
Molecular dynamics of partially confined Lennard-Jones gases : Velocity
autocorrelation function, Mean squared displacement and collective excitations

Kanka Ghosh1, ∗ and C.V.Krishnamurthy1, †

1Department of Physics,Indian Institute of Technology Madras,Chennai-600036,India

Particle motion and correlations in fluids within confined domains promise to provide challenges
and opportunities for experimental and theoretical studies. We report molecular dynamics simula-
tions of a Lennard-Jones gas mimicking argon under partial confinement for a wide range of densities
at a temperature of 300K. The isotropic behaviour of velocity autocorrelation function (VACF) and
mean squared displacement (MSD), seen in the bulk, breaks down due to partial confinement. A
distinct trend emerges in the VACF⊥ and MSD⊥ , corresponding to the confined direction, while
the trends in VACF‖ and MSD‖, corresponding to the other two unconfined directions are seen to
be unaffected by the confinement. VACF⊥ displays a minimum, at short-time scales, that corre-
lates with the separation between the reflective walls. The effect of partial confinement on MSD⊥
is seen to manifest as a transition from diffusive to sub-diffusive motion with the transition time
correlating with the minimum in the VACF⊥. When compared to the trends shown by MSD and
VACF in the bulk, the MSD⊥ exhibits subdiffusive behavior, and the VACF⊥ features rapid decay,
suggesting that confinement suppresses the role of thermal fluctuations significantly. Repeatitive
wall mediated collisions are identified to give rise to the minima in VACF⊥ and in turn a character-
istic frequency in its frequency spectrum. The strong linear relation between the minima in VACF⊥
and wall-spacing, suggests the existence of collective motion propagating at the speed of sound.
These numerical experiments, can offer interesting possibilities in the study of confined motion with
observable consequences.

PACS numbers: 47.11.Mn, 05.20.Jj, 51.35.+a, 51.40.+p, 47.35.Rs

I. INTRODUCTION

It is quite well known that fluids behave in an unusual
manner under confinement, in contrast to its bulk
counterpart [1, 2]. Not only fluids, Brownian particles
also show extremely different diffusive behavior under
confinement with respect to the bulk environment
[3]. Theoretical, simulation and experimental studies
further confirm qualitative and quantitatively different
transport and structural properties of fluids, mostly
liquids, in confined spaces unlike its bulk behaviour[4–
15]. Confined gases, on the other hand, though less
explored, offer a variety of unusual consequences which
are distinct from both bulk gas and liquids. Effect
of characteristic length and system boundaries on the
mean free path of confined gases have been studied by
Sree Hari et al. [16, 17] using molecular dynamics(MD)
simulation. At low density gases, under confinement,
significant effect of characteristic length on the mean
free path of the gas molecules has been found. The
variation of gas molecular mean free path in nanopores
with different gas-wall interaction strength has also
been studied via MD [18]. MD simulations are also
employed to study the anisotropic stress variation for
dilute and dense confined gases [19]. Markvoort et
al. [20] carried out studies of the influence of wall-gas
interactions on heat flow in micro-channel. Effect of
pore diameter on the phase behaviour of confined gases
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of hydrocarbon mixture under confined graphitic slits
has been understood recently [21]. Kazemi et al. [22]
very recently undertook a molecular simulation study
on adsorption and transport of gases in carbon based
organic nano-capillaries. Also some investigations have
been reported on gas flow in confined spaces using both
MD as well as continuum model [23–25].
Svensson et al. [26] reported an experimental work
of high resolution spectroscopy and assess pore size
by studying wall collision broadening of absorption
lines of gases in confinement. Granular gases under
confinement have also gathered attention in the domain
of confined gas studies. Florence et al. [27] have done the
experimental measurement of the spectrum of velocity
fluctuations in a confined granular gas. Recently the-
oretical investigation on linear hydrodynamic stability
analysis of confined granular gas has been performed [28].

Though many studies have been performed for con-
fined gases using experimental, theoretical and MD
methods, there is a lack of detailed and systematic
findings related to the short-time dynamics, correlations
and other features of atomistic origin through velocity
autocorrelation function (VACF) and mean squared
displacement (MSD) analyses of confined gases. As the
transient caging phenomena, observed in liquids [29, 30],
is not expected in dilute gaslike fluids due to its high
diffusivity compared to the liquids, it is intriguing to
ask if confinement influences the particle dynamics and
if so, would it manifest in the VACF and MSD.

We present a study of molecular dynamics of gaslike
fluid in partial confinement using LJ potential to address

ar
X

iv
:1

81
1.

07
04

6v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

5 
N

ov
 2

01
8

mailto:cvkm@iitm.ac.in


2

this question. The simulation domain is taken to be a
cuboid with a pair of parallel sides to simulate partial
confinement. The walls have been simulated as a smooth
surface with reflective boundary condition, which gener-
ate force on the particles only in the normal direction.
The separation between these reflective walls is varied
from a few atomic diameters to large values. The ve-
locity auto-correlation function (VACF) and the mean
squared displacement (MSD) are studied as a function of
the separation between the parallel reflective walls. We
address the anisotropic features of VACF and MSD un-
der confinement, observe correlations, occurred between
them and establish the fact of spontaneous formation of
sound-like waves by computing sound speed using VACF
and MSD normal to the walls. The details of the MD
simulation method is described in Section II .Section III
contains the results and discussions followed by summary
and conclusions in Section IV.

