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Abstract

In this paper we consider the four dimensional N = 2 supergravity theory arising

from the compactification of type IIA string theory on a Calabi-Yau manifold. We

analyse the supersymmetric flow equations for static, spherically symmetric, single-

centered black holes. These flow equations are solved by a set of algebraic equations

involving the holomorphic sections and harmonic functions. We examine black hole

configurations with D0 − D4 − D6 charge for which the most general solution of

these algebraic equations are considered. Though the black hole solution is unique

for a given value of the charges, we find new phases of the black hole solutions upon

varying them.
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The study of black holes has remained to be an interesting area of research for the past

several decades because of the long standing problems, such as the origin of black hole

entropy and the information loss paradox associated with them. The issue pertaining to the

black hole entropy is well understood in the context of supersymmetry preserving black hole

solutions arising in string theory [1]. In the microscopic analysis the states are described

in terms of intersecting D-branes. Entropy associated with the supersymmetric multiplets

are determined in terms of the central charge of the corresponding world volume theory by

using the Cardy formula [2]. These intersecting D-branes can be wrapped on appropriate

cycles of a Calabi-Yau manifold to give rise four dimensional black hole solutions in the

large volume limit. Entropy of these black holes are computed by the so called attractor

mechanism [3, 4]. These entropies match with the corresponding ones obtained by using

the microscopic study of the world volume theory.

The attractor mechanism has another important feature apart from its role in determin-

ing the entropy of the macroscopic black hole solutions, which is related to the uniqueness

of the solution for a given value of charges [5,6]. In the case of supersymmetric attractors,

for simple charge configurations it is straightforward to prove the uniqueness using the at-

tractor equations explicitly [7]. In general using the extremization of the central charge one

can systematically prove the uniqueness of the supersymmetric attractors for a given set

of charges by considering the extermization of the central charge along with the positivity

of the moduli space metric [8].

However, this should not give an impression that there is a unique attractor configu-

ration for a given type of dyonic black hole. There are indeed different phases of black

hole attractors for a given dyonic charge configuration. This exposition can seemly be

illustrated in the context of N = 2 supergravity coupled to a number of vector multiplets.

The entropy for the extremal black holes in such theories are determined in terms of a

symplectic invariant [9]. For a given dyonic configuration, the symplectic invariant is a

real valued function of the black hole charges. The symplectic invariant may change sign

as one varies the charges. The value of black hole entropy depends only on the modulus of

the symplectic invariant, however the preservation of supersymmetry of the extremal con-

figuration depends upon its sign [10]. In addition to the sign of this symplectic invariant,

the existence of the supersymmetric attractors depend on the positive definiteness of the

moduli space metric and the gauge kinetic terms.

The positive definiteness of the moduli space metric and gauge kinetic terms at the
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attractor point imposes more conditions on the black hole charges. Such conditions, for a

given type of dyonic configuration in general divide the charge lattice into several domains

and give rise to the possibility of the existence of new attractor points corresponding to

these different domains. Such a possibility has been explored in a recent work by the

present authors by studying the most general solution for the attractor equations in the

four dimensional supersymmetric black holes in type IIA string theory compactified on

a Calabi-Yau manifold [7]. The most general solution for the D0 − D4 − D6 attractors

has been obtained and it has been shown that there are indeed different domains in the

charge lattice and the form of the solution depends upon the particular domain to which

the black hole charges belong.

The goal of the present work is to establish the exact analytic expression of the full

interpolating solution corresponding to these new phases of black hole attractors. A general

technique for such constructions for axion-free black holes [11, 12] as well as axionic black

holes [13] has already been developed. Using these results we will derive the full flow for

the new phases of supersymmetric black holes.

Our focus in this paper is entirely based on the four dimensional N = 2 supergravity

theory coupled to n vector multiplets [14]

L = −
R

2
+ gab̄∂µx

a∂ν x̄
b̄hµν − µΛΣF

Λ
µνF

Σ
λρh

µλhνρ − νΛΣF
Λ
µν ∗ F

Σ
λρh

µλhνρ . (1)

Here R is the Ricci scalar corresponding to the space-time metric hµν , gab̄ is the moduli

space metric, µΛΣ and νΛΣ are the gauge couplings. For N = 2 supergravity theory, the

moduli space metric and gauge couplings are determined in terms of a pre-potential F .

