AR1,r(0, 0) and y ∈ RN we obtain

〈A(x)y, y〉 ≥

{
mp−2

r |y|2 for p ≥ 2,
(p− 1)Mp−2

r |y|2 for 1 < p < 2.

Thus the differential operator in (3.5) defined by means of A(x) is uniformly elliptic
in AR1,r(0, 0). Moreover, by Proposition 2.1, aij ∈ C1(AR1,r(0, 0)). Hence, the
strong maximum principle for (3.5) (Proposition 2.2) implies that either w ≡ 0 or
w > 0 in AR1,r(0, 0) ∩O+

e1 . Moreover, if w > 0 in AR1,r(0, 0) ∩ O+
e1 , then

∂ue1

∂n
−

∂u

∂n
=

∂w

∂n
< 0 on ∂BR1

(0) ∩ ∂Oe1 .

Now (2.12) together with the above inequality implies that λ′
1(s) < 0, which

contradicts our assumption λ′
1(s) = 0. Thus we must have w ≡ 0 and hence

u ≡ ue1 in AR1,r(0, 0) ∩ O+
e1 . Since r ∈ (r1, R1) is arbitrary, we conclude that

u(x) = u(σe1(x)) ∀x ∈ AR1,r1(0, 0). �

Next we show that u is symmetric in AR1,r1(0, 0) with respect to all the hyper-
planes.

Lemma 3.4. Let s and r1 be as in Lemma 3.3. Then for any nonzero vector

a ∈ RN

us(x) = us(σa(x)) ∀x ∈ AR1,r1(0, 0).

Proof. The case 〈a, e1〉 = 0 follows from Lemma 3.2. Note that σa(x) = σka(x)
for k ∈ R \ {0}. Thus, it is enough to prove the result for a ∈ AR1,r1(0, 0) with
〈a, e1〉 > 0. In this case we have σa(O

+
a ) ⊂ O−

a . Now by setting u = us and
ua = us ◦ σa we see that ua and u satisfy the following problems in O+

a :

−Δpua = λ1(s) u
p−1
a ,

ua = 0,

ua = u,

ua > 0,

−Δpu = λ1(s) u
p−1 in O+

a ,

u = 0 on ∂BR1
(0) ∩ ∂O+

a ,

u = ua on Ha ∩ ∂O+
a ,

u = 0 on ∂BR0
(se1) ∩ ∂O+

a .

Applying the weak comparison principle (Proposition 2.3), we obtain that ua ≥ u

in O+
a . As before we set w = ua − u. From Lemma 3.2 and Lemma 3.3 we obtain

u(a) = u(−a) as below:

u(a1, a2, . . . , aN ) = u(a1,−a2, . . . , aN )

= · · · = u(a1,−a2, . . . ,−aN ) = u(−a1,−a2, . . . ,−aN ).

By definition ua(a) = u(−a) and hence w(a) = 0. Now we proceed along the same
lines as in Lemma 3.3 and see that w satisfies the following problem:

−div(A(x)w) ≥ 0 in AR1,r(0, 0) ∩O+
a ; w ≥ 0 on ∂(AR1,r(0, 0) ∩ O+

a )

for any r ∈ (r1, R1), where the coefficient matrix A(x) is uniformly positive
definite. By the strong maximum principle we have either w ≡ 0 or else w > 0
in AR1,r(0, 0) ∩ O+

a . Since w(a) = 0, we obtain w ≡ 0 and hence u ≡ ua in
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AR1,r(0, 0)∩O
+
a . Finally, using the reflection, we conclude that u(x)=u(σa(x)) ∀x∈

AR1,r1(0, 0). �

Theorem 3.5. Let s ∈ (0, R1 − R0) and let us be the first eigenfunction of −Δp

on Ωs. If λ
′
1(s) = 0, then us is radial in the annulus AR1,r1(0, 0), where r1 is given

by Lemma 3.3. Furthermore, ∇us = 0 on ∂Br1(0).

Proof. Let b, c ∈ AR1,r1(0, 0) be such that b 
= c and |b| = |c|. Then there exists
a constant k such that a = k(b − c) ∈ AR1,r1(0, 0). Noting that σa(b) = c, from
Lemma 3.4 we obtain that

us(b) = us(σa(b)) = us(c).