II. COMPUTATIONAL DETAILS

We carry out molecular dynamics calculations on LJ
fluid using LAMMPS software package [31]. We model
20000 particles of LJ fluid fitted to argon properties
(Mass of argon = 6.69 × 10−26 kg) in gas phase both
in bulk and in partially confined geometries. For bulk
simulation, periodic boundary conditions (PBC) are
imposed along each of the three dimensions at 300K.
Constant pressure temperature ensemble (NPT) is used
to realize the dynamics of bulk argon gas for a wide
range of pressures (from P = 0.004 MPa to P = 3 MPa)
at 300K. We impose the repulsive part of LJ-potential
between the gas particles by setting the cut-off distance
equal to the diameter (σ = 3.4 Å) of LJ particles (argon).
After an energy minimization, standard velocity-verlet
algorithm with a time-step (∆t) of 0.0001 picosecond
(ps) has been used for each of these systems (both
bulk and confined) to equilibrate up to 10 ns (108

steps) followed by a 2 ns (2 × 107 steps) production
run to calculate the properties of interests. During
equilibration, the fluctuations of temperature, potential
energy and kinetic energy have been monitored to ensure
convergence. The temperature of the system has been
controlled via Nose-Hoover thermostat.

In bulk simulations, equilibrium velocity distribution
for each component (vx,vy,vz) follows the Maxwell dis-
tribution corresponding to 300K with the standard de-
viation of the distribution matching very well with the
simulated data (analytical: 2.49 Å/ps, simulated: 2.51
Å/ps). For a test NPT simulation (P = 0.09 MPa, T=
300 K) the VACF is found to decay as exp(−t/τ), where
τ is the relaxation time. We obtain γ = 1/τ from the
fitted exponential as 0.0024 ps−1. Using D, the diffusion
coefficient, by fitting the long-time average mean squared
displacement (MSD), averaged over all the particles, to
the Einsteins relation

〈
∆r2

〉
= 6Dt for a three dimen-

sional system, obtained from simulation and estimate γ
from the analytical expression as γ = α/m = kBT/mD =

0.0024 ps−1, prove the self-consistency of our MD results.
For confinement studies, partially confined systems of LJ
gas are simulated in a cuboid with 20000 argon particles
with reflecting parallel walls facing each other normal to
the z axis at z = ±H2 , H being the separation between
the walls. The walls are smooth and generate force on the
particles only in the normal direction. The confinement
studies have been carried out at 300K for pressures rang-
ing from 0.004 MPa to 3 MPa simulating a wide range
of densities using NPT ensemble. It may be noted that
above 5 MPa argon enters supercritical regime at 300K.
For each of these (P,T) state points, the separation (H)
between these reflective walls is varied from 20 Å to 300
Å (6σ ≤ H ≤ 90σ) with a step of 20 Å (≈ 6 σ) such
that the simulated density is same as that of the bulk
for the corresponding (P,T) state point. Indeed, our MD
simulated densities have been found to match quite well
(relative error ≈ 1 %) to the experimentally measured
density from the NIST database [32]. Periodic bound-
ary conditions are applied along x and y axes for all the
partially confined systems.

III. RESULTS AND DISCUSSIONS

A. Effect of partial confinement on VACF:

We chose a range of pressures (/densities) varying from
higher to a very lower value at 300K temperature of
gaseous argon from NIST data [32]. Constant pressure-
temperature (NPT) ensembles have been used to realize
the dynamics. The normalized VACF (Z(t)) is usually
defined as

Z(t) =

〈∑N
j=1 ~vj(t)~vj(0)

〉
〈∑N

j=1 ~vj(0)~vj(0)
〉 (1)

which contains the sum of the VACF along x,y and z
directions, where ~vj(0) and ~vj(t) are velocity vectors of
same particles (index j) at some initial t = 0 and at some
later time (t) respectively and 〈...〉 denotes the ensemble
average. We use the notation of VACF‖ and VACF⊥ to
designate the VACF along parallel (x, y) and perpendic-
ular (z) directions with respect to the walls. The nor-
malized versions of VACF‖ (Zxy(t)) and VACF⊥ (Zz(t))
are defined as

Zxy(t) =

〈∑N
j=1 ~vxj(t)~vxj(0)

〉
+
〈∑N

j=1 ~vyj(t)~vyj(0)
〉

〈∑N
j=1 ~vxj(0)~vxj(0)

〉
+
〈∑N

j=1 ~vyj(0)~vyj(0)
〉
(2)

and

Zz(t) =

〈∑N
j=1 ~vzj(t)~vzj(0)

〉
〈∑N

j=1 ~vzj(0)~vzj(0)
〉 (3)
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FIG. 1. (a) VACF in Bulk argon gas:Normalized VACF‖(along x and y directions) and Normalized VACF⊥(z)(along z
direction) follow identical monotonic decay trend, simulated under constant pressure and temperature of 300K and 0.09MPa
respectively. (b) Difference between Normalized VACF‖(along x and y) and Normalized VACF⊥(along z) under partial

confinement: Simulations mimic argon gas with P = 0.09 MPa, T = 300 K and with wall spacing of 100 Å (≈ 30 σ). When
compared to the trends shown by VACF‖, the VACF⊥ features rapid decay suggesting that confinement suppresses the role of
thermal fluctuations significantly.

Here, ~vxj(0), ~vyj(0), ~vzj(0) and ~vxj(t), ~vyj(t), ~vzj(t) de-
note velocities of jth particle along x, y and z directions
at initial and at some later time t respectively, N is the
total number of particles and 〈...〉 denotes the ensemble
average. For the bulk case (Fig.1.(a)), no oscillatory
behaviour is observed, and both VACF‖ and VACF⊥
follow a monotonous decay trend. It validates the well
known fact that the VACF is a monotonically decreasing
function in the bulk gaseous environment but it shows
oscillating nature in liquid and solid phases [7].

