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For A, B ∈ Rm×n, let J = [A, B] be the set of all matrices C such

that A � C � B, where the order is component wise. Krasnosel’skij

et al. [9] and Rohn [11] have shown that if A and B are invertible

with A−1 � 0 and B−1 � 0, then every C ∈ J is invertible with

C−1 � 0. In this article, we present certain extensions of this result

to the singular case, where the nonnegativity of the usual inverses

is replaced by the nonnegativity of the Moore–Penrose inverse.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A real n × n matrix A is called monotone if Ax � 0 �⇒ x � 0. Here, y � 0 for (y1, y2, . . ., yn)
T

= y ∈ Rn means that yi � 0 for all i = 1, 2, . . ., n. This notion was introduced by Collatz, who

showed that A is monotone if and only if A−1 exists and A−1 � 0, where the latter denotes that all the

entries of A−1 are nonnegative. The book by Collatz [6] has details of how monotone matrices arise

naturally in the study of finite difference approximationmethods for certain elliptic partial differential

equations. The problem of characterizing monotone (also referred to as inverse-positive) matrices has

been extensively studied in the literature. The books by Berman and Plemmons [5] and Varga [14] give

an excellent account of many of these characterizations.

Much effort has been devoted to characterizing inverse-positive matrices in terms of the so-called

splittings of the matrix concerned. For a real n × n matrix A, a decomposition A = U − V is called

a splitting, if U is invertible. Associated with the splitting, one studies convergence of the iterative

method xk+1 = U−1Vxk + U−1b, k = 0, 1, 2, . . ., for numerically solving the linear system of
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equations Ax = b, b ∈ Rn. It is well known that this iterative scheme converges to a solution of

Ax = b if and only if ρ(U−1V) < 1, for any initial vector x0, where ρ(M) will denote the spectral

radius of the squarematrixM. Standard iterativemethods like the Jacobi, Gauss–Seidel and successive

over-relaxationmethods arise from different choices of U and V . In this regard, Ortega and Rheinboldt

[10] proposed the notion of a weak regular splitting: A = U − V is called a weak regular splitting if

U is invertible, U−1 � 0 and U−1V � 0. They showed that, A−1 � 0 if and only if ρ(U−1V) < 1, for

any weak regular splitting A = U − V . We refer to [14] for a proof.

Inwhat follows (Theorem3.3), firstwepresent a generalization of this result for theMoore–Penrose

inverse. Even though such a generalization is already available in the literature [3, Theorem 3], we

believe that our proof is simpler and closely follows the proof of Varga, mentioned above. In this

article, one of the main objects of study are interval matrices. Following [9], we define a bilateral

interval J as J = [A, B] = {C : A � C � B} for A ∈ Rm×n, B ∈ Rm×n and A � B. If J = (−∞, B] (so
that C ∈ J if and only if C � B), then J will be called a unilateral interval. For a unilateral interval, the

following result was proved by Krasnoselskij et al. [9, Theorem 25.4]. The original result holds even for

Banach spaces. We are only concerned with the finite dimensional version. int(Rn+) denotes the set of
all interior points of Rn+.

Theorem 1.1. Let B, C ∈ Rn×n, C � B, B being invertible with B−1 � 0. Then C−1 � 0 if and only if

int(Rn+) ∩ CRn+ �= ∅.
Our next main result is a generalization of the result above, for singular matrices, even rectangular.

This is an extension to the case of Moore–Penrose inverse, presented in Theorem 3.4.

Next, we turn to a result for bilateral intervals, proved by Rohn (see also, [9, Theorem 25.6]). The

matrices Jc = 1
2
(B + A) and � = 1

2
(B − A) are referred to as the center and the radius of the interval

matrix J, respectively. Then � � 0, A = Jc − �, B = Jc + � and an alternative description of the

interval J is then given by J = [Jc − �, Jc + �]. J is said to be regular if C−1 exists for all C ∈ J and

inverse positive if C−1 � 0 for each C ∈ J. Rohn characterized inverse positivity of bilateral interval

matrices in the following result:

Theorem 1.2 [11, Theorem 1]. Let J = [A, B]. Then the following statements are equivalent:

(a) J is inverse positive.