Since b and c are arbitrary, we conclude that us is radial in the annulus AR1,r1(0, 0).
Further, as us is continuously differentiable in AR1,r1(0, 0) and ∇us(x1) · x1 = 0
(see (3.4)), the radiality of us gives ∇us = 0 on ∂Br1(0). �

Symmetries with respect to the affine hyperplanes passing through se1.

In this subsection we prove the radiality (up to a translation of the origin) of us

in a neighbourhood of the inner boundary. Since σ̃a(x) = σa(x) for a such that
〈a, e1〉 = 0, Lemma 3.2 holds as it is, and hence we have for i = 2, . . . , N

us(x) = us(σ̃ei(x)) = u(x1, x2, . . . , xi−1,−xi, xi+1, . . . , xN ) ∀x ∈ Ωs.

Next we prove a symmetry result along the same lines as in Lemma 3.3.

Lemma 3.6. Let s ∈ (0, R1 −R0) and let us be the first eigenfunction of −Δp on

Ωs. If λ
′
1(s) = 0, then there exists r0 > 0 such that

us(x) = u(σ̃e1(x)) = us(−x1 + 2s, x2, . . . , xN ) ∀x ∈ Ar0,R0
(se1, se1).

Proof. As it was shown in the proof of Lemma 3.3, we have r∗ ∈ (R0 + s,R1) such
that ∂u

∂x1
(r∗e1) = 0. Define

(3.8) r0 = inf {|x− se1| > 0 : 〈∇u(x), x− se1〉 = 0} .

Clearly r0 ∈ (R0, R1 − s), since by Hopf’s maximum principle 〈∇u(x), x− se1〉 =
|x − se1|

∂u
∂n (x) 
= 0 on ∂BR0

(se1). By the construction, Ar0,R0
(se1, se1) is the

maximal annular neighbourhood of ∂BR0
(se1) on which 〈∇u(x), x− se1〉 is non-

vanishing. Further, by the continuity of ∇u there must exist x0 ∈ ∂Br0(se1) such
that

〈∇u(x0), x0 − se1〉 = 0.

As in the proof of Lemma 3.3, we linearize the p-Laplacian on the domain

Ar,R0
(se1, se1) ∩ Õ+

e1

with R0 < r < r0 by setting w = ũe1−u. Note that ũe1 and u satisfy −Δpv = λvp−1

in Õ+
e1 and ũe1 ≥ u on ∂Õ+

e1 . Thus by Proposition 2.3 we get ũe1 ≥ u on Õ+
e1 .

Furthermore, w weakly satisfies the following problem:

−div(A(x)∇w) = λ
(
ũp−1
e1 − up−1

)
≥ 0 in Ar,R0

(se1, se1) ∩ Õ+
e1 ,

w ≥ 0 on ∂(Ar,R0
(se1, se1) ∩ Õ+

e1).

By similar arguments as in Lemma 3.3, the above differential operator is uniformly

elliptic on Ar,R0
(se1, se1) ∩ Õ+

e1 and hence by the strong maximum principle we
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have either w ≡ 0 or w > 0 on this domain. If w > 0 in Ar,R0
(se1, se1)∩ Õ+

e1 , then
by the Hopf maximum principle

∂ũe1

∂n
−

∂u

∂n
=

∂w

∂n
< 0 on ∂BR0

(se1) ∩ ∂Õ+
e1 .

Now (2.13) implies that λ′
1(s) < 0, a contradiction to the assumption λ′

1(s) = 0.

Thus we must have w ≡ 0 and hence u ≡ ũe1 in Ar,R0
(se1, se1) ∩ Õ+

e1 . Since
r ∈ (R0, r0) is arbitrary, we obtain the desired fact. �

Next we state a lemma which is a counterpart of Lemma 3.4. The proof follows
along the same lines.

Lemma 3.7. Let s ∈ (0, R1 −R0) and let us be the first eigenfunction of −Δp on

Ωs. If λ
′
1(s) = 0, then for any nonzero vector a ∈ RN

us(x) = us(σ̃a(x)) ∀x ∈ Ar0,R1
(se1, se1),

where r0 is given by Lemma 3.6.

The next theorem, which is a counterpart of Theorem 3.5, states that us is radial
(up to a translation of the origin) in a neighbourhood of the inner ball. The proof
follows along the same lines using Lemma 3.2, Lemma 3.6, and Lemma 3.7.

