A NORTHCOTT TYPE INEQUALITY FOR BUCHSBAUM-RIM COEFFICIENTS

BALAKRISHNAN R.* AND A. V. JAYANTHAN

Abstract

In 1960, D.G. Northcott proved that if $e_{0}(I)$ and $e_{1}(I)$ denote zeroth and first Hilbert-Samuel coefficients of an \mathfrak{m}-primary ideal I in a Cohen-Macaulay local ring (R, \mathfrak{m}), then $e_{0}(I)-e_{1}(I) \leq \ell(R / I)$. In this article, we study an analogue of this inequality for Buchsbaum-Rim coefficients. We prove that if (R, \mathfrak{m}) is a two dimensional Cohen-Macaulay local ring and M is a finitely generated R-module contained in a free module F with finite co-length, then $b r_{0}(M)-b r_{1}(M) \leq \ell(F / M)$, where $b r_{0}(M)$ and $b r_{1}(M)$ denote zeroth and first Buchsbaum-Rim coefficients respectively.

1. Introduction

Let (R, \mathfrak{m}) be a Noetherian local ring of dimension $d>0$. Let $M \subset F=R^{r}$ be a finitely generated R-module such that $\ell(F / M)<\infty$, where $\ell(-)$ denote the length function. Let $\mathcal{S}(F)=\bigoplus_{n \geq 0} \mathcal{S}_{n}(F)$ denote the Symmetric algebra of F, and $\mathcal{R}(M)=\underset{n \geq 0}{\bigoplus} \mathcal{R}_{n}(M)$ denote the Rees algebra of M, which is image of the natural map from the Symmetric algebra of M to the Symmetric algebra of F. Generalizing the notion of Hilbert-Samuel function, D. A. Buchsbaum and D. S. Rim studied the function $B F(n)=\ell\left(\mathcal{S}_{n}(F) / \mathcal{R}_{n}(M)\right)$ for $n \in \mathbb{N}$. In [3], they proved that $B F(n)$ is given by a polynomial of degree $d+r-1$ for $n \gg 0$, i.e., there exists a polynomial $B P(x) \in \mathbb{Q}[x]$ such that $B F(n)=B P(n)$ for $n \gg 0$. The function $B F(n)$ is called the Buchsbaum-Rim function of M with respect to F and the polynomial $B P(n)$ is called the corresponding Buchsbaum-Rim polynomial. Following the notation used for the Hilbert-Samuel polynomial, one writes the Buchsbaum-Rim polynomial as

$$
B P_{M}(n)=\sum_{i=0}^{d+r-1}(-1)^{i} b r_{i}(M)\binom{n+d+r-i-2}{d+r-i-1} .
$$

Key words and phrases. Buchsbaum-Rim function, Buchsbaum-Rim polynomial, Northcott inequality, Rees algebra of modules.

* Supported by the Council of Scientific and Industrial Research (CSIR), India.

AMS Classification 2010: 13D40, 13A30.

The coefficients $b r_{i}(M)$ for $i=0, \ldots, d+r-1$ are known as Buchsbaum-Rim coefficients.

When $r=1$, set $M=I$, an \mathfrak{m}-primary ideal in R. In this case, Buchsbaum-Rim polynomial coincides with usual Hilbert-Samuel polynomial and its coefficients will be denoted by $e_{i}(I)$, called the Hilbert-Samuel coefficients. While the Hilbert-Samuel coefficients are very well studied objects and the relationship of its properties with the properties of the ideal and the corresponding blowup algebras are well known, there is a dearth of results in this direction on Buchsbaum-Rim coefficients. In [13], D. G. Northcott proved that

Theorem 1.1. [13, Theorem 1, 3] Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d>0$ with infinite residue field and let I be an \mathfrak{m}-primary ideal. Then
(1) $e_{0}(I)-e_{1}(I) \leq \ell(R / I)$.
(2) $e_{1}(I) \geq 0$ and the equality holds if and only if I is generated by d elements(i.e., I is a parameter ideal).
C. Huneke and A. Ooishi independently studied the equality in Theorem 1.1(1):

Theorem 1.2. ([6], [14]) Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d>0$ and let I be an \mathfrak{m}-primary ideal of R. Then $e_{0}(I)-e_{1}(I)=\ell(R / I)$ if and only if there exists a minimal reduction $J \subset I$ such that $I^{2}=J I$.

In [2], J. Brennan, B. Ulrich and W. V. Vasconcelos proved that Theorem 1.1(2) generalizes to Buchsbaum-Rim coefficient: if (R, \mathfrak{m}) is a Cohen-Macaulay ring, then $b r_{1}(M)$ is non-negative and $b r_{1}(M)$ vanishes if and only if M is a parameter module. In [5], F. Hayasaka and E. Hyry studied the Buchsbaum-Rim function of a parameter module N over a Noetherian local ring and they proved that $b r_{1}(N) \leq 0$ and equality holds if and only if the ring is Cohen-Macaulay.

Motivated by Theorems 1.1 and 1.2, we ask:

Question 1.3. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d>0, F$ be a free module of rank r and M be a submodule such that $\ell(F / M)<\infty$. Then is the inequality $b r_{0}(M)-b r_{1}(M) \leq \ell(F / M)$ true? Is it true that the equality holds if and only if the reduction number of M with respect to a minimal reduction is at most one?

In this article, we prove the inequality in the case $\operatorname{dim} R=2$ and show that the module having reduction number one is a sufficient condition for equality. We now give a short description of the paper.

In Section 2, we begin with an example to show that the Northcott type inequality does not hold true for Buchsbaum-Rim coefficients if $\operatorname{dim} R=1$. We then consider the case $\operatorname{dim} R=d \geq 2$ and $M=I_{1} \oplus \cdots \oplus I_{r} \subset R^{r}$, where I_{i} 's are \mathfrak{m}-primary ideals in R. When the Rees algebra $\mathcal{R}(M)$ is Cohen-Macaulay, we obtain an expression for the Buchsbaum-Rim coefficients $b r_{0}(M)$ and $b r_{1}(M)$ in terms of the mixed multiplicities of the ideals I_{1}, \ldots, I_{r} and derive that if $d=2$ and $r=2$, we have the equality $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$. We also prove that if $\operatorname{dim} R=2$ and M is an R submodule of $F=R^{r}$ with reduction number of M being one, then $b r_{0}(M)-b r_{1}(M)=$ $\ell(F / M)$.

In Section 3, we define an analogue of Sally module of a module with respect to a reduction. We obtain an expression for the Hilbert polynomial of the Sally module using the Buchsbaum-Rim coefficients and derive the inequality $b r_{0}(M)-b r_{1}(M) \leq$ $\ell(F / M)$ when $\operatorname{dim} R=2$. We also prove that if $\operatorname{red}(M)=1$, then the equality holds, Theorem 3.3.

