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ABSTRACT

This paper proposes a novel design for a hermetically sealable device, consisting of charged linear and nonlinear membranes driven in the
gigahertz range in vacuum setting, as a source of antibunched single phonons. Constraints for effecting phonon antibunching are found using
the stationary Liouville–von Neumann master equation. Using analytical calculations and material and geometry optimization, we show that
sizes of the proposed system can be upscaled to the near-micrometer range in a trade-off with the system operating temperature. The results
are significant to realize quantum phononics, which has much promise as a modality for sensing and computing applications.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
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I. INTRODUCTION

Phononics is a relatively new branch of science and engineer-
ing, encompassing the study and application of various mechani-
cal/elastic wave phenomena (including vibration, acoustics, ultra-
sonics, hypersonics, and thermal transport). Phonons refer to
quantized states of vibration (in analogy to photons that simi-
larly quantify light), which underlie all elastic wave phenomena.1,2

Today, elastic waves are vital to a range of applications for sens-
ing, imaging, and diagnostics in engineering and biomedicine.3–5

Due to the generally slower propagation velocities involved, elas-
tic wave approaches for diagnostics suffer from much poorer res-
olution as compared to what is achievable using electromagnetics.
However, the longer time scales, greater depth of penetration in vari-
ous media, and non-irradiative and cost-effective transductionmake
elastic waves attractive for sensing and device applications.

Phononics has made impressive contributions in recent years,
including fundamental advances for sensing, imaging, control,
vibration damping, cloaking and wavefrontmanipulation, and excit-
ing phenomena such as topological and edge states.6–20 The prospect
of phononic crystal and metamaterial based novel media that can

perform sensing, imaging, and computing with major advances over
conventional approaches is exciting. However, in order to truly
unveil an era of phononics rivaling those of electronics and photon-
ics, we would need, like in those counterparts, a true source of single
(and later, entangled) phonons, and this has not yet been experi-
mentally realized anywhere in the world. The first observation of
quantum states of vibration wasmade less than a decade ago through
cooling to the ground state.21 Most proposals for phonon sources
until date remain theoretical.

With the world racing in the quest for “quantum supremacy,”
increasingly, however, many researchers have come to view quan-
tum phononics as a natural base for advanced computing pro-
cesses.22,23 This is especially germane in view of the increasingly
escalating demand for cooling in current sensing and comput-
ing architectures that rely on electronics or, more recently, pho-
tonics. Indeed, prohibitive costs of cooling may eventually put a
hold on “Moore’s law” expansion of device capabilities.24,25 Quan-
tum phononics also provides the opportunity to achieve low-noise
(sub-Poissonian, where number distribution is such that the vari-
ance is less than the mean) imaging at very high frequencies, har-
nessing phenomena such as entanglement26 and squeezed states,
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yielding potentially unrivalled precision in non-invasive materials
diagnostics.

With multiple unique properties of engineering interest and
scalability, phononics offers a radically new route for quantum com-
puting.25 With the ability to be maintained for a long time before
being eventually damped and to interact with a wide range of
quantum systems such as electric, magnetic, and optical, phonons
are promising candidates for quantum devices.22–25,27,28 Photons,
though currently the primary candidates for quantum devices,
require sophisticated setups, making practical commercial scalabil-
ity challenging.29 With a natural ability to harness waste heat and
vibration, phononic computing and sensing would also link back to
the earliest era of computing and devices that involved macro-scale
mechanical elements such as valves and gears.

Systems with discreet frequency-selective energy levels could
be thought of as analogs of or to imitate the behavior of atoms,
with non-integer excitations causing release of particles (e.g., elec-
trons in real atoms). However, in real atoms that host fermionic
(or physical/matter) particles such as electrons, multiple particles do
not co-exist in the same quantum state. Thus, a source of (bosonic)
quasi-particles such as single phonons must have “antibunching,”
a quantum phenomenon whereby only a single quasi-particle can
exist in a given system,30,31 and additional energy input to the sys-
tem results in the release of excess particles (phonon or photon
emission).