In Fig.1.(b) we observe that in partially confined
gaseous argon the VACF‖ shows identical monotonous
decay as that of the bulk. As the system is ”infinite”
along x and y axes (due to PBC) the monotonic decay of
VACF‖ appears to be due to particle-particle collisions
as in the bulk. As may be expected, the presence of the
walls has no effect on VACF‖.

In sharp contrast to the trends shown by VACF‖,
VACF⊥ shows a prominent minimum at short time scale
followed by a flat plateau like regime (Fig.1.(b)). The
early onset of the plateau like regime is due to the large
number of collisions with the walls. To ensure that
the VACF-minima in our confined cases normal to the
wall direction are not influenced by the artifacts coming
from x and y directions through periodic boundaries,
we monitored the VACF⊥ at different time intervals
starting from the beginning of our simulation and found
the minima of VACF⊥ are occurring at precisely the
same time for a fixed wall separation.

B. Effect of partial confinement on MSD:

The ensemble-averaged Mean-squared displacement is
defined as:

MSD(t) =
1

N

〈
N∑
j=1

[
~Rj(t)− ~Rj(0)

]2〉
(4)

where, ~Rj(0) and ~Rj(t) are the position vectors of same
particles (index j) at some initial t = 0 and at some later
time (t) respectively, N is the total number of particles
and 〈...〉 denotes the ensemble average. We study both
MSD‖ (MSD along x and y directions) and MSD⊥ (MSD
along z direction) for bulk as well as for partially confined
gas as a function of time. MSD‖ and MSD⊥ are defined
as

MSD‖(t) =
1

N

〈 N∑
j=1

[xj(t)− xj(0)]
2

〉
+

〈
N∑
j=1

[yj(t)− yj(0)]
2

〉
(5)

and

MSD⊥(t) =
1

N

〈
N∑
j=1

[zj(t)− zj(0)]
2

〉
(6)

where, xj(0), yj(0), zj(0) and xj(t), yj(t), zj(t) are posi-
tions of same particles (index j) along x, y and z at initial
and at some later time t respectively with 〈...〉 denoting
the ensemble average. In the bulk case (Fig.2.(a)), we
observe an identical trend for both MSD‖ (MSD along x
and y) and MSD⊥ (MSD along z) as a function of time,
with an initial short-time ballistic (MSD ∼ t2), followed
by a long-time diffusive motion (MSD ∼ t).
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FIG. 2. (a) Isotropic nature of MSD in Bulk argon-like gas:MSD‖(MSD along x and y directions) and MSD⊥(MSD along z)
follow identical trend, simulated under constant pressure and temperature of 300K and 0.09MPa respectively. (b) Comparison
between MSD‖(x and y) and MSD⊥(z) under partial confinement: MSD⊥ deviates from MSD‖ exhibiting sub-diffusive behavior

before reaching a plateau: Simulations mimic argon-like gas with P = 0.09 MPa, T = 300 K and with wall spacing of 100 Å
(≈ 30 σ). The inset shows different regimes of MSD⊥ (MSDZ) with different slopes as a function of time in a log-log scale.
The gradual crossover of MSD⊥ from ballistic (∼ t2) to diffusive (∼ t) to sub-diffusive (∼ t0.5) is shown for P = 0.09 MPa, T
= 300 K and with wall spacing of 100 Å (≈ 30 σ).

The isotropic nature of MSD is evident. The diffusion
coefficient can be extracted from the long-time MSD

using
〈

(∆r)
2
〉

= 2nD∆t, where n stands for dimensions

involved in the system and D: the diffusion coefficient.

In the partially confined case shown in Fig.2.(b),
MSD⊥ shows three distinct regimes: ballistic-like mo-
tion on short time scales (MSD⊥ scales quadratically
with time), diffusive motion over intermediate time scales

(MSD⊥ scales linearly with time) and anomalous diffu-
sion over long time scales (MSD⊥ scales non-linearly with
time). Sub-diffusive motion refers to such anomalous dif-
fusion where MSD⊥ ∼ tα, where 0 < α < 1. The inset
in Fig.2.(b) shows clearly the transition from diffusive to
sub-diffusive motion. Over long timescales the frequent
collisions between the walls and the other particles im-
pose severe constraints on the MSD⊥ to give rise to a
constant plateau.

FIG. 3. (a) Short-time MSD⊥ (MSDZ) with different confined spacings for argon gas at P=0.09MPa and T=300K. At t = 4
ps (shown by a vertical line) the confined system (H = 20 Å ∼ 6 σ) shows diffusive to sub-diffusive transition while the bulk
MSD⊥ still shows ballistic-like motion. (b) Long-time MSD⊥ (MSDZ) with different confined spacings (H) for argon gas at
P=0.09MPa and T=300K. The arrow indicates the direction of increasing H. When compared to the trends shown by MSD‖,
the MSD⊥ features subdiffusive behavior, suggesting that confinement suppresses the role of thermal fluctuations significantly.
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TABLE I. Variation of time-duration and proportionality
constant a in the ballistic regime of argon with P = 0.09MPa
and T = 300K for different confined spacings. For reference
the bulk value is also included.

H (spacing) time dura-
tion of bal-
listic motion
(ps)

a(Å2/ps2)
from
MD

kBT/M(Å2/ps2)
Analytical
value

20 Å (≈ 6 σ) 0.7 5.788
60 Å (≈ 18 σ) 1.92 5.933
100 Å (≈ 30 σ) 3.7 5.723 6.191
200 Å (≈ 59 σ) 5 5.908
260 Å (≈ 76 σ) 6 5.867
Bulk 95 5.870

It can also be seen from Fig.2.(b) that MSD‖ is barely
affected by the partial confinement.