In Section 4, we study the problem for modules which are direct sum of several copies of an \mathfrak{m}-primary ideal. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d \geq 2$ and I be an \mathfrak{m}-primary ideal. Let $M=I \oplus \cdots \oplus I(r$-times, $r \geq 1)$, then $b r_{0}(M)-b r_{1}(M) \leq \ell(F / M)$, Theorem 4.1. We also prove that in dimension 2 , the equality holds if and only if $\operatorname{red}(M)=1$, Corollary 4.3. We also compute some examples to illustrate the Northcott inequality.

Acknowledgement: The authors would like to thank E. Hyry, S. Zarzuela and W. V. Vasconcelos for going through a first draft and making many useful suggestions for improvement and further research. We are also thankful to the referee for a meticulous reading and suggesting several improvements.

2. Reduction number one

In this section, we obtain certain sufficient conditions for the equality $b r_{0}(M)-$ $b r_{1}(M)=\ell(F / M)$. We begin by recalling some basic terminologies which are essential for studying Buchsbaum-Rim polynomial. Let $M \subseteq F=R^{r}$ be such that $\ell(F / M)<\infty$. Let N be a submodule of M. We say that N is reduction of M
if Rees algebra $\mathcal{R}(M)$ is integral over the R-subalgebra $\mathcal{R}(N)$. Equivalently this condition is expressed as $\mathcal{R}_{n+1}(M)=N \mathcal{R}_{n}(M)$ for $n \gg 0$, where the multiplication is done as R-submodules of $\mathcal{R}(M)$. The least integer s such that $\mathcal{R}_{s+1}(M)=$ $N \mathcal{R}_{s}(M)$ is called the reduction number of M with respect to N, denoted as $\operatorname{red}_{N}(M)$. The reduction number of the module M, denoted $\operatorname{red}(M)$, is defined as $\operatorname{red}(M)=$ $\min \left\{\operatorname{red}_{N}(M): N\right.$ is a minimal reduction of M$\}$. If N is a submodule of F generated by $d+r-1$ elements such that $\ell(F / N)<\infty$, then N is said to be a parameter module. It was proved in [2] that if $\ell(F / M)<\infty$, then there exists minimal reduction generated by $d+r-1$ elements. For more details on minimal reductions, we refer the reader to [7] and [17].

In the following example, we show that, for 1-dimensional Cohen-Macaulay local rings, the Northcott type inequality does not hold for Buchsbaum-Rim coefficients.

Example 2.1. Let $R=k \llbracket X, Y\rceil] /\left(X^{2}\right)$ and $I=(x, y)$, where $x=\bar{X}$ and $y=\bar{Y}$, and k is a field. Then R is a 1-dimensional Cohen-Macaulay local ring. It can be seen that $\ell\left(R / I^{n}\right)=\ell\left(k \llbracket X, Y \rrbracket /\left(X^{2},(X, Y)^{n}\right)\right)=2 n-1$. Therefore, $e_{0}=2$ and $e_{1}=1$.

Let $F=R \oplus R$ and $M=I \oplus I$. Then it follows from [15, Theorem 2.5.2] that the Buchsbaum-Rim polynomial of M is given by

$$
\begin{aligned}
B P(n) & =\left[e_{0} n-e_{1}\right]\binom{n+1}{1}=2 e_{0}\binom{n+1}{2}-e_{1}\binom{n}{1}-e_{1} \\
& =4\binom{n+1}{2}-\binom{n}{1}-1 .
\end{aligned}
$$

Hence we have $\operatorname{br}_{0}(M)=4$ and $b r_{1}(M)=1$. Therefore

$$
b r_{0}-b r_{1}=3>2=\ell(F / M)
$$

Now we study the Buchsbaum-Rim polynomial of a special class of modules, namely a direct sum of \mathfrak{m}-primary ideals in a Cohen-Macaulay local ring. Let (R, \mathfrak{m}) be a d-dimensional Noetherian local ring and $\mathbf{I}=I_{1}, \ldots, I_{r}$ be a sequence of \mathfrak{m}-primary ideals. For $\underline{u}=\left(u_{1}, \ldots, u_{r}\right) \in \mathbb{N}^{r}$, let $\mathbf{I}^{\underline{u}}=I_{1}^{u_{1}} \cdots I_{r}^{u_{r}}$. Then $\ell\left(R / \mathbf{I}^{\underline{u}}\right)$ is given by a polynomial $P(\underline{u})$ in r variables of total degree d for $u_{i} \gg 0$ for each i, [1]. Write the Bhattacharya polynomial of \mathbf{I} as

$$
P_{\mathbf{I}}(\underline{u})=\sum_{\alpha \in \mathbb{N}^{r},|\alpha| \leq d} e_{\alpha}(\mathbf{I})\binom{u_{1}}{\alpha_{1}} \cdots\binom{u_{r}}{\alpha_{r}} .
$$

Here $e_{\alpha}(\mathbf{I})$ with $|\alpha|=d$ are known as the mixed multiplicities of I_{1}, \ldots, I_{r}.

For $i=0, \ldots, d$, set $E_{i}=\sum_{\alpha \in \mathbb{N}^{r},|\alpha|=i} e_{\alpha}(\mathbf{I})$. Below, we obtain an expression for the Buchsbaum-Rim multiplicity and the first Buchsbaum-Rim coefficient in terms of the Bhattacharya coefficients.

Proposition 2.2. Let (R, \mathfrak{m}) be d-dimensional Cohen-Macaulay local ring, I_{1}, \ldots, I_{r} be \mathfrak{m}-primary ideals and $M=I_{1} \oplus \cdots \oplus I_{r} \subset R^{r}$. If $\ell\left(R / \boldsymbol{I}^{\underline{u}}\right)=P_{I}(\underline{u})$ for all $\underline{u} \in \mathbb{N}^{r}$, then $b r_{0}(M)=E_{d}$ and $b r_{1}(M)=(d-1) E_{d}-E_{d-1}$.