Phonon blockade, analogous to “photon blockade” for pho-
tons and Coulomb blockade for electrons, is typically used to
affect antibunching. Initial research in this direction, deriving from
similar concepts in photonics, explored the use of non-linear
oscillators (in particular, micro-nanoscale beams) to achieve anti-
bunching.32–38 Such a “conventional” phonon blockade involves a
strong non-linearity in the mechanical resonator to achieve anti-
bunching.39–42 However, the typical intrinsic nonlinearity of most
micro/nanomechanical resonators is usually very weak,43–48 which
makes this method difficult to implement, in practice. Unconven-
tional phonon blockade (UPB) solves this by enabling antibunching
even with a weak non-linearity in a system of coupled mechanical
oscillators.49

However, the devices proposed so far require state-of-the-art
nanofabrication and refrigeration capabilities, making them imprac-
ticable for scalable practical deployment. These requirements, of
manufacturability and temperature control, are stringent because
unlike in their photonic counterparts, because of the underly-
ing processes, the thermal phonon number is not negligible in
mechanical resonators and therefore significantly influences the
phonon blockade even at temperatures of the order of several milli-
Kelvins.38,49,50 Moreover, concepts such as those in Ref. 49 are not
hermetically sealable, and thus, fabrication in phononic devices is a
challenge.

To address the need for accessing antibunching phenomenon
in larger, hotter systems, we propose here a compact, hermetically
sealable device, with the goal of achieving optimal parameters of
near-micrometer dimensions and near-Kelvin operation. In what
follows, first the proposed model is described, along with equations
governing the system. The results on antibunching obtainable using
the proposed system and optimization of parameters to achieve
this at higher dimensions and temperatures are then discussed. The
paper concludes with directions for further work.

II. MODEL: COMPACT, HERMETICALLY SEALABLE
DEVICE TO REALIZE ANTI-BUNCHING
IN PHONONS

As shown in Fig. 1, the proposed system consists of two
Coulomb-coupled, circumferentially clamped, identical circular
membranes under pre-tension(s). The first membrane (referred to
as resonator 1) is a linear resonator coherently driven by an external
force, while the other (resonator 2) contains a weak Duffing non-
linearity without driving. The casing is rigid and fixed in space to
prevent boundary movement. This system is hermetically sealable
and hence yields a convenient route for large-scale device fabrication
and integration within circuits.

The driving frequency, material properties of the membranes,
quantity of charge, separation, and pre-tension imparted are thus the
tunable parameters for the device. We assume that resonator 1 is lin-
ear and is harmonically driven externally by a force of amplitude F
and frequency ωd. Based on analysis for other coupled resonator sys-
tems reported (see, for example, Refs. 29 and 49), the Hamiltonian
for this system can be written as (assuming terms to be divided by h̵)

H ≙ ω1b̂
†

1 b̂1 + ω2b̂
†

2 b̂2 + J(b̂†

1 + b̂1)(b̂†

2 + b̂2)
+ F(b̂†

1e
iωdt + b̂1e−iωdt) +U(b̂†

2 + b̂2)4, (1)

FIG. 1. Schematic of the proposed device concept to achieve phonon
antibunching.
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where b̂j (b̂†

j ) is the annihilation (creation) operator for the phonon

mode of the jth mechanical resonator with resonance frequency ωj

and decay rate γj(j ≙ 1, 2). The coupling strength between the two
mechanical resonators is denoted by J, whileU is the nonlinearity of
mechanical resonator 2.