We are interested in asymptotically flat, static, spherically symmetric solutions. The

metric for such configuration is determined in terms of a single warp factor U(τ) and has

the form

ds2 = e2U(τ)dt2 − e−2U(τ)(d~x)2 . (2)

The warp factor U solely depends on the radial coordinate r. For convenience, we introduce

the coordinate τ = 1/r. Using the equations for the gauge fields and the above ansatz for

the metric one can show that [14], such a system can indeed be described in terms of an

effective one dimensional theory whose Lagrangian density is given by

L(U, xa(τ), x̄a(τ)) =

(

dU

dτ

)2

+ gab̄
dxa

dτ

dx̄b

dτ
+ e2U(|Z|2 + |DaZ|

2) . (3)
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Here Z denotes the central charge of the N = 2 theory:

Z = eK/2(XΛqΛ − FΛp
Λ) , (4)

with (qΛ, p
Λ) being the dyonic charges of the black hole, XΛ are the symplectic sections, F

is the N = 2 pre-potential and FΛ = ∂ΛF . The symplectic sections XΛ are related to the

complex scalars xa by xa = Xa/X0. In this paper we choose the gauge X0 = 1. Here, Da

denotes the Kähler covariant derivative DaZ = ∂aZ + (1/2)∂aKZ. The Kähler potential

K is given by

K = − log
[

i

n
∑

Λ=0

(XΛ∂ΛF −XΛ∂ΛF )
]

. (5)

In this paper, we will focus on the four dimensional N = 2 supergravity arising from

type IIA string theory compactified on a Calabi-Yau manifold. In the large volume limit,

the pre-potential is given by

F = Dabc
XaXbXc

X0
. (6)

We will now review the attractor solutions for the system. The attractor points are

obtained upon solving the equation DaZ = 0. At the horizon this gives rise to a set

of algebraic equations. These algebraic equations can be recast in a nice covariant form

as [15]:

pΛ + i
∂
√

I4(p, q)

∂qΛ
= 2ieK/2Z̄XΛ

qΛ − i
∂
√

I4(p, q)

∂pΛ
= 2ieK/2Z̄FΛ (7)

Here I4(p, q) denotes the symplectic invariant quantity

I4(p, q) = −(p0q0 + paqa)
2 + 4

(

q0I3(p)− p0I3(q) + {I3(q), I3(p)}
)

, (8)

with I3(p) = Dabcp
apbpc and I3(q) = Dabcqaqbqc, where as {I3(q), I3(p)} is the Poisson

bracket

{I3(q), I3(p)} =
∂I3(q)

∂qa

∂I3(p)

∂pa
.

Here, q0, qa, p
a and p0 are respectively the D0, D2, D4 and D6 charges. The stabilization

equations (7) can also be rewritten as [16–18],

(

pΛ

qΛ

)

= i

(

Z̄fΛ − Zf̄Λ

Z̄hΛ − Zh̄Λ

)

, (9)
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where fΛ and hΛ are given by fΛ = eK/2XΛ and hΛ = eK/2FΛ.

In the present work we are interested in evaluating the interpolating solution for black

holes carrying D0−D4−D6 charges. The most general attractor solution for such configu-

rations has been obtained in [7]. The solution is given in terms of an involutory matrix Iab

satisfying the relationDabcI
b
eI

c
f = Daef . The attractor points are given by xa

attr = xa
1+ixa

2,

where

xa
1 =

1

p0

(

pa −
D − 1

2
q0p

02

DcIcdpd
Iabp

b

)

, (10)

xa
2 =

1

p0

(

1−

(

D − 1
2
q0p

02

DcIcdpd

)2 )1/2

Iabp
b . (11)

Here we use the notation Dab = Dabcp
c, Da = Dabp

b and D = Dap
a for convenience. In the

following we will obtain the full flow corresponding to these attractor points.