C. Effect of varying confined spacing (H) on
MSD⊥:

We study the variation of the mean squared displace-
ment along z (MSD⊥) as a function of time for a range
of wall spacings. The trends in MSD⊥ from Fig.3.(a)
and (b) indicate that the temporal windows in which
ballistic, diffusive, and sub-diffusive motion prevail are
strongly influenced by H, the wall spacing. Smaller the
H, shorter the time windows are.

For comparison, the bulk MSD⊥ is also included in
Fig.3.(a). While in the bulk, ballistic motion, character-
ized by a t2 dependence in MSD⊥ (MSD⊥ ∼ at2), can be
seen to exist upto 95 ps, it lasts only up to 0.7 ps for the
smallest confinement spacing (H = 20 Å ≈ 6 σ) (Table.I).

It is also observed from Table.I that irrespective of the
spacing, the proportionality factor, a, remains almost
constant and close to that of the bulk. Likewise, the
diffusion coefficients (D⊥), evaluated within the time
window marked by the onset of diffusive motion and by
the transition from diffusive to sub-diffusive motion in
MSD⊥, reduce systematically as H is reduced as can be
seen from Table.II.

Further, the MSD⊥ undergoes a transition from
diffusive to sub-diffusive behavior which correlates well
with the wall spacing as can be seen qualitatively
from Fig.2.(b) and Fig.3.(b), and quantitatively, from
Table.III.

Columns 2, 4, 6, and 8 of Table.III present the average
root mean-squared displacement of the particles during

TABLE II. Variation of diffusion coefficients (D⊥) evaluated
from the diffusive regime in MSD⊥ as a function of H for
highest (3 MPa) and lowest pressure (0.004 MPa) studied.
For reference the corresponding bulk values are also included.

P (MPa) H (spacing) D⊥ (Å2/ps) from
MSD⊥

0.004 20 Å (≈ 6 σ) 7.73
60 Å (≈ 18 σ) 22.99
100 Å (≈ 30 σ) 37.89
200 Å (≈ 59 σ) 78.17
300 Å (≈ 90 σ) 118.03
Bulk 565.69× 103

3 20 Å (≈ 6 σ) 7.15
60 Å (≈ 18 σ) 18.27
100 Å (≈ 30 σ) 27.49
200 Å (≈ 59 σ) 41.03
300 Å (≈ 90 σ) 48.82
Bulk 77.29

the diffusive-sub-diffusive transition,
√
MSD⊥(diff),

for four different pressures. Except for the highest
pressure considered, this transition can be seen to occur
when particles traverse an average distance ∼ H/3,
where H is the wall spacing. At the highest pressure,
the average distance traversed is consistently smaller (∼
H/3.9). Columns 3, 5, 7, and 9 of Table.III present the
asymptotic average root mean squared displacement of
the particles,

√
MSD⊥(sat), for the four different pres-

sures. We see that for all the P, T state points and for
all the spacings considered, the values for

√
MSD⊥(sat)

are nearly constant (∼ H/2.45) indicating that the
particles traverse this distance and are constrained to be
no closer than this distance on the average.

It is clear from the observed trends in MSD⊥ that
confinement alters the purely thermal inter-particle col-
lisional characteristics over two time scales in different
ways. We note that the confinement results in two new
processes: a particle undergoes collisions with other
particles that bounces-off from the walls and termed
as wall-mediated collisions hereinafter and a particle
undergoes direct collisions with the walls. Wall-mediated
collisions occur over short and intermediate time scales
and the direct particle-wall collisions occur over interme-
diate and long time scales. Both of these collisions are
non-thermal in nature and modify the thermal collisions
to varying degrees depending on the wall spacing.

In the ballistic regime, non-thermal inter-particle
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TABLE III. Variation of H/
√
MSD⊥(diff) and H/

√
MSD⊥(sat) of argon gas as a function of confined spacing (H) for four

different pressures at T = 300 K.
P = 0.004 MPa P = 0.03 MPa P = 0.3 MPa P = 3 MPa

H H/
√
MSD⊥(diff) H/

√
MSD⊥(sat) H/

√
MSD⊥(diff) H/

√
MSD⊥(sat) H/

√
MSD⊥(diff) H/

√
MSD⊥(sat) H/

√
MSD⊥(diff) H/

√
MSD⊥(sat)

20 Å (≈ 6 σ) 3.04 2.45 2.97 2.45 3.04 2.46 3.11 2.44

40 Å (≈ 12 σ) 3.07 2.45 3.05 2.46 3.09 2.45 3.19 2.44

60 Å (≈ 18 σ) 3.05 2.45 3.08 2.44 3.10 2.45 3.48 2.45

80 Å (≈ 24 σ) 3.08 2.45 3.05 2.47 3.15 2.44 3.39 2.45

100 Å (≈ 30 σ) 3.02 2.45 3.04 2.46 3.16 2.45 3.69 2.44

120 Å (≈ 36 σ) 3.07 2.46 3.09 2.46 3.17 2.45 3.75 2.45

140 Å (≈ 42 σ) 3.06 2.47 3.05 2.46 3.06 2.45 3.88 2.45

160 Å (≈ 47 σ) 3.16 2.46 3.15 2.47 3.19 2.46 3.86 2.45

180 Å (≈ 53 σ) 3.13 2.45 2.98 2.46 3.25 2.45 3.99 2.45

200 Å (≈ 59 σ) 3.09 2.46 3.06 2.48 3.28 2.45 4.22 2.45

220 Å (≈ 65 σ) 3.08 2.44 3.06 2.45 3.19 2.46 4.20 2.45

240 Å (≈ 71 σ) 3.04 2.44 3.08 2.46 3.26 2.45 4.37 2.44

260 Å (≈ 76 σ) 3.04 2.45 3.09 2.45 3.17 2.45 4.40 2.45

280 Å (≈ 82 σ) 3.14 2.45 3.09 2.45 3.23 2.45 4.21 2.45

300 Å (≈ 90 σ) 3.12 2.46 3.07 2.45 3.23 2.44 4.27 2.45

collisions are ineffective as the value of a is close to that
in the bulk. In the diffusive regime of MSD⊥, the non-
thermal collisions reduce the diffusion coefficient (D⊥)
significantly from that in the bulk. The diffusive to sub-
diffusive transition, and the constraint on MSD⊥ not to
exceed a characteristic length (∼ H/2.45) in the sub-
diffusive regime, are drastic manifestations of the non-
thermal collisions resulting from the confinement.