Theorem 3.8. Let s ∈ (0, R1 − R0) and let us be the first eigenfunction of −Δp

on Ωs. If λ
′
1(s) = 0, then us is radial in the annulus Ar0,R0

(se1, se1). Furthermore,

∇us = 0 on ∂Br0(se1).

Remark 3.9. Let u0 be a positive first eigenfunction of −Δp on AR1,R0
(0, 0). Note

that u0 is radial (cf. [21, Proposition 1.1]) and one can verify that u0 attains its
maximum on a unique sphere of radius r̄ ∈ (R0, R1) and u′

0(r̄) = 0. From the
simplicity of the first eigenvalue, it is clear that every first eigenfunction u of −Δp

on AR1,R0
(0, 0) is radial and u′(r̄) = 0.

Lemma 3.10. Let λ′
1(s) = 0 for some s ∈ (0, R1 −R0). Let r0 and r1 be given by

Lemmas 3.2 and 3.6, respectively. Then r0 = r1 = r̄.

Proof. From the definitions of r0 and r1 (see (3.8) and (3.3)) it easily follows that
r0 ≤ r1. First we show that r1 ≤ r̄. Suppose that r1 > r̄. For notational simplicity,
we denote an annular region with centre at the origin as At1,t0 = At1,t0(0, 0). Now
consider the following function on AR1,R0

:

w1(x) =

⎧
⎪⎨
⎪⎩

us(x), x ∈ AR1,r1 ,

C1, x ∈ Ar1,r̄,

u0(x), x ∈ Ar̄,R0
,

where C1 = us(x) for |x| = r1. By multiplying with an appropriate constant we
can choose u0 in such a way that u0(x) = C1 for |x| = r̄. Since w1 is continuous

and piecewise differentiable on AR1,R0
we have w1 ∈ W

1,p
0 (AR1,R0

). To estimate
‖∇w1‖

p
p, we derive a few identities. Note that for any r ∈ (r1, R1), ∇us does

not vanish on AR1,r and hence us ∈ C2(AR1,r); see Proposition 2.1. Thus us ∈
C2(AR1,r1) and hence the following equation holds pointwise in AR1,r1 :

−Δpus = λ1(s)|us|
p−2us.
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Multiply the above equation by us and integrate over AR1,r1 to get
∫

AR1,r1

−Δpus us dx = λ1(s)

∫

AR1,r1

|us|
p−2us us dx.

Now by noting that ∇us = 0 on ∂Br1(0) and us = 0 on ∂BR1
(0), the integration

by parts gives
∫

AR1,r1

|∇us|
p dx = λ1(s)

∫

AR1,r1

|us|
p dx.(3.9)

Similarly
∫

Ar̄,R0

|∇u0|
p dx = λ1(0)

∫

Ar̄,R0

|u0|
p dx.(3.10)

Now we estimate ‖∇w1‖
p
p:

∫

AR1,R0

|∇w1|
p dx =

∫

AR1,r1

|∇us|
p dx+

∫

Ar̄,R0

|∇u0|
p dx.

By using (3.9) and (3.10) and inequality λ1(s) ≤ λ1(0) we obtain

∫

AR1,R0

|∇w1|
p dx ≤ λ1(0)

⎛
⎜⎝
∫

AR1,r1

|us|
p dx+

∫

Ar̄,R0

|u0|
p dx

⎞
⎟⎠ .

Next we estimate ‖w1‖
p
p:

∫

AR1,R0

|w1|
p dx =

∫

AR1,r1

|us|
p dx+

∫

Ar1,r̄

C
p
1 dx+

∫

Ar̄,R0

|u0|
p dx

>

∫

AR1,r1

|us|
p dx+

∫

Ar̄,R0

|u0|
p dx.

Now combining the above estimates, we arrive at
∫

AR1,R0

|∇w1|
p dx < λ1(0)

∫

AR1,R0

|w1|
p dx,

a contradiction to the definition of λ1(0). Hence we must have r1 ≤ r̄.