Proof. Let $B P(n)$ denote the Buchsbaum-Rim polynomial corresponding to the function $B F(n)=\ell\left(\mathcal{S}_{n}(F) / \mathcal{R}_{n}(M)\right)$. First note that $\mathcal{S}(F) \cong R\left[t_{1}, \ldots, t_{r}\right]$ and $\mathcal{R}(M) \cong$ $R\left[I_{1} t_{1}, \ldots, I_{r} t_{r}\right]$, where t_{1}, \ldots, t_{r} are indeterminates over R. Therefore $B F(n)=$ $\sum_{\underline{u} \in \mathbb{N}^{r},|\underline{u}|=n} \ell\left(R / \mathbf{I}^{\underline{u}}\right)$. Hence for all $n \in \mathbb{N}$ we have

$$
\begin{aligned}
B P(n) & =B F(n) \\
& =\sum_{\underline{u} \in \mathbb{N}^{r}, \mid \underline{|u|=n}} P_{\mathbf{I}}(\underline{u}) \\
& =\sum_{\underline{u} \in \mathbb{N}^{r},|\underline{u}|=n} \sum_{\underline{\alpha} \in \mathbb{N}^{r},|\underline{\alpha}| \leq d} e_{\underline{\alpha}}(\mathbf{I})\binom{u_{1}}{\alpha_{1}} \cdots\binom{u_{r}}{\alpha_{r}} \\
& =\sum_{\underline{\alpha} \in \mathbb{N}^{r},|\underline{\alpha}| \leq d} e_{\underline{\alpha}(\mathbf{I})} \sum_{\underline{u} \in \mathbb{N}^{r},|\underline{u}|=n}\binom{u_{1}}{\alpha_{1}} \cdots\binom{u_{r}}{\alpha_{r}} \\
& =\sum_{\underline{\alpha} \in \mathbb{N}^{r},|\underline{\alpha}| \leq d} e_{\underline{\alpha}(\mathbf{I})\binom{n+r-1}{|\underline{\alpha}|+r-1}}=E_{d}\binom{n+r-1}{d+r-1}+E_{d-1}\binom{n+r-1}{d+r-2}+\cdots
\end{aligned}
$$

By using Pascal's identity repeatedly, we observe that

$$
\binom{n+r-1}{d+r-1}=\binom{n+d+r-2}{d+r-1}-\left[\binom{n+d+r-3}{d+r-2}+\cdots+\binom{n+r-1}{d+r-2}\right] .
$$

Hence $B P(n)=E_{d}\binom{n+d+r-2}{d+r-1}+\left[E_{d-1}-(d-1) E_{d}\right]\binom{n+d+r-3}{d+r-2}+\cdots$. It follows that $b r_{0}(M)=E_{d}$ and $b r_{1}(M)=(d-1) E_{d}-E_{d-1}$.

Note that if the $\mathcal{R}(M)$ Cohen-Macaulay, then by [9, Theorem 6.1], $\ell\left(R / \mathbf{I}^{\underline{u}}\right)=P_{\mathbf{I}}(\underline{u})$ for all $\underline{u} \in \mathbb{N}^{r}$ and hence $B F(n)=B P(n)$ for all $n \geq 0$. As a consequence we obtain the equality $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$:

Corollary 2.3. Let (R, \mathfrak{m}) be a 2 -dimensional Cohen-Macaulay local ring with infinite residue field. Let I and J be \mathfrak{m}-primary ideals in R. Let and $M=I \oplus J \subset R \oplus R$. If $\mathcal{R}(M)$ is Cohen-Macaulay, then $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$.

Proof. By applying previous proposition with $d=2$ and $r=2$, we get $b r_{0}(M)-$ $b r_{1}(M)=E_{2}-\left(E_{2}-E_{1}\right)=E_{1}=e_{10}+e_{01}$. Since $\mathcal{R}(M)$ is Cohen-Macaulay, it follows from [10, Theorem 6.3] that $e_{10}=\ell(R / I)$ and $e_{01}=\ell(R / J)$. Therefore, $b r_{0}(M)-b r_{1}(M)=\ell(R / I)+\ell(R / J)=\ell(F / M)$.

Note that the above Theorem can also be derived from Theorem 2.10. We have provided the above proof as it is independent and involves a different technique.

Remark 2.4. Let (R, \mathfrak{m}) be a two dimensional Cohen-Macaulay local ring, I_{1}, \ldots, I_{r} be \mathfrak{m}-primary ideals and $M=I_{1} \oplus \cdots \oplus I_{r}$. Let $\operatorname{jr}\left(I_{i} \mid I_{j}\right)$ denote the joint reduction number of I_{i} and I_{j} (we refer the reader to [8] and [18] for definition and some basic results concerning joint reductions). It is proved in [16, Corollary 4.5] that if $\operatorname{jr}\left(I_{i} \mid I_{j}\right)=0$ for any $i, j \in\{1, \ldots, r\}$, then $\mathcal{R}(M)$ is Cohen-Macaulay. We would like to observe here that the converse is also true. Suppose $\mathcal{R}(M)$ is Cohen-Macaulay. Then a modification of [12, Theorem 6.1] gives that $\mathcal{R}\left(I_{i_{1}} \oplus \cdots \oplus I_{i_{s}}\right)$ is CohenMacaulay for any $\left\{i_{1}, \ldots, i_{s}\right\} \subset\{1, \ldots, r\}$. In particular, $\mathcal{R}\left(I_{i}\right)$ is Cohen-Macaulay for each $i=1, \ldots, r$ and $\mathcal{R}\left(I_{i} \oplus I_{j}\right)$ is Cohen-Macaulay for $\{i, j\} \subset\{1, \ldots, r\}$. This implies that $\operatorname{jr}\left(I_{i} \mid I_{j}\right)=0$ for any $1 \leq i, j \leq r$.

In the following example, we compute the Buchsbaum-Rim coefficients.

Example 2.5. Let $R=k[[X, Y]], I=\mathfrak{m}=(X, Y), J=\left(X^{2}, Y\right)$. Then $\operatorname{red}(I)=$ $\operatorname{red}(J)=0$. Also $(Y) I+(X) J=I J$ implying $\operatorname{jr}(I \mid J)=0$ so that the Rees algebra $R(I, J) \cong \mathcal{R}(I \oplus J)$ is Cohen-Macaulay by [10, Theorem 6.3]. Set $F=R \oplus R$ and $M=I \oplus J$. Therefore, we have $B F(n)=B P(n)$ for all n. Using any of the computational commutative algebra packages, it can be seen that $\ell\left(\mathcal{S}_{1}(F) / \mathcal{R}_{1}(M)\right)=$ $3, \ell\left(\mathcal{S}_{2}(F) / \mathcal{R}_{2}(M)\right)=13, \ell\left(\mathcal{S}_{3}(F) / \mathcal{R}_{3}(M)\right)=34, \ell\left(\mathcal{S}_{4}(F) / \mathcal{R}_{4}(M)\right)=70$. In turn, we get the Buchsbaum-Rim polynomial as $B P(n)=4\binom{n+2}{3}-1\binom{n+1}{2}$. Hence br $r_{0}(M)-$ $b r_{1}(M)=4-1=3=\ell(F / M)$.
D. Katz and V. Kodiyalam studied the Cohen-Macaulayness of the Rees algebra of modules over two dimensional regular local rings. They proved:

Theorem 2.6. [11, Corollary 4.2] Let (R, \mathfrak{m}) be a two dimensional regular local ring and M be a finitely generated torsion free R-module, then the following are equivalent:
(1) $N M=\mathcal{R}_{2}(M)$ for every minimal reduction $N \subset M$;
(2) The Rees algebra $\mathcal{R}(M)$ is Cohen-Macaulay;
(3) $\ell\left(\mathcal{S}_{n+1}(F) / \mathcal{R}_{n+1}(M)\right)=b r_{0}(M)\binom{n+r+1}{r+1}-\ell(M / N)\binom{n+r}{r}$ for all $n \geq 0$ and every minimal reduction $N \subset M$.