Without loss of generality, in the following, wemake the simpli-
fying assumption that the mechanical resonators are identical (i.e.,
ω1 ≙ ω2 ≙ ω0; γ1 ≙ γ2 ≙ γ) and that the coupling strength J and the
nonlinearity U are much smaller compared to the resonance fre-
quency ωd: J ≪ ω0;U ≪ ω0. The pre-tension and the material of
the membranes dictate the resonance frequency, while charge and
separation parameters control the coupling strength J through the
following relation (see the supplementary material for derivation):

J ≙ −1
2

d2(Ue(z))
dz2

¿ÁÁÀ 1

m1m2ω2
0

, (2)

wherem1,m2 are the masses and ω0 is the frequency of resonators.
In order to evaluate the double derivative in Eq. (2), we write

an expression for the potential energy Ue between two uniformly
charged disks of the same radius and separation of z51 as

Ue(z) ≙ 4keQ1Q2

R
(−a

2
+ a

6π
× [(4 − a2)E(− 4

a2
)

+(4 + a2)K(− 4

a2
)]), (3)

where Q1 and Q2 are the charges, a ≙ ∣z∣/R, and for real values of an
argument μ,K(μ) and E(μ) are complete elliptic integrals of the first
and second kind, respectively.

Equations (1) and (2) help to find and tune the value of J for any
given values of charge and separation. Neglecting the anti-rotating
wave terms next, we can rewrite the Hamiltonian as

H ≙ Δ(b̂†

1 b̂1 + b̂†

2 b̂2) + J(b̂†

1 b̂2 + b̂†

2 b̂1) + F(b̂†

1 + b̂1) +Ub̂
2
2

†
b̂
2
2, (4)

where Δ ≙ ω0 − ωd is the detuning of ω0 from the driving
frequency ωd.

Equation (4) gives the Hamiltonian for externally driven cou-
pled nonlinear mechanical resonators with dissipation and is sim-
ilar to the relations in the optical (photonic) context.52 However,
unlike in photonics, temperature plays a major role here due to the
lower energy of individual phonons. If we include a temperature fac-
tor again assuming it to be the same for both the resonators, and
neglect dephasing (since this is typically much smaller than decay53),
the Liouville–von Neumann master equation for the density matrix
yields

dρ̂

dt
≙ L̂ρ̂ ≙ −i∥H, ρ̂∥ + ∑

n≙1,2

γ

2
{(nth + 1)D[b̂n]ρ̂ + nthD[b̂†

n]ρ̂}, (5)

where the Lindblad operator D[Â]ρ̂ ≙ 2Âρ̂Â† − Â†Âρ̂ − ρ̂Â†Â and

nth ≙ (exp( T0

T
) − 1)−1 is the average phonon number of the

mechanical resonators at the temperature T with T0 ≙ h̵ω/KB.
Phonon states for mechanical resonator 1 are given by the

second-order correlation function as follows:

g
(2)(0) ≙ Tr(b̂†

1 b̂
†

1 b̂1b̂1ρ̂ss)
Tr(b̂†

1 b̂1ρ̂ss)
2 , (6)

where the density matrix

ρ̂ ≙ ∑N

m,n≙0 ρmn,m′ ,n′ ∣mn⟩⟨m′n′∣ (7)

is evaluated based on ∣mn⟩, m and n denoting the phonon number
in mechanical modes 1 and 2, respectively, and ρ̂ss is the steady-

state density matrix obtained by setting dρ̂
dt
≙ 0 in Eq. (5), yielding

an eigenvalue problem that can be numerically solved using the
approach in Ref. 54. In the numerical calculations reported here, m≙ n ≙ 10, large enough to ensure convergence.

III. RESULTS

It has been shown that 0.04 T0 (where T0 ≙ hω0/2πKB) is a
suitable system temperature for phonon antibunching.49 As the tem-
perature is pushed higher, antibunching fades. This puts an upper
bound on our system temperature. Given that the design in Ref. 55
conceived a compact 3 mK refrigeration in the latter part of 1980s,
with modern day machinery, this threshold of cooling capacity
should be feasible: hence, this has been chosen as the lower bound
for our system temperature. We thus take

3mK ≤ Tsys ≤ 0.04T0. (8)

The smallest system dimension (zsys) and the system temper-
ature (Tsys) are the two objectives to be maximized. We take the
largest allowed value for system temperature, i.e., (Tsys ≙ 0.04T0),
and express T0 in terms of system’s natural frequency as