Next we show that r̄ ≤ r0. Suppose that r̄ > r0. In this case, we define w2 on
AR1,R0

as below:

w2(x) =

⎧
⎪⎨
⎪⎩

u0(x), x ∈ AR1,r̄,

C2, x ∈ Ar̄,r0 ,

us(x+ se1), x ∈ Ar0,R0
,

where C2 = us(x) for |x + se1| = r0 and u0 is scaled to satisfy u0(x) = C2 for

|x| = r̄. As before we see that w2 ∈ W
1,p
0 (AR1,R0

) and
∫

AR1,R0

|∇w2|
p dx < λ1(0)

∫

AR1,R0

|w2|
p dx,
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which again contradicts the definition of λ1(0). Thus r̄ ≤ r0 and we conclude that
r0 = r̄ = r1. �

Now we give a proof of our main theorem.

Proof of Theorem 1.1. Suppose that there exists s > 0 such that λ′
1(s) = 0. Now

Lemmas 3.2, 3.6, and 3.10 give r0 and r1 with r0 = r1. Further, from the definitions
of r0 and r1 (see (3.8) and (3.3)) we can deduce that

∇u((r0 + s)e1) = 0 and ∇u(re1) 
= 0 ∀r > r1.

This is a contradiction, since r0 + s = r1 + s > r1. Thus λ′
1(s) < 0 for all s ∈

(0, R1 −R0). �

Remark 3.11. Note that in Theorem 1.1 we consider only the case BR0
(se1) ⊂

BR1
(0), i.e., s ∈ [0, R1 − R0). For any s1, s2 satisfying

√
R2

1 −R2
0 ≤ s1 < s2 ≤

R1 +R0, it is geometrically evident that

BR1
(0) \BR0

(s1e1) � BR1
(0) \BR0

(s2e1).

Now the strict domain monotonicity of λ1(s) (cf. Lemma 5.7 of [10]) gives λ1(s1) >

λ1(s2). Thus λ1(s) is strictly decreasing on [
√
R2

1 −R2
0, R1+R0]. Further, λ1(s) =

λ1(BR1
(0)) for s > R1 + R0.

Remark 3.12. It can be easily seen that the measure of the set BR1
(0) \ BR0

(se1)

strictly decreases with respect to s ∈ [R1 − R0,
√
R2

1 − R2
0]. However, nothing is

known about the behaviour of λ1(BR1
(0) \BR0

(se1)) on this interval.

Remark 3.13. Let Ω0,Ω1 be any two balls in RN such that Ω0 � Ω1, |Ω0| = |B0|
and |Ω1| = |B1|, where B0 and B1 are concentric balls. Then Theorem 1.1 gives
us that λ1(Ω1 \ Ω0) ≤ λ1(B1 \ B0). This inequality does not hold in general, if Ω0

and Ω1 are not balls. For example, consider the rectangular domains Ω0 (sides πR0

n

and R0n) and Ω1 (sides πR1

n and R1n). Clearly λ1(Ω1 \ Ω0) → ∞ as n → ∞ and

λ1(B1 \B0) = λ1(AR1,R0
(0, 0)) < ∞.

4. Limit cases p = 1 and p = ∞

In this section we prove Theorem 1.2. Recall that

Λ∞(s) := lim
p→∞

λ
1/p
1 (p, s) and Λ1(s) := lim

p→1
λ1(p, s).

By Theorem 1.1, for any p > 1 and 0 ≤ s1 < s2 < R1 − R0 it holds that 0 <

λ1(p, s2) < λ1(p, s1) and hence we immediately deduce that

(4.1) 0 ≤ Λ∞(s2) ≤ Λ∞(s1) and 0 ≤ Λ1(s2) ≤ Λ1(s1).

Thus Λ1(s) and Λ∞(s) are decreasing on [0, R1 − R0). To show that Λ∞(s) is
continuous and strictly decreasing on [0, R1 − R0), we use the following geometric
characterization of Λ∞(s) obtained in [17]:

Λ∞(s) =
1

rmax
,

where rmax is the radius of a maximal ball inscribed in Ωs.
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Proof of part (i) of Theorem 1.2. For s ∈ [0, R1 − R0), a simple calculation shows
that rmax = R1−R0+s

2 and hence

Λ∞(s) =
2

R1 −R0 + s
.

Thus one can easily see that Λ∞(s) is continuous and strictly decreasing on s ∈
[0, R1 −R0). �

Remark 4.1. The geometric characterization of Λ∞(s) allows us to compute Λ∞(s)
even for s ≥ R1 −R0. Indeed, the same calculation gives us

Λ∞(s) =

{ 2
R1−R0+s for s ∈ [0, R1 +R0),
1
R1

for s ≥ R1 +R0.