Since N is a parameter module and a minimal reduction of $M, b r_{0}(M)=b r_{0}(N)=$ $\ell(F / N)$, [2, Theorem 3.1]. Hence in this case $b r_{0}(M)-b r_{1}(M)=\ell(F / N)-\ell(M / N)=$ $\ell(F / M)$. A. Simis, B. Ulrich and W. V. Vasconcelos proved that if (R, \mathfrak{m}) is a two dimensional Cohen-Macaulay local ring and $M \subset F=R^{r}$ is a module with $\ell(F / M)<$ ∞, then $\mathcal{R}(M)$ is Cohen-Macaulay if and only if $\operatorname{red}(M) \leq 1$, [16, Proposition 4.4]. By adopting the proof of Katz and Kodiyalam, we prove (1) implies (3) of the above theorem in the case of 2-dimensional of Cohen-Macaulay rings. Though the proof works on the same lines, the two isomorphisms used in the proof are justified by a result of F. Hayasaka and E. Hyry. We recall the result from [4]. For an R-module M, let \widetilde{M} denote the matrix whose columns correspond to the generators of M with respect to a fixed basis of F. The matrix \widetilde{M} is said to be perfect if the zeroth Fitting ideal of M is a proper ideal with maximal grade.

Theorem 2.7. [4, Theorem 4.4] Let R be a Noetherian ring and F an R-free module of rank $r>0$. Let M be a submodule of F such that \widetilde{M} is a perfect matrix of size $r \times(r+1)$. Then the natural surjective homomorphism

$$
\phi_{1}:(F / M)\left[Y_{1}, \ldots, Y_{r+1}\right] \rightarrow G_{1}(M)
$$

is an isomorphism, where $G_{1}(M)=F \mathcal{R}(M) / \mathcal{R}(M)^{+}$.
In particular the R-module $F \mathcal{R}_{n}(M) / \mathcal{R}_{n+1}(M)$ is a direct sum of $\binom{n+r}{r}$ copies of F / M.

Remark 2.8. It is known that if M is a parameter module, then the matrix \widetilde{M} is perfect, [4]. So in particular, when the ring R is a two dimensional Cohen-Macaulay local ring and M is a parameter module, above theorem is true, 4, Corollary 4.5].

Lemma 2.9. Let (R, \mathfrak{m}) be a two dimensional Cohen-Macaulay local ring with infinite residue field and $M \subset F=R^{r}$ be a finitely generated R-module with $\ell(F / M)<\infty$. Let $N \subset M$ be a minimal reduction generated by $\left\{c_{1}, \ldots, c_{r+1}\right\}$. If $k=\binom{n+r}{r}$ and ϕ : $F^{k} \rightarrow F \mathcal{R}_{n}(N)$ be the surjective R-module homomorphism defined by $\phi\left(f_{1}, \ldots, f_{k}\right)=$
$\sum_{\substack{i=1 \\ i_{1}+\cdots+i_{r+1}=n}}^{k} f_{i} c_{1}^{i_{1}} c_{2}^{i_{2}} \cdots c_{r+1}^{i_{r+1}}$, then the corresponding induced maps

$$
\phi_{1}:\left(\frac{F}{N}\right)^{k} \rightarrow \frac{F \mathcal{R}_{n}(N)}{\mathcal{R}_{n+1}(N)} \quad \text { and } \quad \phi_{2}:\left(\frac{F}{M}\right)^{k} \rightarrow \frac{F \mathcal{R}_{n}(N)}{M \mathcal{R}_{n}(N)}
$$

are isomorphisms.

Proof. It follows from the previous remark that ϕ_{1} is an isomorphism. Surjectivity of ϕ_{2} is clear. For an element $f \in F$, let \bar{f} denote its image in F / M and \widetilde{f} denote its image in F / N. Suppose $\phi_{2}\left(\bar{f}_{1}, \ldots, \bar{f}_{k}\right)=0$. This implies

$$
\sum_{\substack{i=1 \\ i_{1}+\cdots+i_{r+1}=n}}^{k} f_{i} c_{1}^{i_{1}} c_{2}^{i_{2}} \cdots c_{r+1}^{i_{r+1}}=\sum_{\substack{i=1 \\ i_{1}+\cdots+i_{r+1}=n}}^{k} g_{i} c_{1}^{i_{1}} c_{2}^{i_{2}} \cdots c_{r+1}^{i_{r+1}} \text { for some } g_{i} \in M
$$

This implies that $\phi_{1}\left(\widetilde{f_{1}-g_{1}}, \ldots, \widetilde{f_{k}-g_{k}}\right)=0$. Since ϕ_{1} is injective, it follows that $f_{i}-g_{i} \in N \subset M$ for all $i=1, \ldots k$. Hence $f_{i} \in M$ for $i=1, \ldots, k$.

Now we prove (1) implies (3) in Theorem 2.6 for two dimensional Cohen-Macaulay rings.

Theorem 2.10. Let (R, \mathfrak{m}) be a two dimensional Cohen-Macaulay local ring with infinite residue field and $M \subset F=R^{r}$ be a finitely generated R-module with $\ell(F / M)<$ ∞. If $\operatorname{red}_{N}(M)=1$ for a minimal reduction $N \subset M$, then for all $n \geq 0$,

$$
\ell\left(\mathcal{S}_{n+1}(F) / \mathcal{R}_{n+1}(M)\right)=\ell(F / N)\binom{n+r+1}{r+1}-\ell(M / N)\binom{n+r}{r}
$$

In particular, if for any minimal reduction N of $M \operatorname{red}_{N}(M)=1$, then $b r_{0}(M)-$ $b r_{1}(M)=\ell(F / M)$ and $b r_{i}(M)=0$ for all $i=2, \ldots, r+1$.