(b) A−1 � 0 and B−1 � 0.
(c) B−1 � 0 and ρ(B−1(B − A)) < 1.

(d) B−1 � 0 and J is regular.

Our third main result presents an extension of this result for the Moore–Penrose inverse. This is

done in Theorem 3.5. The applicability of Theorem 3.5 hinges upon the nonemptiness of a certain set

of matrices K . Theorem 3.8 presents a sufficient condition under which K �= ∅. Section 3 also presents

a couple of other results related to interval matrices.

The article is organized as follows: This introductory section is followed by the section on prelim-

inaries. The last section deals with the case of Moore–Penrose inverse positivity. Extensions of the

results of this article to the case of infinite dimensional spaces and other types of generalized inverses

will be studied in future.

2. Notation, definitions and preliminary results

All matrices will have real entries. Rm×n denotes the set of all m × n matrices over the reals. For

A ∈ Rm×n, we denote the transpose of A, the range space of A and null space of A by At, R(A) and

N(A), respectively.
For a given A ∈ Rm×n, the unique matrix X ∈ Rn×m satisfying AXA = A, XAX = X, (AX)t = AX

and (XA)t = XA is called the Moore–Penrose inverse of A and is denoted by A†. For complementary

subspaces L and M of Rn, the (not necessarily orthogonal) projection of Rn on L along M will be
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denoted by PL,M . If, in addition, L and M are orthogonal then we denote this by PL . Some of the well

known properties of A† which will be frequently used, are [1]: R(At) = R(A†); N(At) = N(A†);
AA† = PR(A); A†A = PR(At). In particular, if x ∈ R(At) then x = A†Ax.

IfA andB are square invertiblematrices, then (AB)−1 = B−1A−1. However, for a generalized inverse

this is not always the case. The following result presents a characterization for the “reverse order law"

to hold for the case of the Moore–Penrose inverse.

Theorem 2.1 [8, Theorem 1]. If A and B are arbitrary rectangular matrices such that AB is defined, then,

(AB)† = B†A† if and only if BBtAt = A†ABBtAt and AtAB = BB†AtAB.

We will need the following particular case of Theorem 2.1.

Corollary 2.1. If A and B are arbitrary matrices such that B is invertible and AB is defined, then, (AB)† =
B−1A† if and only if BBtAt = A†ABBtAt .

Recall that the spectral radius ρ(A) of a matrix A ∈ Rn×n is defined to be the maximum of the

moduli of all the eigen values of A. Of course, Amay have complex eigen values.

Lemma 2.1. Let A, B ∈ Rn×n satisfy A � B � 0. Then ρ(A) � ρ(B).

The following result gives an estimate for the spectral radius of a matrix. This will, again, be used

in one of the proofs to follow.

Theorem 2.2 [9, Theorem 16.2]. For A ∈ Rn×n suppose that the inequality Ax � δx holds, for some

x > 0 (meaning that all the coordinates of x are positive). Then ρ(A) � δ.

Let us recall that ifA ∈ Rn×n satisfiesρ(A) < 1, then I−A is invertible. The next result is frequently

used in the study of nonnegative matrices. It gives a sufficient condition under which (I − A)−1 is

nonnegative.

Theorem 2.3 [14, Theorem 3.16]. Let A ∈ Rn×n. Then ρ(A) < 1 if and only if (I − A)−1 exists and

(I − A)−1 = ∑∞
k=0

Ak. If, in addition, A � 0, then (I − A)−1 � 0.

3. Moore–Penrose inverse positivity

In this section, we study the positivity of the Moore–Penrose inverse of unilateral and bilateral

intervals. Central to the discussion is the notion of a proper splitting, which we discuss next. A decom-

position A = U − V of A ∈ Rm×n is called a proper splitting if R(A) = R(U) and N(A) = N(U). This
notion was introduced and studied in [3] with the purpose of extending classical iterative methods,

especially applicable to the case of singular (often rectangular) matrices. The first result below collects

some properties of such a splitting.