D. The time-window between ballistic to diffusive
transition:

Analyzing MSD⊥ in greater detail, through Fig.2.(b)
in logarithmic scale, we observe that the particles
undergo a gradual transition from ballistic to diffusive
motion indicated by the slope changing gradually from 2
to 1. Fig.4 shows that the gradual transition occurring
within a time-window between the end of ballistic
motion (tb) and the starting of diffusive motion (td) is
found to be a function of wall spacing and pressure. The
time window is found to be increasing with spacing for
the whole range of pressures under study. Confnement
enhances wall mediated collisional events much like
the effect of increasing pressure except that the latter
affects all the three degrees of freedom equally. In Fig.4,
three distinct regimes are observed. At very small wall
spacings, values are independent of the pressure as the

effect of confinement is strong.

At larger spacings, the pressure dependence prevails
and is expected to be retained thereafter for greater spac-
ings and asymptotically approach the corresponding bulk
phase values. It is worth noting that, in the bulk gas, the
time

FIG. 4. Variation of time-window between ballistic to diffu-
sive motion (td-tb) as a function of confined spacing for dif-
ferent pressures.
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window is largest (1450 ps) for the lowest fluid density
(at the lowest pressure of 0.004 MPa) considered and
smallest (229.67 ps) for a relatively higher fluid density
(at the highest pressure of 3 MPa).

Over intermediate wall spacings, however, the
crossover-like feature seen between wall spacings H =
100 Å (∼ 30 σ) and H = 200 Å (∼ 59 σ) in the figure
suggests that there is a competition between the effects
of confinement and the effects of pressure on the particle
motion.

It may be noted that less than a decade ago, the full
transition from ballistic to diffusive motion of a brown-
ian particle in a liquid was observed experimentally [33].
More specifically, by experimentally measured instanta-
neous velocity of Brownian particles in air, using optical
tweezer, Tongcang Li et al. [34] showed the presence of
a time-window between ballistic to diffusive motion of
Brownian particles, although it must be noted that the
timescales of Brownian motion are very different than
that of self-diffusion in the dilute gas discussed in this
work.

E. Effect of varying confined spacing (H) on
V ACF⊥ and correlation between V ACF⊥ −minima

and MSD⊥:

Fig.5 presents the trends in the VACF⊥ as a function
of wall spacing at the same P, T state point consid-
ered when discussing the results for MSD⊥ shown in
Fig.3.(b). As expected, VACF‖ (not shown) is unaffected
by confinement.

FIG. 5. Variation of VACF⊥ with time for different confined
spacings for argon gas at P=0.09MPa and T=300K. The ar-
row indicates the direction of increasing H.

While the ballistic regime is barely visible on the
time scales shown in Fig.5, the decay in the diffusive
regime, the occurrence of minima in the diffusive to
sub-diffusive transition zone, and the approach to zero
in the sub-diffusive regimes can be seen clearly. The
initial decay in VACF⊥, more rapid than what would
result from purely thermal collisions, arises due to
the wall-mediated collisions which are non-thermal
in nature. As the spacing is reduced, the decay is
faster indicating that wall-mediated collisions grow in
importance at smaller spacings.

FIG. 6. The transition time for MSD⊥ (MSDZ) to change from diffusive to sub-diffusive scaling corresponds to the minima
occurring in VACF⊥, shown for argon with T = 300K and P = 0.09 MPa. Fig 6.(a) shows ttr = 19 ps in MSD⊥, whereas Fig
6.(b) shows tminima = 21.9 ps in VACF⊥ for 100 Å (≈ 30 σ) spacing.
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For any given wall spacing, as the particle approaches
the walls over long time scales, the encounters with
other particles bouncing-off the walls would increase and
compete with direct particle-wall collisions. The result-
ing sub-diffusive motion manifests as a slow evolution in
MSD⊥ and a nearly vanishing VACF⊥.

On intermediate time scales, the VACF⊥ exhibits min-
ima much like what is found in liquids. The minima in
VACF⊥ can be seen to progressively shift to larger values
in time as the wall-spacing is increased. It may also be
noted that the depth of the minima is nearly the same for
all the wall-spacings considered. However, these minima
broaden gradually as wall-spacing increases. We observe
a strong correlation between the diffusive to sub-diffusive
transition in MSD⊥ and the negative correlation mini-
mum in the VACF⊥ for all partial confinements studied.
Figure 6 shows that the transition time (ttr) from diffu-
sive to sub-diffusive regimes in MSD⊥, obtained graph-
ically, is close to the time at which the minimum in
VACF⊥ occurs. For gaseous regime of argon with T =
300 K and P = 0.09 MPa, it is observed that ttr = 19 ps,
whereas tmin is 21.9 ps for a spacing of 100 Å (≈ 30 σ).