Proof. Since $\operatorname{red}_{N}(M)$ is one, we have $\mathcal{R}_{2}(M)=N \mathcal{R}_{1}(M)$. This implies $\mathcal{R}_{n+1}(M)=$ $N \mathcal{R}_{n}(M)$ for all $n \geq 1$. By induction, one can see that $\mathcal{R}_{n+1}(M)=M \mathcal{R}_{n}(N)$ for all $n \geq 0$. Consider the following short exact sequences of R -modules with natural maps

$$
\begin{aligned}
0 \longrightarrow \frac{\mathcal{S}_{1}(F) \mathcal{R}_{n}(N)}{\mathcal{R}_{1}(M) \mathcal{R}_{n}(N)} \longrightarrow \frac{\mathcal{S}_{n+1}(F)}{\mathcal{R}_{n+1}(M)} \longrightarrow \frac{\mathcal{S}_{n+1}(F)}{\mathcal{S}_{1}(F) \mathcal{R}_{n}(N)} \longrightarrow 0 \\
0 \longrightarrow \frac{\mathcal{S}_{1}(F) \mathcal{R}_{n}(N)}{\mathcal{R}_{n+1}(N)} \longrightarrow \frac{\mathcal{S}_{n+1}(F)}{\mathcal{R}_{n+1}(N)} \longrightarrow \frac{\mathcal{S}_{n+1}(F)}{\mathcal{S}_{1}(F) \mathcal{R}_{n}(N)} \longrightarrow 0
\end{aligned}
$$

By additivity of the length function on short exact sequences, we get

$$
\ell\left(\frac{\mathcal{S}_{n+1}(F)}{\mathcal{R}_{n+1}(M)}\right)=\ell\left(\frac{\mathcal{S}_{n+1}(F)}{\mathcal{R}_{n+1}(N)}\right)+\ell\left(\frac{\mathcal{S}_{1}(F) \mathcal{R}_{n}(N)}{\mathcal{R}_{1}(M) \mathcal{R}_{n}(N)}\right)-\ell\left(\frac{\mathcal{S}_{1}(F) \mathcal{R}_{n}(N)}{\mathcal{R}_{n+1}(N)}\right)
$$

Let $k=\binom{n+r}{r}$. By Lemma [2.9, $\left(\frac{F}{M}\right)^{k} \cong \frac{F \mathcal{R}_{n}(N)}{M \mathcal{R}_{n}(N)}$ and $\left(\frac{F}{N}\right)^{k} \cong \frac{F \mathcal{R}_{n}(N)}{\mathcal{R}_{n+1}(N)}$. Hence $\ell\left(\frac{F \mathcal{R}_{n}(N)}{M \mathcal{R}_{n}(N)}\right)=\ell(F / M)\binom{n+r}{r}$ and $\ell\left(\frac{F \mathcal{R}_{n}(N)}{\mathcal{R}_{n+1}(N)}\right)=\ell(F / N)\binom{n+r}{r}$. Since N is a parameter module, by [2, Theorem 3.4], $\ell\left(\mathcal{S}_{n+1}(F) / \mathcal{R}_{n+1}(N)\right)=b r_{0}(N)\binom{n+r+1}{r+1}=b r_{0}(M)\binom{n+r+1}{r+1}$. Therefore

$$
\begin{aligned}
\ell\left(\frac{\mathcal{S}_{n+1}(F)}{\mathcal{R}_{n+1}(M)}\right) & =b r_{0}(M)\binom{n+r+1}{r+1}+[\ell(F / M)-\ell(F / N)]\binom{n+r}{r} \\
& =b r_{0}(M)\binom{n+r+1}{r+1}-\ell(M / N)\binom{n+r}{r} \\
& =\ell(F / N)\binom{n+r+1}{r+1}-\ell(M / N)\binom{n+r}{r} .
\end{aligned}
$$

The second assertion now follows from the above equality.
The main hurdle in proving a d-dimensional version of the above theorem is in generalizing Theorem [2.7, which is not known for modules M with \widetilde{M} being a perfect matrix of size $r \times(d+r-1)$, where $d=\operatorname{dim} R$.

3. Main Result

In this section, we prove an analogue of the Northcott inequality for submodules of free modules over 2-dimensional Cohen-Macaulay rings, which have finite co-length. W. V. Vasconcelos introduced the notion of Sally modules $S_{J}(I)$, where I is an ideal with a reduction J, to study the interplay between the depth properties of the blowup algebras and the properties of the Hilbert-Samuel coefficients. The Sally module $S_{J}(I)$ of I with respect to J is the $\mathcal{R}(J)$-module defined by the following short exact sequence

$$
0 \rightarrow I \mathcal{R}(J) \rightarrow I \mathcal{R}(I) \rightarrow S_{J}(I):=\underset{n \geq 0}{\oplus} I^{n+1} / I J^{n} \rightarrow 0
$$

We refer the reader to [17] for basic properties of Sally modules. This definition can be extended to inclusion of graded algebras, [17]. As we have $\oplus_{n} \mathcal{R}_{n}(N) \subseteq \oplus_{n} \mathcal{R}_{n}(M)$ for any reduction N of M, we define the Sally module in an analogous manner:

Definition 3.1. Let (R, \mathfrak{m}) be a Noetherian local ring and $M \subset F=R^{r}$ be a finitely generated R-module. Let $N \subset M$ be a R-submodule. Then Sally module of M with respect to N is defined as $S_{N}(M):=\underset{n \geq 1}{\oplus} \frac{\mathcal{R}_{n+1}(M)}{M \mathcal{R}_{n}(N)}$.

We note that $S_{N}(M)$ is zero if and only if $\operatorname{red}_{N}(M)$ is at most one. Note also that $\mathcal{R}(N)$ is a finitely generated standard graded algebra over R and $S_{N}(M)$ is a finitely
generated module over $\mathcal{R}(N)$. Suppose $M \subset F=R^{r}$ is such that $\ell(F / M)<\infty$ and N is a minimal reduction of M. Then the Hilbert function theory for graded modules says that Hilbert function, $H(n)=\ell_{R}\left(\frac{\mathcal{R}_{n+1}(M)}{M \mathcal{R}_{n}(M)}\right)$ is given by a polynomial for $n \gg 0$ of degree equal to the dimension of $S_{N}(M)$. Since $\mathfrak{m} \mathcal{R}(N) \subset \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}\left(S_{N}(M)\right)$ it follows that $\operatorname{dim} S_{N}(M) \leq d+r-1$. In the following Theorem we relate Hilbert function of $S_{N}(M)$ and Buchsbaum-Rim function of module M in 2 dimensional Cohen-Macaulay ring. As a consequence we obtain the Northcott inequality. The proof is analogous to the corresponding results in Section 2.1.2 of [17].