Theorem 3.1 [3, Theorem 1]. Let A = U − V be a proper splitting of A ∈ Rm×n. Then

(a) A = U(I − U†V),
(b) I − U†V is nonsingular,

(c) A† = (I − U†V)−1U† and

(d) A†b is the unique solution to the system x = U†Vx + U†b, for any b ∈ Rm.

Remark 3.1. We observe that if A = U − V is a proper splitting of A, then R(V) ⊆ R(A) and that

At = Ut − Vt is a proper splitting of At . In that case, we have R(Vt) ⊆ R(At). Thus, if A = U − V

is a proper splitting of A, then AA† = PR(A) = PR(U) = UU† and A†A = PR(At) = PR(Ut) = U†U.
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Thus, UU†V = PR(U)V = PR(A)V = V , since R(V) ⊆ R(A). Also, VU†U = V(U†U)t = (U†UVt)t =
(PR(Ut)V

t)t = (PR(At)V
t)t = (Vt)t = V , since R(Vt) ⊆ R(At).

It is well known that any consistent linear system of equations Ax = b for A ∈ Rm×n and b ∈ Rm

is solved in practice by iterative methods. Broadly, these methods have the form xk+1 = Hxk + c,

for H ∈ Rn×n and c ∈ Rn. Then, the convergence of the sequence xk+1 (for any initial vector x0)

is guaranteed by the spectral radius condition ρ(H) < 1. H is called the iteration matrix of the

method. For a proper splitting given as above, we have H = U†V (and c = U†b). The next result gives

a set of sufficient conditions under which ρ(H) < 1 can be guranteed. We will use the following

notion.

Definition 3.1. A decomposition A = U − V is called a weak pseudo regular splitting if it is a proper

splitting such that U† � 0 and U†V � 0.

Theorem 3.2 [3, Theorem 3]. Let A = U − V be a weak pseudo regular splitting of A. Then the following

statements are equivalent:

(a) A† � 0.

(b) A†V � 0.

(c) ρ(U†V) < 1.

In the next result we present another proof of the equivalence of (a) and (c). This proof is an

adaptation of the proof of Varga [14, Theorem 3.37]. For a version in infinite dimensional spaces, for

the nonsingular case, see [13].

Theorem 3.3. Let A = U − V be a weak pseudo regular splitting of A ∈ Rm×n. Then A† � 0 if and only

if ρ(U†V) < 1.

Proof. Let C = U†V . Then C � 0. Also, CU†U = U†VU†U = U†V = C, since (as was proved in Remark

3.1), we have VU†U = V . In general, for k � 1 we have Ck+1U†U = CK+1. From (a) and (c) of Theorem

3.1, we have A = U(I − C) and A† = (I − C)−1U†. If ρ(C) < 1, then by Theorem 2.3, (I − C)−1 exists

and (I − C)−1 � 0 so that A† = (I − C)−1U† � 0, where we have used the fact that U† � 0.

Conversely, suppose that A† � 0. Set Bk = (I + C + C2 + C3 + ... + Ck)U† for any positive

integer k. Then Bk � 0 and Bk � Bk+1, since C � 0. Using U† = (I − C)A† it then follows that

Bk = (I − Ck+1)A†. Again, since C � 0 and A† � 0, it follows that Bk � A†. Hence the sequence

{Bk} is a monotonically increasing sequence, which is bounded above. Hence {Bn} is convergent with

respect to any matrix norm ‖ · ‖. Also, Bk+1U − BkU = Ck+1U†U = Ck+1. So, ‖ Bk+1U − BkU ‖=‖
Ck+1 ‖�‖ Bk+1 − Bk ‖‖ U ‖. We conclude that Ck+1 converges to the zeromatrix. It now follows that

ρ(U†V) < 1. �

For unilateral intervals, we have the following result. This is an extension of Theorem1.1mentioned

in Section 1. We observe that the proof can be carried over verbatim to infinite dimensional spaces.

Theorem 3.4. Let B, C ∈ Rm×n, R(B) = R(C),N(B) = N(C), C � B and B† � 0. Then C† � 0 if and

only if int(Rm+) ∩ {CRn+ + N(Ct)} �= ∅.