Tsys ≙ f sys × β;β ≙ h

KB
≙ (1.9196 × 10−12 K s). (9)

f sys can be related to (zsys) using structural mechanics of the res-

onator.56 Using (9), f sys can be written in terms of Tsys giving us

relations between Tsys and Zsys. Through simple algebraic manipula-
tion, it is found that for all the geometries studied, trade-off curves
between Tsys and Zsys take the form

Tsys × Zsys ≙ P. (10)

This means that for a given value of Tsys, maximizing Zsys

would mean maximizing P and vice versa. The structural mechanics
expression of P depends on the geometric configuration and mate-
rial factors pertaining to the resonator design, which when grouped
and re-written gives

P ≙ αg × Pa × Pg × Pm × β. (11)

Here, αg ,Pa, and Pg are dimensionless and configuration
(geometry) dependent. αg is a numerical value dependent on
the configuration chosen, and Pa,Pg , and Pm are performance
parameters that can be tuned by changing the aspect ratio, cross-
sectional geometry, and material properties, respectively. PmandP
have dimensions of [L][T−1] and [L][K], respectively.
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TABLE I. Performance metrics and their optimal values for different geometries.

Resonator geometry αg Pa Pg Pm Pa optimal Pg optimal P(m-K) optimal

Circular membrane 2.405
2π

t
R

1
1

√
σ/ρ 0.2 1 9.47 × 10−10

Hollow rectangular beam 22.373
2π

H2

L2
1√
12

√
1−c3d
1−cd

√
E/ρ 0.01 0.371 4.72 × 10−10

Hollow circular beam 22.373
2π

D2

L2
1√
16

√
1 + r2 √

E/ρ 0.01 0.320 4.06 × 10−10
Solid rectangular beam 22.373

2π
H2

L2
1√
12

√
E/ρ 0.01 0.288 3.66 × 10−10

Solid circular beam 22.373
2π

D2

L2
1√
16

√
E/ρ 0.01 0.250 3.17 × 10−10

I-beam 22.373
2π

H2

L2
1√
12

√
1−c3+c3d
1−c+cd

√
E/ρ 0.01 0.371 4.72 × 10−10

Once the geometry configuration is chosen, αg becomes deter-
mined and the overall problem can be split into three sub-problems
pertaining to optimization of each of the individual performance
metrics Pa,Pg , and Pm. For ideally compliant structures, the material
performance metric Pm becomes the square root of specific strength√
σ/ρ, and for ideally elastic structures, it becomes the square root of

specific stiffness
√
E/ρ, where σ, ρ, and E are of the material chosen

for the linear resonator.
Here, the compliant structure studied is the circumferentially

clamped isotropic circular membrane, and elastic structures studied
are rectangular cross-sectional beams (both solid and hollow), cir-
cular cross-sectional beams (both solid and hollow), and I-beams.
Expressions for αg ,Pa,Pg , and Pm along with their optimal values
for these are listed in Table I. The fraction of the material removed
radius-wise, height-wise, and width-wise are r, c, and d, respectively
(evaluation performed at r ≙ 0.8, c ≙ 0.75, and d ≙ 0.8). With
regards tomaterial metric Pm, it is found that in circular membranes,
graphene optimizes the value of Pm to 7900m/s,57 while in beams,
diamond optimizes the value of Pm to 18 600m/s.58 The maximal

FIG. 2. Trade-off curves between Tsys and Zsys for different geometries as
discussed in Tables II and III.

value of t/R is 0.2 (for the thin disk approximation) and H/L and
D/L is 0.1 (for the slender beam approximation).

IV. DISCUSSION

Trade-off curves between Tsys and Zsys are plotted in Fig. 2,
while the results of optimizations of Zsys and Tsys values pertaining
to each of the configurations are listed in Tables II and III.