Theorem 3.2. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension 2 with infinite residue field and $M \subseteq F=R^{r}$ with $\ell(F / M)<\infty$. Let the Buchsbaum-Rim polynomial corresponding to the Buchsbaum-Rim function $B F(n)=\ell\left(\frac{\mathcal{S}_{n}(F)}{\mathcal{R}_{n}(M)}\right)$ be given by

$$
B P(n)=b r_{0}(M)\binom{n+r}{r+1}-b r_{1}(M)\binom{n+r-1}{r}+\cdots+(-1)^{r+1} b r_{r+1}(M)
$$

Suppose $N \subseteq M$ is a minimal reduction and $S=S_{N}(M)$ be the corresponding Sally module, then for all $n \geq 0$,

$$
B F(n)=b r_{0}(M)\binom{n+r}{r+1}+\left[\ell(F / M)-b r_{0}(M)\right]\binom{n+r-1}{r}-\ell\left(S_{n-1}\right) .
$$

Proof. Consider the following two short exact sequences of R-modules

$$
\begin{gathered}
0 \longrightarrow \frac{M \mathcal{R}_{n-1}(N)}{\mathcal{R}_{n}(N)} \longrightarrow \frac{\mathcal{R}_{n}(M)}{\mathcal{R}_{n}(N)} \longrightarrow \frac{\mathcal{R}_{n}(M)}{M \mathcal{R}_{n-1}(N)} \longrightarrow 0, \\
0 \longrightarrow \frac{M \mathcal{R}_{n-1}(N)}{\mathcal{R}_{n}(N)} \longrightarrow \frac{F \mathcal{R}_{n-1}(N)}{\mathcal{R}_{n}(N)} \longrightarrow \frac{F \mathcal{R}_{n-1}(N)}{M \mathcal{R}_{n-1}(N)} \longrightarrow 0 .
\end{gathered}
$$

Set $k=\binom{n+r}{r}$. By Lemma [2.9, it follows that $\ell\left(\frac{F \mathcal{R}_{n}(N)}{M \mathcal{R}_{n}(N)}\right)=\ell(F / M)\binom{n+r}{r}$ and $\ell\left(\frac{F \mathcal{R}_{n}(N)}{\mathcal{R}_{n+1}(N)}\right)=\ell(F / N)\binom{n+r}{r}$. Therefore we have

$$
\begin{aligned}
B F(n)= & \ell\left(\frac{\mathcal{S}_{n}(F)}{\mathcal{R}_{n}(M)}\right) \\
= & \ell\left(\frac{\mathcal{S}_{n}(F)}{\mathcal{R}_{n}(N)}\right)-\ell\left(\frac{\mathcal{R}_{n}(M)}{\mathcal{R}_{n}(N)}\right) \\
= & \ell\left(\frac{\mathcal{S}_{n}(F)}{\mathcal{R}_{n}(N)}\right)+\ell\left(\frac{F \mathcal{R}_{n-1}(N)}{M \mathcal{R}_{n-1}(N)}\right)-\ell\left(\frac{F \mathcal{R}_{n-1}(N)}{\mathcal{R}_{n}(N)}\right)-\ell\left(\frac{\mathcal{R}_{n}(M)}{M \mathcal{R}_{n-1}(N)}\right) \\
= & b r_{0}(N)\binom{n+r}{r+1}+\ell\left(\frac{F}{M}\right)\binom{n+r-1}{r} \\
& -\ell\left(\frac{F}{N}\right)\binom{n+r-1}{r}-\ell\left(\frac{\mathcal{R}_{n}(M)}{M \mathcal{R}_{n-1}(N)}\right) \\
= & b r_{0}(M)\binom{n+r}{r+1}+\left[\ell(F / M)-b r_{0}(M)\right]\binom{n+r-1}{r}-\ell\left(S_{n-1}\right) .
\end{aligned}
$$

We now derive the Northcott type inequality for the Buchsbaum-Rim coefficients in 2-dimensional Cohen-Macaulay local rings.

Theorem 3.3. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $2, M \subset F=$ R^{r} be such that $\ell(F / M)<\infty$. Then $b r_{0}(M)-b r_{1}(M) \leq \ell(F / M)$. If the reduction number of M is at most 1 , then the equality holds.

Proof. Let $B P(n)$ denote Buchsbaum-Rim polynomial of M. Then by the previous theorem for $n \gg 0$ we get,

$$
\begin{aligned}
\ell\left(S_{n-1}\right)= & b r_{0}(M)\binom{n+r}{r+1}+\left[\ell(F / M)-b r_{0}(M)\right]\binom{n+r-1}{r}-B P(n) \\
= & {\left[\ell(F / M)-b r_{0}(M)+b r_{1}(M)\right]\binom{n+r-1}{r}-b r_{2}(M)\binom{n+r-2}{r-1} } \\
& +\cdots+(-1)^{r} b r_{r+1} .
\end{aligned}
$$

This implies $\ell(F / M)-b r_{0}(M)+b r_{1}(M)$ is non-negative, i.e., $b r_{0}(M)-b r_{1}(M) \leq$ $\ell(F / M)$.

If for a minimal reduction N of $M, \operatorname{red}_{N}(M) \leq 1$, then $S_{N}(M)=0$ and consequently $\ell(F / M)-b r_{0}(M)+b r_{1}(M)=0$, i.e., $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$.

4. Direct sum of ideals

In this section we consider the modules M which are direct sum of several copies of an \mathfrak{m}-primary ideal I. We explicitly compute $b r_{0}(M)$ and $b r_{1}(M)$ in terms of $e_{0}(I)$
and $e_{1}(I)$. As a consequence, we prove the Northcott inequality in this case. We also prove that in dimension 2, the Northcott equality holds if and only if the reduction number is at most 1 .

Theorem 4.1. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d \geq 2$ and I be an \mathfrak{m}-primary ideal. For $r \in \mathbb{N}$, set $F=R^{r}$ and $M=I \oplus \cdots \oplus I$ (r times). Then $\left.b r_{0}(M)-b r_{(} M\right) \leq \ell(F / M)$.

Proof. Let $P_{I}(n)=\sum_{i=0}^{d} e_{i}\binom{n+d-i-1}{d-i}$ be the Hilbert-Samuel polynomial of I. Then by [15, Theorem 2.5.2], the Buchsbaum-Rim polynomial is given by

$$
\begin{aligned}
B P(n)= & P_{I}(n)\binom{n+r-1}{r-1} \\
= & {\left[e_{0}\binom{n+d-1}{d}-e_{1}\binom{n+d-2}{d-1}+\cdots\right]\binom{n+r-1}{r-1} } \\
= & e_{0} \frac{(d+r-1)!}{d!(r-1)!}\binom{n+d+r-2}{d+r-1} \\
& -\left[e_{0}(d-1) \frac{(d+r-2)!}{d!(r-2)!}+e_{1} \frac{(d+r-2)!}{(d-1)!(r-1)!}\right]\binom{n+d+r-3}{d+r-2}+\cdots
\end{aligned}
$$

Therefore, $b r_{0}(M)=e_{0}\binom{d+r-1}{r-1}$ and $b r_{1}(M)=e_{0}(d-1)\binom{d+r-2}{r-2}+e_{1}\binom{d+r-2}{r-1}$. We now split the proof into two cases:

Case 1: $d=2$
In this case, we have $b r_{0}(M)=e_{0}\binom{r+1}{2}$ and $b r_{1}(M)=e_{0}\binom{r}{2}+e_{1} r$. Hence $b r_{0}(M)-$ $b r_{1}(M)=e_{0} r-e_{1} r \leq r \ell(R / I)=\ell(F / M)$.