Clearly Λ∞(s) is continuous everywhere and differentiable except at the points
s = 0 and s = R1 +R0.

We refer the reader to [20] for related problems on the domain dependence of Λ∞.
Now we consider the case p = 1. From (4.1) we know that Λ1(s) is decreasing.

To show the continuity of Λ1(s) and to prove part (ii) of Theorem 1.2, we use the
following variational characterization of Λ1(s) given in [18]:

Λ1(s) = h(s),

where h(s) stands for the Cheeger constant of Ωs which can be defined as

(4.2) h(s) := inf
|∂D|

|D|
.

Here the infimum is taken over all Lipschitz subdomains D of Ωs and | · | denotes
the Hausdorff measures (coincide with the usual volume and surface area for Lip-
schitz domains) of dimension N − 1 in the numerator and the dimension N in the
denominator. Any minimizer of (4.2) is called a Cheeger set. It is known that a
Cheeger set always exists; see Theorem 8 of [18].

As in Section 2, by considering perturbations of Ωs given by the vector field in
(2.7) we apply Theorem 1.1 of [22] to conclude that h(s) is continuous on [0, R1−R0).

Proof of part (ii) of Theorem 1.2. It is known (see, for instance, [7] and also the
references therein) that concentric annulus Ω0 is calibrable, (i.e., Ω0 itself is a
Cheeger set of Ω0) and hence

h(0) =
|∂Ω0|

|Ω0|
= N

RN−1
1 +RN−1

0

RN
1 −RN

0

.

On the other hand, for the eccentric annulus Ωs with s ∈ (0, R1 − R0) it is clear
that

h(s) ≤
|∂Ωs|

|Ωs|
= N

RN−1
1 +RN−1

0

RN
1 −RN

0

= h(0).

Next we show that for s sufficiently close to R1 −R0 the above inequality is strict.

For this we construct an appropriate subset D of Ωs satisfying |∂D|
|D| < h(0).

In this proof, without any ambiguity, we use | · | to denote the various measures
such as the length, surface area, and volume of the objects lie in the appropriate
spaces. Let ε > 0 be sufficiently small and let B′ = |OB′| e1 be the point such that

|OB′| =
√
R2

1 − ε2 (see Figure 1). Then the hyperplane perpendicular to e1 at B′

intersects with BR1
(0) by the (N − 1)-dimensional ball B1 of radius |BB′| = ε.
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Figure 1. “Convex-concave lens” ABCDlens (grey) and cylinder
ABCDcyl (dashed).

By choosing s = sε =
√
R2

1 − ε2 − R0, we see that the ball BR0
(se1) touches

B1. Now consider the N -dimensional “convex-concave lens” ABCDlens bounded
by the spherical caps BCcap and ADcap of the spheres ∂BR1

(0) and ∂BR0
(se1),

respectively, and by the lateral cylindrical surface ABlat generated by the segment
AB parallel to e1. Let ABCDcyl be the cylinder of radius |BB′| and height |AB|.
For simplicity, we denote the various positive constants which are independent of ε
by k. For ε > 0 small enough, observe that

|AB| = |A′B′| = R0 −
√
R2

0 − ε2 ≈ kε2;

|ADcap| > |BCcap| > |B1| = kεN−1;

|ABCDlens| < |ABCDcyl| = |AB||B1| ≈ kε2 εN−1;

|ABlat| = |AB||∂B1| ≈ kε2 εN−2.

Now by making use of the above estimates we obtain

|∂ (Ωs \ABCDlens) |

|Ωs \ABCDlens|
=

|∂Ωs| − |ADcap| − |BCcap|+ |ABlat|

|Ωs| − |ABCDlens|

<
|∂Ωs| − 2kεN−1 + kεN

|Ωs| − kεN+1
<

|∂Ωs|

|Ωs|

for sufficiently small ε. Therefore, there exists s > 0 such that h(s) < h(0). Now
define

(4.3) s∗ := inf{s ∈ [0, R1 −R0) : h(0) > h(s)}.