We will now study the flow equations and their solution. To obtain the flow equations,

note that the effective one-dimensional Lagrangian eq.(3) can be rewritten as [14, 20]:

L =

(

dU

dτ
± eU |Z|

)2

+

∣

∣

∣

∣

dxa

dτ
± 2eUgab̄∂̄b̄|Z|

∣

∣

∣

∣

2

∓ 2
d

dτ

(

eU |Z|
)

(12)

which gives rise to the following set of first order BPS equations [19–21],

dU

dr
= ±

eU

r2
|Z| (13)

dxa

dr
= ±2

eU

r2
gab̄∂̄b̄|Z| (14)

The above first order equations can also be recast as [11],

dU

dr
= ±

eU

r2
|qΛf

Λ − hΛp
Λ| (15)

dxa

dr
= ∓

eU

r2
Z

|Z|
gab̄f̄Λ

b̄ (N −N )ΛΣt
Σ (16)

where tΛ(r) = 1
2

(

pΛ + i(ImN )−1ΛΣ(qΣ − (ReN )ΣΓp
Γ)
)

and fΛ
a = (∂a +

1
2
∂aK)fΛ.

The above set of first order coupled differential equations can be solved by a set of

algebraic equations which have very similar form as that of the attractor equations. For

the axion free attractors this has been carried out in [11,12]. The axionic solution has been

suggested in [13] using group theoretic arguments. To express these algebraic equations,

we introduce the harmonics HΛ and HΛ such that HΛ = h̃Λ + pΛ/r and HΛ = h̃Λ + qΛ/r.
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Here h̃Λ and h̃Λ are arbitrary constants satisfying qΛh̃
Λ = pΛh̃Λ. In addition, we define

Z(H) = eK/2(HΛX
Λ − HΛFΛ). Further, we introduce I4(H) = I4(H

Λ, HΛ) by simply

replacing (pΛ, qΛ) by (HΛ, HΛ) in the expression for I4(p, q). Now consider the ansatz [13],

e−2U = |Z(H)|2 (17)

With the help of the above ansatz it is in fact possible to show that the BPS flow equations

can be solved by the following stabilisation equations

(

HΛ

HΛ

)

= i

(

Z̄(H)fΛ − Z(H)f̄Λ

Z̄(H)hΛ − Z(H)h̄Λ

)

(18)

Using the general procedure developed in [11, 12] we will now show that the above

algebraic relation indeed solve the equations of motion. In the following, we will further

rewrite the above equations in a form which will be useful for our purpose. From the

relation qΛh̃
Λ − pΛh̃Λ = 0 we find, qΛH

Λ − pΛHΛ = 0. Using this relation and eq.(18) we

can show that the quantity ZZ̄(H) is real. Here Z = Z(p, q) is the central charge. Using

eq.(18), and the special geometry relation fΛ dhΛ

dr
− dfΛ

dr
hΛ = 0 it can be shown that

HΛ
dfΛ

dr
−HΛdhΛ

dr
= iZ(H)

(

f̄ΛdhΛ

dr
−

dfΛ

dr
h̄Λ

)

HΛ
df̄Λ

dr
−HΛdh̄Λ

dr
= iZ̄(H)

(df̄Λ

dr
hΛ − fΛdh̄Λ

dr

)

(19)

Now consider metric ansatz (17). Differentiating with respect to r on both sides we find

2e−2U dU

dr
=

1

r2
(Z̄(H)Z+Z(H)Z̄)− Z̄(H)

(

HΛ
dfΛ

dr
−HΛdhΛ

dr

)

−Z(H)
(

HΛ
df̄Λ

dr
−HΛdh̄Λ

dr

)

(20)

Using the definition of the Kähler potential, we find i(f̄ΛhΛ − fΛh̄Λ) = 1. Differentiation

with respect to r yields

df̄Λ

dr
hΛ − fΛdh̄Λ

dr
+ f̄ΛdhΛ

dr
−

dfΛ

dr
h̄Λ = 0 .

Using the above, along with (19) we get dU
dr

= 1
r2
e2UZ(H)Z̄. Putting the metric ansatz (17)

once more and the using reality condition of Z(H)Z̄ in this equation we find dU
dr

= eU

r2
|Z|.

We would now like to demonstrate that the stabilisation equations (18) satisfy eq.(16).