Proof. Let C† � 0. Then C†(Rm+) ⊆ Rn+, and so, CC†Rm+ ⊆ CRn+. For x ∈ Rm+, let x = x1 + x2, where

x1 ∈ R(C) and x2 ∈ R(C)⊥ = N(Ct). Then x1 = CC†x and so, x = CC†x + x2 ∈ CRn+ + N(Ct).

Conversely, suppose that int(Rm+) ∩ {CRn+ + N(Ct)} �= ∅. Since C � B, there exists T � 0 such

that C = B − T . By the hypotheses, we have R(B) = R(C),N(B) = N(C) and B† � 0. Also, B†T � 0

and so, C = B − T is a weak pseudo regular splitting. We show that ρ(B†T) < 1. It would then follow

from Theorem 3.3 that C† � 0.
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Let x ∈ Rn+ and z ∈ N(Ct) such thatCx+z ∈ int(Rm+). SinceC � B, it follows thatBx+z ∈ int(Rm+).
Since Bx + z and Cx + z are positive, there exist ε > 0 such that ε(Bx + z) � (Cx + z), so that

(B − C)x � (1 − ε)(Bx + z). We have z ∈ N(Ct) = N(Bt) = N(B†), so that B†z = 0. Then,

TB†(Bx + z) = TB†Bx = (B − C)B†Bx = (BB†B − CB†B)x = (B − C)x, using the fact that B†B = C†C.

Then TB†(Bx+ z) � (1− ε)(Bx+ z). Also Bx+ z ∈ int(Rm+). Hence ρ(TB†) � 1− ε < 1, by Theorem

2.2. As mentioned before, it now follows that C† � 0. �

Remark 3.2. In the above theorem, the conditions R(B) = R(C) andN(C) = N(B) both are indispens-

able.

Let B =
⎛
⎝ 2 0

2 0

⎞
⎠ and C =

⎛
⎝ 2 −2

2 −2

⎞
⎠. Then B† =

⎛
⎝ 1/4 1/4

0 0

⎞
⎠ � 0 and C†=

⎛
⎝ 1/4 1/4

−1/4 −1/4

⎞
⎠ �0.

Here, N(C) �= N(B), R(C) = R(B) and int(R2+) ∩ (CR2+ + N(Ct)) �= ∅.

Corollary 3.1. Suppose that the hypotheses of Theorem 3.4 hold and that C† � 0. Then B† � C†.

Proof. Wehave B† � 0, C† � 0. So, C � B implies C†CB† � C†BB†. The proof is complete by observing

that C†CB† = B†BB† = B† and C†BB† = C†CC† = C†. �

Now, we propose a notion of regularity for interval matrices, appropriate enough for singular ma-

trices.

Definition 3.2. The bilateral interval matrix J = [A, B] is called range kernel regular, if R(A) = R(B)
and N(A) = N(B).

The proposed generalization of Theorem 1.2 to the Moore–Penrose inverse is only applicable to a

subset K of J, which we define as

K = {C ∈ J : R(C) = R(B) = R(A) and N(C) = N(B) = N(A)}.
Later, in Theorem 3.8, we present sufficient conditions under which K is shown to be nonempty.

Now,weprove theaforementionedextensionofRohn’s result (Theorem1.2).Ourproof is completely

different from the proof of Rohn and relies solely on (the idea of proper splittings and) Theorem 3.3.

Theorem 3.5. Let J = [A, B] be range kernel regular. Then the following statements are equivalent:

(a) C† � 0 whenever C ∈ K.

(b) A† � 0 and B† � 0 .

(c) B† � 0 and ρ(B†(B − A)) < 1.

Proof

(a) ⇒ (b): Follows from the definition.

(b) ⇒ (c): Set U = B and V = B − A. Then A = U − V with R(U) = R(B) = R(A) and N(U) =
N(B) = N(A). ThusA = U−V is a proper splitting. Also,U†V = B†(B−A) � 0andU† = B† � 0.

By Theorem 3.3 it then follows that ρ(B†(B − A)) < 1.