For the circular membrane, the J value is tunable and the F
value is adjusted externally. Parametric sensitivity analysis is carried
out to check the effects of non-linearity U and coupling strength
J, both of which are known to have a crucial effect on the sec-
ond order correlation function g(2)(0), which is a measure of the
antibunching in the system. The resulting variations are plotted in
Figs. 3 and 4, respectively. The results indicate that for J∗ ≙ 110,

U∗ ≙ 3 × 10−5, F∗ ≙ 10, and Δ∗ ≙ 0.29; g(2)(0) ≪ 1, which implies
strong anti-bunching. Note that J∗ ≙ J/γ; likewise, U∗, F∗, andΔ∗ are
also non-dimensional analogs generated by dividing with the decay
rate (γ).

TABLE II. Zsys values for different configurations at different Tsys values.

Configuration Zsys for 3mK Zsys for 25mK

Circular membrane 315 nm 37.9 nm
H-rectangular beam 157 nm 18.8 nm
H-circular beam 135 nm 16.2 nm
S-rectangular beam 122 nm 14.6 nm
S-circular beam 105 nm 12.7 nm
I-beam 157 nm 18.8 nm

TABLE III. Tsys values for different configurations at different Zsys values.

Configuration Tsys for 0.1 μm Zsys for 25mK

Circular membrane 9.47 mK 37.9 nm
H-rectangular beam 4.72 mK 18.8 nm
H-circular beam 4.06 mK 16.2 nm
S-rectangular beam 3.66 mK 14.6 nm
S-circular beam 3.17 mK 12.7 nm
I-beam 4.72 mK 18.8 nm
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FIG. 3. Variation of g(2)(0) with the coupling strength. Here, F ≙ 10γ and Δ
≙ 0.29γ.

From the above results, the effect of non-linearity U on g(2)(0)
can be seen in terms of two behaviors. First, increasing the value of
coupling strength J allows the devices to work at lesser non-linearity,
and the strength of antibunching reduces but still remains suffi-
ciently strong [g2(0)≪ 0.1]. Second, we note that the antibunching
performance of different configurations follows similar curves con-
sisting of a dip followed by a tail of increasing g2(0) values. We
also note here that in Ref. 59, deposition of graphene onto a sili-
con nitride substrate is shown as a feasible method of inducing and

FIG. 4. Variation of g(2)(0) with non-linearity. Here, F ≙ 10γ and Δ ≙ 0.29γ.

finely controlling the non-linearity of mechanical resonators (see
the supplementary material for a discussion of how we may achieve
the low non-linearities in the range of results reported here, using
the approach of Ref. 59). Together with our findings reported here,
suchmethods that can help modify the non-linearity without chang-
ing dimensions can be used to exert control over the strength of
antibunching.

V. CONCLUSIONS AND FURTHER WORK

This paper proposed and studied a novel design for a her-
metically sealable device, consisting of charged linear and nonlin-
ear membranes driven in the gigahertz range in vacuum setting, as
a source of antibunched single phonons. Constraints for effecting
phonon antibunching were found using the stationary Liouville–von
Neumann master equation. Using analytical calculations and mate-
rial and geometry optimization, we showed that the sizes of the
proposed system can be upscaled to the near-micrometer range in
a trade-off with the system operating temperature. We argue that if
the material properties are also optimized and the hollow rectangu-
lar beam (with central 75% height-wise and 80%width-wise material
removed) is used, device dimensions can be pushed up to 157 nm
using diamond. Graphene helps to scale up the dimensions further
to 315 nm at 3 mK. This work contributes toward making phonon-
based quantum devices more accessible and scalable. Furthermore,
for all the geometries considered, the results show that the temper-
ature requirement at 0.1 μm scale is greater than 3 mK hence above
the set lower-bound. Further and ongoing work at our group is
studying the development of density of states from the Hamiltonian,
exploring the origins of antibunching in nanomechanical resonator
systems. Approaches to fabricate and test the device proposed here
are also being initiated.

SUPPLEMENTARY MATERIAL

The supplementary material provides a detailed derivation of
the coupling strength J, as given in Eq. (2), based on the procedure
in Ref. 29 and also describes how we may achieve non-linearities U
in the range of values of interest to this work through the approach
in Ref. 59.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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