To show this, note that the partial derivative of the Kähler potential (5) is given by

∂aK = −ieK(X̄Λ∂aFΛ − ∂aX
ΛF̄Λ) (21)
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Using (18) and the covariant holomorphicity of Z(H) we can express the above as

∂aK =
1

Z̄(H)
(h̄Λ∂aH

Λ − f̄Λ∂aHΛ) (22)

Using the above we can show that

fΛ
a

dxa

dr
Z̄(H) = eK/2Z̄(H)

dXΛ

dr
+ fΛ(h̄Σ∂rH

Σ − f̄Σ∂rHΣ) (23)

Consider the imaginary part of the above equation:

2iIm
(

fΛ
a

dxa

dr
Z̄(H)

)

= eK/2
(

Z̄(H)
dXΛ

dr
− Z(H)

dX̄Λ

dr

)

+ fΛ(h̄Σ∂rH
Σ − f̄Σ∂rHΣ)− f̄Λ(hΣ∂rH

Σ − fΣ∂rHΣ) (24)

Using the explicit expressions of the harmonic forms HΛ and HΛ, we find

2iIm
(

fΛ
a

dxa

dr
Z̄(H)

)

= eK/2
(

Z̄(H)
dXΛ

dr
− Z(H)

dX̄Λ

dr

)

+
1

r2
(

Z̄fΛ − Zf̄Λ
)

(25)

Differentiating (18) with respect to r, we find

eK/2
(

Z̄(H)
dXΛ

dr
− Z(H)

dX̄Λ

dr

)

= i
pΛ

r2
(26)

and hence

2iIm
(

fΛ
a

dxa

dr
Z̄(H)

)

= i
pΛ

r2
+

1

r2
(

Z̄fΛ − Zf̄Λ
)

(27)

Let us now consider the radial variations of the moduli fields. Multiply both side

of eq.(16) by fΠ
a and using gab̄fΛ

af̄
Σ
b̄

= −1
2
(ImN )−1ΛΣ − f̄ΛfΣ and the central charge

Z = −2i(fΛImNΛΣt
Σ) we find

fΛ
a

dxa

dr
=

eU

r2
Z

|Z|
(itΛ − Zf̄Λ) .

Multiplying both sides by Z̄(H), taking the imaginary part

2iIm
(

fΛ
a

dxa

dr
Z̄(H)

)

=
eU

r2
ZZ̄(H)

|Z|

(

ipΛ − (Zf̄Λ − Z̄fΛ)
)

(28)

Using the metric ansatz (17) and reality condition of Z(H)Z̄ we see the above relation

agrees with (27).

The stabilisation equations (18) are very similar to the attractor equations and can be

obtained by suitably replacing the dyonic charges with appropriate harmonic functions.
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Thus, it is possible to derive the exact solution for the flow equation from the attractor

solutions by substituting the harmonic functions appropriately. For the D0 − D4 − D6

system, we find

e−2U =
2χH

H0

√

1− ξ2H (29)

with

xa
1 =

1

H0
(Ha − ξHI

a
bH

b), (30)

xa
2 = −

√

1− ξ2H
H0

IabH
b (31)

where ξH = 2DH−H0H02

2χH

and χH = DHaI
a
bH

b. The expression for DH and DHa
are given

by DabcH
aHbHc and DabcH

bHc respectively. For every non-trivial involution Iab satisfying

DabcI
b
eI

c
f = Daef we have a new black hole solution. This relation has been solved for

a two parameter in [7] to obtain one non-trivial involution in terms of the intersection

numbers. Thus the most general D0−D4−D6 black hole in this case has two phases. It

would be interesting to explore new black holes by solving the constraint on Iab for more

general Calabi-Yau manifolds. Moreover, one can generalise our analysis in the presence

of all the dyonic charges and also for N = 2 supergravity theories with more general

pre-potential. For the non-supersymmetric attractors, the structure is richer and we have

even multiple attractors with the same charge [22]. It would be interesting to derive the

analogues stabilisation and find the exact analytic expression for the corresponding black

hole solutions in this case.

Our analysis here to construct the black hole solutions has entirely based on the for-

malism developed in [14]. Recently, new techniques were formulated by introducing new

variables to rewrite the flow equations and black holes solutions were constructed by ex-

ploiting the symmetries of the equations of motion [23–27]. In particular, they have been

used to construct black hole solutions in type IIA compactification in the presence of

perturbative as well as non-perturbative corrections [28, 29]. It would be interesting to

understand the solutions constructed in the present work using the above formalism and

study the effect of quantum corrections upon these black holes. We hope to explore some

of these issues in future.
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