(c) ⇒ (a): Let C ∈ J with N(C) = N(B) and R(C) = R(B). Set U = B and V = B − C. Then

C = U − V , with R(U) = R(B) = R(C) and N(U) = N(B) = N(C). Thus C = U − V is a proper

splitting. Also, 0 � B†(B − C) � B†(B − A), so that ρ(B†(B − C)) � ρ(B†(B − A)) < 1. It now

follows that C† � 0, by Theorem 3.3. �

The next example shows that there are intervals J = [A, B] that are range kernel regular, with the

property that there exists C ∈ J \ K such that C† � 0.
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Example 3.1. Let A =
⎛
⎝ 1 1

1 1

⎞
⎠ and B =

⎛
⎝ 2 2

2 2

⎞
⎠. Then J = [A, B] is range kernel regular. Let C =

⎛
⎝ 1 1

1 2

⎞
⎠. Then C ∈ J, but since C is invertible (and A is not invertible) it follows that C /∈ K . Also,

C† = C−1 � 0.

Under the circumstances of Theorem 3.5, the next result gives a representation for the Moore–

Penrose inverse of C ∈ K .

Lemma 3.1. Let J = [A, B] be range kernel regular. Suppose that C ∈ K, B† � 0 and ρ(B†(B − A)) < 1.

Then C† = ∑∞
j=0(B

†(B − C))jB†.

Proof. Observe that B(I−B†(B−C)) = B−BB†B+BB†C = C, since BB† = CC† as 0 � B−C � B−A,

we also have 0 � B†(B−C) � B†(B−A). Henceρ(B†(B−C)) � ρ(B†(B−A)) < 1, so that I−B†(B−C)

is invertible. In that case, (I − B†(B − C))−1 = ∑∞
j=0(B

†(B − C))j . We have C = B(I − B†(B − C)). Set

S = I − B†(B − C). Then S is invertible. Next, we show that B†BSStBt = SStBt . Observe that BS = C

so that, B†BS = B†C. So, B†BSStBt = B†CStBt = B†CCt . Also SStBt = SCt = (I − B†(B − C))Ct =
Ct − B†BCt + B†CCt = B†CCt , where we have used the fact that B†BCt = C†CCt = Ct . Hence,

B†BSStBt = SStBt . It now follows from Corollary 2.1, that C† = (I − B†(B − C))−1B†. Finally, the

representation C† = ∑∞
j=0(B

†(B − C))jB† follows, completing the proof. �

Corollary 3.2. Let J = [A, B] be range kernel regular. Suppose that C ∈ K and one of the equivalent

conditions (a)–(c) of Theorem 3.5 holds. Then B† � C† � A†.

Proof. Since B† � 0 and C† � 0 it follows that C � B �⇒ B†CC† � B†BC† �⇒ B† � C†. It can be

similarly shown that C† � A†. �

A squarematrix A is called a Z-matrix if all the off-diagonal entries of A are nonpositive. A Z-matrix

A is called anM-matrix if A can be written as A = sI − B, where s � ρ(B) and B � 0. If s > ρ(B), then
A is invertible and A−1 � 0. For the singular case (when s = ρ(B)) the following result is quite well

known. For M-matrices, [5] is an excellent source.

Theorem 3.6 [2, Corollary 5]. If A = ρ(B)I − B, where B is nonnegative and irreducible, then A† � 0.

We also need the following result.

Theorem 3.7 [2, Lemma 4.1]. Let A ∈ Rn×n be a Z-matrix. Then A is an M-matrix if and only if A + εI is
a nonsingular M-matrix for all ε > 0.

Corollary 3.3. Suppose A and B are singular M-matrices such that A† � 0 and B† � 0. Let J be range

kernel regular and C ∈ K. Then C is an M-matrix. Further, if C = ρ(F)I − F, where F � 0, then, F is

reducible.

Proof. Wehave A � C � B and so A+εI � C+εI � B+εI for each ε > 0. Since A and B are singular

M-matrices, it follows that A + εI and B + εI are invertible M-matrices. Hence A + εI and B + εI are
inverse positive matrices. So, C + εI is also inverse positive for each ε > 0, by Theorem 1.2. Hence C

is an M-matrix, by Theorem 3.7. Also N(C) = N(B) and R(C) = R(B) so that C† � 0, by Theorem 3.5.