F. Wall-mediated collisions and VACF⊥-minima

The minima in VACF⊥, over intermediate time scales,
arise due to the negative correlations produced by

the velocity reversals from wall-mediated collisions.
Whether a particle has a positive or a negative initial
velocity in the z-direction, purely thermal collisions
in the gas phase tend to decelerate (through frequent
”soft” collisions) rather than produce direction re-
versals (through infrequent ”hard” collisions). Under
confinement, however, particles bouncing-off the walls
are always moving away from the walls in the opposite
direction inducing velocity reversals. These velocity
reversals lead to negative correlations in the VACF⊥
seen over intermediate time scales. As the wall spacing
is reduced, non-thermal collisions dominate and the
velocity reversals occur over shorter time scales leading
to the early onset of the minimum in the VACF⊥.
For the larger spacings, the shift of minima to later
times and the broadening of minima, observed in Fig.5,
indicate that thermal collisions mitigate the effects of
non-thermal collisions only to a limited extent.

To understand the relative roles of thermal and
non-thermal collisions, the VACF⊥ is examined keeping
the spacing fixed at H = 20 Å (≈ 6 σ) and diluting the
gas density from 4.81 kg/m3 (corresponding to P = 0.3
MPa of argon gas at T = 300 K) to a gas density of
0.012 kg/m3.

From the results shown in Fig.7, we can observe four

FIG. 7. (a).Normalized VACF⊥ for different number densities of argon gas under same confined spacing (H = 20 Å ≈ 6 σ)
at 300 K. Distinct broadening of the first minimum and a systematic shift of the VACF-minima to later times are shown (see
inset). (b) The oscillatory feature of VACF is seen at later times for very dilute argon gas (N = 50) for H = 20 Å (≈ 6 σ).
The minimum for N = 50 occurs around 38 ps consistent with the trends in the minima for the cases shown in Fig. 7.(a). The
oscillations due to particle-wall collisions seem to occur with different periods consistent with the fact that particles have a
distribution of initial positions and speeds.
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features as we dilute the gas keeping the same confined
spacing : a slower initial decay, a distinct broadening
of the first minimum (Fig.7.(a)) as well as a systematic
shift of the minimum to later times (Fig.7.(a)) on inter-
mediate time scales, and the emergence of oscillatory
behaviour with increasing dilution (N = 50, Fig.7.(b))
on long time scales. At lower dilutions (N = 5000 and N
= 20000), the minima are not changing with N, where N
is total number of particles.

In the dilute limit, the particles are expected to
bounce between the confining walls (”hard” collisions)
resulting in periodic velocity reversals. The VACF would
feature oscillations with very little decay as there are
very few thermal (random) collisions. As the density
increases, the periodicity in the velocity reversals would
be disrupted progressively due to increasing thermal
(random) collisions on long time scales. Further, as the
density increases, wall-mediated collisions would also
increase on intermediate and short time scales. Each
particle is thus influenced by a velocity field that is
an admixture of thermal collisions and wall-mediated
collisions. If the wall-mediated collisions were as random
as thermal collisions, the VACF would have decayed
rapidly without any other feature. While there is a rapid
decay at short timescales, there is a positive correlation
that emerges at intermediate timescales.

The positive correlations are interpreted as due to the
coherent component of the wall-mediated collisions on
intermediate timescales. The decay is caused by the in-
coherent (random) component of the wall-mediated col-
lisions along with purely thermal collisions.

FIG. 8. Frequency spectra of the normalized VACF⊥ (Zz(ω))
and normalized VACF‖ (Zxy(ω)) for H = 80 Å (≈ 24 σ) at P
= 0.3 MPa.

G. Signature of non-diffusive modes

While the non-diffusive character of the particle dy-
namics can be noted from the intermediate and long-
time scale features of the MSD⊥ and VACF⊥, the Fourier
transform of VACF⊥ provides an alternate picture in the
frequency domain. The fourier transform (Z(ω)) of nor-
malized VACF (Z(t)) is defined as

Z(ω) =
1

2π

∫
Z(t)exp(−iωt)dt (7)

The Fourier transform of the VACF, denoted by Z(ω),
where ω is the frequency, is known to yield the density
of states (DoS) [35]. For a gas phase, Z(ω = 0) > 0 and
decays monotonically. The non-vanishing of DoS for ω
= 0 corresponds to diffusive modes. For liquids, along
with diffusive modes on long time scales Z(ω = 0) > 0,
there exists non-diffusive modes from caging effects on
shorter time scales giving rise to a structure in Z(ω) for
ω > 0 : a local minimum followed by a maximum and
decaying thereafter at higher frequencies.

Fig.8 shows the Fourier transform of normalized
VACF⊥ (Zz(ω)) and normalized VACF‖ (Zxy(ω)) for one
of the confined systems studied. The DoS for normalized
VACF‖ exhibits features of a gas-like system with purely
diffusive modes (Z(ω = 0) > 0). However, the DoS for
normalized VACF⊥ indicates that Z(ω = 0) = 0, shows
a broad maximum for ω > 0 and decays thereafter. The
absence of diffusive modes and the presence of the broad
maximum, characteristic of non-diffusive modes, indicate
that under partial confinement, a gas can exhibit unusual
features resembling dense systems in the confining direc-
tion. In particular, the broad maximum in the DoS sug-
gests that the non-diffusive modes could be part of the
vibrational modes, except

FIG. 9. Frequency spectra of the normalized VACF⊥ (Zz
(ω)) of argon gas for different confined spacings at P = 0.3
MPa. The arrow indicates the direction of increasing H.
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that these vibrational modes seem to be damped in
the confined system and not sustained as in a solid phase.