Case 2: $d \geq 3$
Let $r=2$. We then have, $b r_{0}(M)=e_{0}(d+1)$ and $b r_{1}(M)=e_{0}(d-1)+e_{1} d$. Therefore, $b r_{0}(M)-b r_{1}(M)=2 e_{0}-d e_{1}=2\left(e_{0}-e_{1}\right)-(d-2) e_{1} \leq 2 \ell(R / I)=\ell(F / M)$.

Note that in this case, $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$ if and only if $e_{1}=0$ if and only if I is a parameter ideal.

Now let $r \geq 3$. We then have,

$$
\begin{aligned}
b r_{0}(M) & -b r_{1}(M)-\ell(F / M) \\
& =e_{0}\left[\binom{d+r-1}{r-1}-(d-1)\binom{d+r-2}{r-2}\right]-e_{1}\binom{d+r-2}{r-1}-r \ell(R / I) .
\end{aligned}
$$

If $d=3$ and $r=3$, then the above expression becomes

$$
\begin{aligned}
10 e_{0}-8 e_{0}-6 e_{1}-3 \ell(R / I) & =2\left(e_{0}-e_{1}\right)-4 e_{1}-3 \ell(R / I) \\
& \leq-4 e_{1}-\ell(R / I) \leq 0 .
\end{aligned}
$$

Since (R, \mathfrak{m}) is Cohen-Macaulay, $e_{1} \geq 0$. Therefore, to prove the Northcott inequality, it is enough to show that

$$
\begin{equation*}
\left[\binom{d+r-1}{r-1}-(d-1)\binom{d+r-2}{r-2}\right] e_{0}-r \ell(R / I) \leq 0 \tag{1}
\end{equation*}
$$

Considering the coefficient of e_{0} in the above expression, we get

$$
\begin{aligned}
\binom{d+r-1}{r-1}-(d-1)\binom{d+r-2}{r-2} & =\binom{d+r-2}{r-2}\left[\frac{d+r-1}{r-1}-(d-1)\right] \\
& =\binom{d+r-2}{r-2}\left[2-\frac{r-2}{r-1} d\right]
\end{aligned}
$$

It is a simple verification to see that this expression is non-positive, and hence (1) holds, for $d=3 ; r \geq 4$ and $d \geq 4 ; r \geq 3$.

Below we show that the direct sum of parameter ideal, in rank 2, has reduction number one.

Proposition 4.2. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d \geq 2$, $I=\left(a_{1}, \ldots, a_{d}\right)$ be a parameter ideal and $M=I \oplus I$. Then the submodule N of M generated by the columns of the matrix $\left[\begin{array}{ccccc}a_{1} & a_{2} & \cdots & a_{d} & 0 \\ 0 & a_{1} & \cdots & a_{d-1} & a_{d}\end{array}\right]$ is a minimal reduction of M with $\operatorname{red}_{N}(M)=1$.

Proof. Using the isomorphism $\mathcal{R}(M) \cong R\left[I t_{1}, I t_{2}\right]$, we move all the computations to the bigraded Rees algebra. To prove the assertion, it is enough to show that

$$
\begin{equation*}
I^{2} t_{1}^{2}+I^{2} t_{1} t_{2}+I^{2} t_{2}^{2}=\left(a_{1} t_{1}, a_{2} t_{1}+a_{1} t_{2}, \ldots, a_{d} t_{1}+a_{d-1} t_{2}, a_{d} t_{2}\right)\left(I t_{1}+I t_{2}\right) \tag{2}
\end{equation*}
$$

Set $L=\left(a_{1} t_{1}, a_{2} t_{1}+a_{1} t_{2}, \ldots, a_{d} t_{1}+a_{d-1} t_{2}, a_{d} t_{2}\right)\left(I t_{1}+I t_{2}\right)$. We show that for any $1 \leq i, j \leq d, a_{i} a_{j} t_{1}^{2}, a_{i} a_{j} t_{1} t_{2}, a_{i} a_{j} t_{2}^{2}$ belong to L. First note that for all $1 \leq i, j \leq d$ the elements $a_{1} a_{j} t_{1}^{2}, a_{1} a_{j} t_{1} t_{2}, a_{i} a_{d} t_{1} t_{2}, a_{i} a_{d} t_{2}^{2}$ are all in L. Consider the following set of
equations:

$$
\begin{aligned}
a_{i} a_{j} t_{1}^{2} & =a_{j} t_{1}\left(a_{i} t_{1}+a_{i-1} t_{2}\right)-a_{j} a_{i-1} t_{1} t_{2} \\
a_{j} a_{i-1} t_{1} t_{2} & =a_{j} t_{2}\left(a_{i-1} t_{1}+a_{i-2} t_{2}\right)-a_{j} a_{i-2} t_{2}^{2} \\
a_{j} a_{i-2} t_{2}^{2} & =a_{i-2} t_{2}\left(a_{j+1} t_{1}+a_{j} t_{2}\right)-a_{i-2} a_{j+1} t_{1} t_{2} \\
a_{i-2} a_{j+1} t_{1} t_{2} & =a_{i-2} t_{1}\left(a_{j+2} t_{1}+a_{j+1} t_{2}\right)-a_{i-2} a_{j+2} t_{1}^{2} .
\end{aligned}
$$

Then $a_{i} a_{j} t_{1}^{2} \in L$ if and only if $a_{i-2} a_{j+2} t_{1}^{2} \in L$. If $i=2$, the first equation itself will yield that $a_{i} a_{j} t_{1}^{2} \in L$. If $j=d-1$, then the third equation will yield that $a_{i} a_{j} t_{1}^{2} \in L$. If $i>2$ and $j<d-1$, proceeding as above, one will hit an element of the form $a_{1} a_{j} t_{1}^{2}, a_{1} a_{j} t_{1} t_{2}, a_{i} a_{d} t_{1} t_{2}$ or $a_{i} a_{d} t_{2}^{2}$, which will imply that $a_{i} a_{j} t_{1}^{2} \in L$. Similar arguments will give us the other required inclusions. Hence $\operatorname{red}_{N}(M)=1$.