So, F is reducible, by Theorem 3.6. �

Next, we show that K is nonempty. For a matrix Q , | Q | denotes the matrix whose components

are the absolute values of the corresponding components of Q . In the context of the next result, we
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recall the result of Beeck (see the references cited in [12]) who has shown that if Jc is invertible and

ρ(|J−1
c |�) < 1, then each matrix C ∈ J is invertible, i.e., J is regular.

Theorem 3.8. Let J = [A, B]. Suppose that N(Jc) = N(A), R(Jc) = R(A) and ρ(|J†c |�) < 1. Then K

contains the line segment λA + (1 − λ)B, λ ∈ [0, 1]. In particular, J is range kernel regular.

Proof. First, we show that J is range kernel regular. Let x ∈ N(A) = N(Jc). Then Ax + Bx = 0, so that

Bx = 0. Thus N(A) ⊆ N(B). From the equation R(Jc) = R(A), we have N(At) = N(Jtc) and proceeding

as above it follows thatN(At) ⊆ N(Bt), i.e., R(B) ⊆ R(A). Also, J
†
c (Jc −B) � |J†c (Jc −B)| � |J†c ||Jc −A| =

|J†c |�. It then follows that ρ(| J
†
c (Jc − B) |) � ρ(| J

†
c | �) < 1. Thus the series

∑∞
j=0(J

†
c (Jc − B))j is

absolutely convergent and soρ(J
†
c (Jc −B)) < 1. Thus I− J

†
c (Jc −B) is invertible. Now, I−(J

†
c Jc − J

†
cB) =

I − PR(At) + J
†
cB = PN(A) + J

†
cB. Let D = PN(A) + J

†
cB. Then, JcD = Jc(PN(A) + J

†
cB) = JcJ

†
cB = B (the

validity of the last equation is justified by the fact that JcJ
†
c = PR(Jc) = PR(A) and R(B) ⊆ R(A)). So,

Jc = BD−1 and hence R(Jc) = R(B). Thus R(B) = R(A). By the rank-nullity-dimension theorem, it

follows that N(B) = N(A). This proves that J is range kernel regular.

Next, set C = λA + (1 − λ)B. We show that C ∈ K . First we prove that R(C) = R(A). Let
x ∈ R(C); x = Cy = (λA + (1 − λ)B)y. Since R(B) = R(A), it then follows that x ∈ R(A), so that

R(C) ⊆ R(A). As argued above, it can be shown that ρ(J
†
c (Jc − C)) < 1. Again, as before, it follows

that Jc = CD−1 and hence R(Jc) = R(C). Thus R(C) = R(A). Now, let x ∈ N(A). Then x ∈ N(B) and

so x ∈ N(C) so that, N(A) ⊆ N(C). Once again, by the rank-nullity-dimension theorem it follows that

N(C) = N(A). �

Remark 3.3. In general, K �= J, even under the hypotheses of Theorem 3.8. This is shown by the

following example. We observe that [A, αA] for A � 0, α > 1 is an example of a range kernel regular

interval matrix. Given A ∈ Rm×n, A � 0 with at least two nonzero rows, set B = αA, α > 1. Then

J = [A, B] is trivially range kernel regular. Suppose that the kth row of A is nonzero. Define C to be the

matrix all of whose entries are the same as that of A except the kth row. Let the kth row of C be the kth

row of B. Then C ∈ J and R(C) �= R(A). For example let A =
⎛
⎝ 1 0

1 0

⎞
⎠ , B =

⎛
⎝ 2 0

2 0

⎞
⎠ and C =

⎛
⎝ 1 0

2 0

⎞
⎠.

Then J is range kernel regular, N(Jc) = N(A), R(Jc) = R(A), ρ(|J†c |�) < 1, C ∈ J and R(C) �= R(A).

Before we conclude this article, we provide another set of sufficient conditions for the range kernel

regularity of a bilateral interval.