To investigate the role of confinement on the frequency
spectrum, the Fourier transform of VACF⊥ has been
evaluated for several spacings as well as for the bulk
and the results are shown in Fig.9. The absence of any

structure in the DoS for the bulk and the systematic
shift of the peak frequency with spacing in the DoS for
the partially confined system, establishes that the con-
fining walls contribute to non-diffusive modes. Smaller
(larger) confinements lead to the earlier (later) onset of
non-diffusive modes, leading to the higher (lower) values
for the peak frequencies.
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FIG. 10. Shifting of tminima at later times with increasing wall-spacing for different P,T state points shown in Fig.10.(a), (c),
(e), (g). The arrow indicates the direction of increasing H. In Fig.10.(b), (d), (f), (h) the linear relations between tminima and
the confined separation (H) between the walls have been shown for different P,T state points by linear fit. We observe that the
slopes are nearly the same for the entire pressure (/density) regime of study.

H. Connection with speed of sound

Non-diffusive modes are interpreted as a manifestation
of the presence of collective motion.The collective modes
conjectured here is related to spontaneous density
fluctuations in fluids. In the bulk, these fluctuations
are localized in space and time and are distributed
statistically throughout the volume. These local density
fluctuations propagate very short distances at sound
speed, by collective motion, and dissipate subsequently
through diffusive motion of individual particles. As
there are no restoring forces in dilute fluids, collective
motion is not sustained on short lengthscales and
timescales. Under partial confinement, however, there
is this possibility of the collective motion being reversed
by the walls before it dissipates. The reversed collective
motion acting on an individual particle, referred to
as wall-mediated collisions earlier, is thought to be
responsible for the minima in the VACF⊥. We seek
further correlations between H and tminima extending
the results shown in Fig.5.

The VACF⊥ has been computed as a function of
confined spacing for T = 300 K over pressures ranging
from 3MPa to as low as 0.004MPa. This pressure range
sets the densities ranging from 48.87 kg/m3 to 0.064
kg/m3 at 300K of argon gas. For P > 5 MPa argon
enters supercritical regime at 300K. The results are

shown in Fig.10. In Fig.10.(a),(c),(e) it is seen that
for every P,T state point in the lower and intermediate
pressure regimes, the minima in the VACF⊥ gradually
broadens with increasing spacing without much change
in their depths. Fig 10.(g) shows that at higher pressures
at 300K, in addition to broadening, the minima are
becoming shallower with increased wall spacing, whereas
at lower pressures at the same temperature the depth of
the minima are not affected with increased spacing.

However, in all cases, a systematic shift of the tminima
towards higher values can be seen as spacing is increased.
More specifically, a linear relation is observed between
the wall spacing and the tminima of the VACF⊥ as shown
in Fig.10.(b),(d),(f) and (h) for the whole range of pres-
sures(/densities) at 300K for argon gas.

TABLE IV. Comparison between average particle velocity
along z (〈vz〉particle) and H/tminima as a function of pressures

(P) at 300K.

P (MPa) H/tminima (Å/ps) 〈vz〉particle (Å/ps)

0.004 4.57 2.49
0.030 4.61 2.48
0.3 4.44 2.49
3 4.51 2.48
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FIG. 11. Variation of Heff as a function of tmin of VACF⊥ for different state point of argon at 300K: (a) P = 0.004 MPa, (b)
P = 0.030 MPa, (c) P = 0.3 MPa, and (d) P = 3 MPa. Slopes are extracted from the best linear fit.

The slopes from these plots for each pressure, having
the dimensions of inverse speed, are compared with the
particle speed averaged over all the spacings at each
pressure in Table IV. The average particle speed is
obtained from

√
a, where a is the coefficient of the t2

behaviour of the MSD⊥ in the ballistic regime, for each
spacing at a given pressure. The average particle speeds
are found to be distinctly lower than reciprocal of the
slopes from Fig.10.

The interpretation that the DoS for VACF⊥ indi-
cates non-diffusive modes, when combined with the
observation that the reciprocal of the slopes from Fig.
10, yield values that are significantly higher than the
average particle speeds, suggests that collective motion
may be responsible for the minima in VACF⊥. Since
particles in a state of ballistic motion cannot be part
of the collective motion and since particles in the state
of diffusion can only dissipate collective motion, we
consider the collective motion to form at h1, defined as
the average distance traversed by a particle, with respect

to the mid-plane, located somewhere at the beginning
of diffusive regime. The sound-wave like excitation
thus formed moves at a higher speed towards the wall,
undergoes reversal at the wall and traverse back to
reach h1 in time tmin to ”back-scatter” the individual
particle. The ”back-scatter” appears to critically damp
the oscillations of an individual particle as is borne out
from the features in MSD⊥ and VACF⊥. The total
distance traversed by the sound-wave like excitation in
tmin is given by Heff = 2

(
H
2 − h1

)
. The ”back-scatter”

is considered to take place at h1. The particle inter-
action with the reflected excitation marks the end of
diffusive regime, which is H/3. Therefore we consider
the particles not to move appreciable distances (> h1

but < H/3) between the generation and subsequent
interaction with the excitation.

If the sound-wave like excitations were to be responsi-
ble for the minima in the VACF⊥ a correlation between
Heff and tmin would be expected. Indeed, Figure 11
shows a very good linear relation between Heff and
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tmin. Since the sound speed is a function of P ( and T:
in the present study T is fixed.) the calculations have
been performed and presented as a function of P. The
role of confinement is examined for each P. The linear
relationship found from the study (Fig.11) is consistent
with a unique sound speed associated with each pressure.

The speed of sound estimated from the slope is pre-
sented in Table.VI. Noting that the ensemble averaging
done to evaluate the VACF⊥ takes into account the
fact that particles could have had their origins spatially
spread across the width between the walls, the broaden-
ing of V ACF⊥ − minima with increasing wall spacing
may be explained as follows: sound waves would, after
reflections from the walls, interfere with the particle
dynamics at different times (corresponding to the spatial
spread seen in MSD⊥) leading to a broadening in the
V ACF⊥ − minima. As the wall spacing is reduced,
the spatial spread reduces and the temporal spread also
reduces leading to a sharper minima in the VACF⊥.