Since h is continuous, the definition of s∗ gives h(0) = h(s∗). As h is decreasing,
we have h(0) ≥ h(s) for s ∈ (s∗, R1 − R0] and the equality would contradict the
definition of s∗. Thus h(0) > h(s) for s ∈ (s∗, R1 −R0]. �

Remark 4.2. Clearly h(s) = h(0) for every s ∈ [0, s∗]. Thus, if s∗ > 0, then the
strict monotonicity of λ1(s) fails for p = 1. However, whether s∗ > 0 or not is
still an open question. Further, the strict monotonicity of h(s) on the interval
[s∗, R1 − R0] is not answered yet. It is worth mentioning that a shape derivative
formula for h1(Ω) is obtained in [22] for Ω having just one Cheeger set. However,
the uniqueness of the Cheeger set for eccentric annular regions Ωs is not known.
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5. Application to the Fučik spectrum

In this section we prove Theorem 1.3. To this end, we use Theorem 1.1 and
the variational characterization (1.7) of C , the first nontrivial curve of the Fučik
spectrum for the eigenvalue problem (1.6); see [10]. Recall that C is constructed
from points (t+ c(t), c(t)), where

c(t) = inf
γ∈Γ

max
u∈γ[−1,1]

⎛
⎝
∫

Ω

|∇u|p dx− t

∫

Ω

(u+)p dx

⎞
⎠ , t ≥ 0,

and their reflections with respect to the diagonal. See (1.8) for the definition of Γ.

Proof of Theorem 1.3. Let Ω be a bounded radial domain. Suppose there exist a
point on C and a corresponding eigenfunction u which is radial. Without loss of
generality, we can suppose that t ≥ 0 (otherwise we consider −u instead of u).
Thus u satisfies the following problem:

−Δpu = (t+ c(t))(u+)p−1 − c(t)(u−)p−1 in Ω,

u = 0 on ∂Ω.

}

By Theorem 2.1 of [11], we know that u has exactly two nodal domains, N+ :=
{x ∈ Ω : u(x) > 0} and N− := {x ∈ Ω : u(x) < 0}. Since the restriction of u
to each of the nodal domains is an eigenfunction of −Δp with a constant sign, we
easily get

(5.1) λ1(N
+) = t+ c(t) and λ1(N

−) = c(t).

Since u is radial and Ω is radially symmetric, the nodal domains are also radially
symmetric. Assume for definiteness that u is negative near the outer boundary of
Ω. Thus there exists R > 0 such that N+ = {x ∈ Ω : |x| < R} and N− = {x ∈ Ω :
|x| > R}. If Ω is a ball, say BR1

(0), then N+ = BR(0) and N− = AR1,R(0, 0). Now
for s ∈ (0, R1−R), by using (5.1) and Theorem 1.1 we obtain λ1(BR(se1)) = t+c(t)
and λ1(AR1,R(0, se1)) < c(t). Further, using the continuity of λ1(Ω) (see, for

instance, Theorem 1 of [13]) we can find R̃ ∈ (R,R1) such that

λ1(BR̃(se1)) < t+ c(t) and λ1(AR1,R̃
(0, se1)) < c(t).

If Ω is an annulus, say AR1,R0
(0, 0), then we have N+ = AR,R0

(0, 0) and N− =
AR1,R(0, 0). Now for 0 < s < min{R1−R,R−R0} by using (5.1) and Theorem 1.1
we obtain

λ1(AR,R0
(se1, 0)) < t+ c(t) and λ1(AR1,R(0, se1)) < c(t).

In either case, we have two disjoint domains Ω1 and Ω2 such that

λ1(Ω1) < t+ c(t) and λ1(Ω2) < c(t).

Let u1 and u2 be corresponding eigenfunctions. Clearly u1 and u2 have disjoint
supports and

∫

Ω

|∇u1|
p dx < (t+ c(t))

∫

Ω

|u1|
p dx and

∫

Ω

|∇u2|
p dx < c(t)

∫

Ω

|u2|
p dx.

The above inequalities lead to a contradiction to the definition (1.7) of c(t) by the
same arguments as in the proof of Theorem 3.1 of [10]. Thus u must be nonradial.
This completes the proof. �
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[13] Jorge Garćıa Melián and José Sabina de Lis, On the perturbation of eigenvalues for the p-

Laplacian (English, with English and French summaries), C. R. Acad. Sci. Paris Sér. I Math.
332 (2001), no. 10, 893–898, DOI 10.1016/S0764-4442(01)01956-5. MR1838765 ↑7182, 7184,
7185, 7197
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