For A ∈ Rm×n, a factorization A = FG such that F ∈ Rm×r, G ∈ Rr×n and r = rank(A) =
rank(F) = rank(G) is called a full-rank factorization of A. If F and G are (entrywise) nonnegative (and

hence A is nonnegative), then such a factorization is called a nonnegative full-rank factorization. There

is awell-known result that ifA � 0 and there existsX � 0 such thatAXA = A, thenAhas a nonnegative

full-rank factorization [4].

The next result provides a proper splitting of a matrix A if a full-rank factorization of A is known.

Theorem 3.9 [7, Theorem 3.3]. Let A ∈ Rm×n and A = FG be a full-rank factorization. Then the splitting

A = U − V is proper if and only if U = FSG (and V = U − A) for some nonsingular S ∈ Rr×r .

LetA � 0 andA† � 0. Then (from the commentsmade as above), it follows thatAhas a nonnegative

full-rank factorization A = FG. Suppose that S ∈ Rr×r , (where r is the rank of A) is invertible and

satisfies S � I. Set B = FSG. Then B � A. From the Theorem cited above, it then follows that R(A) =
R(B) and N(A) = N(B), i.e., the bilateral interval J = [A, B] is range-kernel regular. Let us justify

reasonably the assumptions on A and Bmade as above. In practical applications, the coefficient matrix

A is nonnegative. One of themain concerns in this paper is nonnegativity of theMoore–Penrose inverse

of the bilateral interval J = [A, B] and one of the assumptions is A† � 0. In practice, B could be thought
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of as a perturbation of A and hence the assumption that B = FSGwith S satisfying S � I is reasonable.

We are only requiring, in addition, that S is invertible.

Acknowledgements

The authors thank Professor P. Veeramani (IIT Madras) and Professor Jiri Rohn (Czech Academy of

Sciences) for their inputs and encouragement. The authors thank the referee for a very meticulous

reading of the manuscript. The suggestions of the referee have helped in improved readability of the

article and in demonstrating applicability of Theorem3.5. The first author thanks theUniversity Grants

Commission (UGC) for financial support in the form of a Junior Research Fellowship.

References

[1] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications. Pure and AppliedMathematics,Wiley-Interscience,
New York, 2003.

[2] A. Berman, R.J. Plemmons, Monotonicity and generalized inverse, SIAM J. Appl. Math. 22 (1972) 155–161.
[3] A. Berman, R.J. Plemmons, Cones and iterative methods for best least squares solutions of linear systems, SIAM J. Numer. Anal.

11 (1974) 145–154.

[4] A. Berman, R.J. Plemmons, Inverses of nonnegative matrices, Linear and Multilinear Algebra 2 (1974) 161–172.
[5] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994.

[6] L. Collatz, Functional Analysis and Numerical Mathematics, Academic, New York, 1966.
[7] Debasisha Mishra, K.C. Sivakumar, On splittings of matrices and nonnegative generalized inverses, Oper. Matrices, in press.

[8] T.N.E. Greville, Note on generalized inverse of a matrix product, SIAM Rev. 8 (1966) 518–521.
[9] M.A. Krasnosel’skij, Je.A. Lifshits, A.V. Sobolev, Positive linear systems: the method of positive operators, Springer, Berlin, 1989.

(Transl. from the Russian by Jurgen Appell).
[10] J.M. Ortega, W.C. Rheinboldt, Monotone iterations for nonlinear equations with application to Gauss–Seidel methods, SIAM J.

Numer. Anal. 4 (1967) 171–190.

[11] J. Rohn, Inverse-positive interval matrices, Z. Angew. Math. Mech. 67 (1987) 492–493.
[12] J. Rohn, Systems of linear interval equations, Linear Algebra Appl. 126 (1989) 39–78.

[13] K.C. Sivakumar, M.R. Weber, On Positive Invertibility and Splittings of Operators in Ordered Banach Spaces, Preprint, Technical
University Dresden, MATH-AN-02-2010.

[14] R.S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics, Springer, 2000.


	Moore--Penrose inverse positivity of interval matrices
	1 Introduction
	2 Notation, definitions and preliminary results
	3 Moore--Penrose inverse positivity
	Acknowledgements
	References