Corollary 4.3. Let (R, \mathfrak{m}) be a d-dimensional Cohen-Macaulay local ring, I be an \mathfrak{m}-primary ideal and $M=I \oplus \cdots \oplus I$ (r-times).
(1) If $d=2$, then $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$ if and only if $\operatorname{red}(M)=1$.
(2) If $d \geq 3, r=2$ and $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$, then $\operatorname{red}(M)=1$.

Proof. (1) From the Case 1 in the above discussion preceding Proposition 4.2, it follows that $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$ if and only if $e_{0}-e_{1}=\ell(R / I)$ if and only if $\operatorname{red}(I) \leq 1$ if and only if $\operatorname{red}(M)=1$, by Remark 2.4,
(2) From the Case 2 above, it follows that $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$ if and only if I is a parameter ideal. Now, it follows from the Proposition 4.2 that if I is a parameter ideal, then $I \oplus I$ has reduction number one.

If the rank of M is three, then an analogue Proposition 4.2 does not hold. Let $M=\mathfrak{m} \oplus \mathfrak{m} \oplus \mathfrak{m}$, where $\mathfrak{m}=(x, y, z) \subset k \llbracket x, y, x \rrbracket$. Then it can be seen that the submodule N generated by the columns of the matrix $\left[\begin{array}{lllll}x & y & z & 0 & 0 \\ 0 & x & y & z & 0 \\ 0 & 0 & x & y & z\end{array}\right]$ is a minimal reduction of M with $\operatorname{red}_{N}(M)=2$. The idea of getting minimal reduction of the above form comes from the work of J. -C. Liu, [12].

Example 4.4. Let $R=k \llbracket X, Y \rrbracket, I=\left(X^{3}, X^{2} Y^{4}, X Y^{5}, Y^{7}\right), J=\left(X^{3}, Y^{7}\right)$. Then R is a 2-dimensional regular local ring and J is a minimal reduction of I with reduction
number 2. It can be easily seen that $P_{I}(n)=21\binom{n+1}{2}-6\binom{n}{1}+1$. Set $F=R \oplus R, M=$ $I \oplus I$. Then again using [15, Theorem 2.5.2], we get $b r_{0}=63$ and $b r_{1}=33$. Therefore $b r_{0}(M)-b r_{1}(M)=30<32=\ell(F / M)$. Let N be the submodule generated by the columns of $\left[\begin{array}{ccc}X^{3} & Y^{7} & 0 \\ 0 & X^{3} & Y^{7}\end{array}\right]$. Then, it can be seen that N is a minimal reduction of M with $\operatorname{red}_{N}(M)=2$.

As in the case of ideals, the example below shows that the Cohen-Macaulayness of the Rees algebra alone need not necessarily imply that $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$ if $\operatorname{dim} R \geq 3$.

Example 4.5. Let $R=k \llbracket X, Y, Z \rrbracket, I=\left(X^{3}, X^{2} Y^{2}, Y^{3}, Z^{4}\right)$ and $M=I \oplus I$. It can be verified that $\mathcal{R}(M) \cong R\left[I t_{1}, I t_{2}\right]$ is Cohen-Macaulay. So by [9, Theorem 6.1], $B F(n)=B P(n)$ for all $n \in \mathbb{N}$. The Buchsbaum-Rim polynomial can be computed as

$$
B P(n)=144\binom{n+3}{4}-84\binom{n+2}{3}+4\binom{n+1}{2}
$$

Therefore $b r_{0}(M)-b r_{1}(M)=60<64=\ell(F / M)$.

We conclude the article with a question:
Question 4.6. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension $d>2$ and $M \subset F=R^{r}$ be such that $\ell(F / M)<\infty$. Then is $b r_{0}(M)-b r_{1}(M) \leq \ell(F / M)$? Does the equality $b r_{0}(M)-b r_{1}(M)=\ell(F / M)$ hold if and only if $\operatorname{red}_{N}(M)=1$ for some (any) minimal reduction N of M ?

References

[1] P.B. Bhattacharya, The Hilbert function of two ideals, Proc. Cambridge Philos. Soc. 53 (1957) 568-575.
[2] J. Brennan, B. Ulrich, W.V. Vasconcelos, The Buchsbaum-Rim polynomial of a module, J. Algebra 241 (2001) 379-392.
[3] D. A. Buchsbaum and D.S. Rim, A generalized Koszul complex II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197-224.
[4] F. Hayasaka, E. Hyry, A family of graded modules associated to a module, Comm. Algebra 36 (11) 2008, 4201-4217.
[5] F. Hayasaka, E. Hyry, On the Buchsbaum-Rim function of a parameter module, J. Algebra 327 (2011), 307-315.
[6] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34(1987) 293-318.
[7] C. Huneke and I. Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge, 2006.
[8] E. Hyry, The diagonal subring and the Cohen-Macaulay property of a multigraded ring, Trans. Amer. Math. Soc. 351 (1999), no. 6, 2213-2232.
[9] E. Hyry, Cohen-Macaulay multi-Rees algebras. Compositio Math. 130 (2002), no. 3, 319-343
[10] A. V. Jayanthan, J. K. Verma, Grothendieck-Serre formula and bigraded Cohen-Macaulay Rees algebra, J. Algebra 254(2002,no. 1, 1-20
[11] D. Katz and V. Kodiyalam, Symmetric powers of complete modules over a two dimensional regular local ring, Trans. Amer Math. Soc. 349 (1997), 747-762.
[12] J. -C. Liu, Rees algebras of finitely generated torsion free modules over a two dimensional regular local ring, Comm. Algebra 26(1998) no.12, 4015-4039.
[13] D. G. Northcott, A note on the coefficients of the abstract Hilbert function, J.London Math. Soc. 35 (1960), 209-214.
[14] A. Ooishi, Δ-genera and sectional genera of commutative rings, Hiroshima Math. J. 17 (1987) 361-372.
[15] P. Roberts, Multiplicities and Chern characters in local algebra, Cambridge University Press, New York, 1998.
[16] A. Simis, B. Ulrich, W. Vasconcelos, Rees algebras of modules, Proc. Lond.Math. Soc. (3)87 (2003) 610-646.
[17] W. Vasconcelos, Integral Closure:Rees algebra, Multiplicities, Algorithms. Springer Monographs in Mathematics, 2005.
[18] J. K. Verma, Joint reductions of complete ideals, Nagoya Math. J. 118(1990) 155-163.
E-mail address: r.balkrishnan@gmail.com

E-mail address: jayanav@iitm.ac.in

Department of Mathematics, Indian Institute of Technology Madras, Chennai, INDIA - 600036.