The behaviour shown in Fig.10.(g), namely min-
ima becoming shallower and broader with increased
wall-spacing at P = 3 MPa, is caused due to the
lesser compressibility of the argon gas at this pressure
compared to it’s lower pressure counterpart.

It is known that, at constant pressure and temperature
(NPT ensemble) the isothermal compressibility is related
to the volume fluctuations as [36]〈

δV 2
〉
NPT

= V kBTκT (8)

, i.e the lesser compressibility (at higher pressure 3
MPa) causes lesser volume fluctuations. This, we
believe, affects the generation and sustainability of
spontaneous sound-wave like excitation at very high
pressures under confinement. In other words, the
system becomes less compressible to generate significant
amplitude of density fluctuations to sustain spontaneous
sound-wave like motion at higher pressures. This is
consistent with the observations of shallow minima at
higher spacings in Fig. 10.(g) and the scatter in the
plot of Heff versus tmin at higher spacings in Fig. 11.(d).

We investigate the isothermal compressibility for
higher (3MPa) and lower pressure (0.004MPa) state
points as a function of different confined spacings (H).
We estimate the number density fluctuations in the form
of histograms for LJ fluid (argon) in gaseous regime. We
use the relation between isothermal compressibility and
density fluctuation [37, 38] to find κT .

κT =

(
V

kBT

) 〈(∆ρN )
2
〉

ρ2
N

(9)

, where, κT is the isothermal compressibility, ρN is
number density (ρN = N

V ), kB is Boltzmann constant

and 〈...〉 is the ensemble average. Table.V contains the
values of κT for different confined spacings. For both
higher and lower pressure state points, we observe a
lowering of the values of κT for all the confined spacings,
compared to their bulk values. The values of κT for
higher pressure (P = 3 MPa) under confinement is closer
to the bulk κT value compared to the lower pressure
state point (P = 0.004 MPa). The distinctive difference
from the bulk κT is found to arise from the density

fluctuation term
〈(∆ρN )2〉

ρ2
N

(see equation 9).

While the density remains same for both bulk and con-
fined systems for a particular P,T state point, the density
fluctuation is significantly reduced for the confined sys-
tems compared to the density fluctuation present in bulk.

TABLE V. Comparison of isothermal compressibility (κT )
and the variation of the square of number density fluctuations(
σ2
ρN

)
of bulk and confined argon gas for P = 0.004 MPa and

P = 3 MPa at 300 K.

P(MPa) H (Å) σ2
ρN =

〈(∆ρN )2〉
ρ2
N

κT
(
Pa−1

)
(×10−5)

0.004 20 2.80 1.40× 10−4

40 2.89 1.44× 10−4

60 3.03 1.51× 10−4

80 2.91 1.46× 10−4

100 2.80 1.40× 10−4

120 2.91 1.46× 10−4

140 2.88 1.45× 10−4

160 2.79 1.39× 10−4

180 2.67 1.34× 10−4

200 3.03 1.51× 10−4

220 2.99 1.50× 10−4

240 2.78 1.39× 10−4

260 2.89 1.45× 10−4

280 2.96 1.48× 10−4

300 2.71 1.36× 10−4

Bulk 4.97 2.49× 10−4

3 20 3.55 2.48× 10−7

40 3.42 2.39× 10−7

60 3.6 2.52× 10−7

80 4.12 2.89× 10−7

100 3.54 2.48× 10−7

120 3.6 2.52× 10−7

140 3.47 2.43× 10−7

160 3.76 2.63× 10−7

180 3.54 2.48× 10−7

200 3.68 2.58× 10−7

220 3.6 2.52× 10−7

240 3.65 2.56× 10−7

260 3.25 2.28× 10−7

280 3.33 2.33× 10−7

300 3.07 2.15× 10−7

Bulk 4.61 3.23× 10−7
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Further, the trends in Table.V indicate that the
density fluctuations are consistently smaller (larger) for
the higher (lower) pressure over the range of confine-
ment spacings studied, as expected. The system at the
maximum spacing is still far from the bulk as can be
seen from Table V.

We also note from Table.V that the number density
fluctuations in bulk are not significantly different for
higher and lower pressure cases. The dominant contri-

butions for κT for bulk gas come from the
(

V
kBT

)
term,

which is very different for different pressures at fixed
temperature (300 K).

For the highest pressure under study (3 MPa),
even under confinement, sound speed is found to be
close to the NIST [32] bulk phase value (Table.VI).
This suggests the dominant nature of particle-particle
collisions at higher pressures. As we go from higher
to lower pressure P,T points gradually, the effect of
confinement becomes stronger and the value of sound
speed starts to decrease with respect to NIST bulk sound
speed at the corresponding pressure at 300 K (Table.VI).

To ensure that estimates made from MD simula-
tions are reasonable and reliable, we carry out MD
simulations to calculate cs for the bulk phase of argon
gas at each of these four P,T state points from the
isothermal compressibility (κT ) defined in Eq.9. We
use the thermodynamic relation between adiabatic and
isothermal compressibility for mono-atomic gas as κT
= γκS and calculate the speed of sound from the well
known relation [39] cs = 1√

ρκS
, where cs is the speed

of sound, ρ is the mass density, γ is heat capacity ratio
and κS is the adiabatic compressibility. The values,
tabulated in Table.VI can be seen to agree fairly well
with that of the NIST bulk phase data [32] for sound
speed.

The sound speed estimates using the slopes in Fig.11,
based on MSD⊥, are presented in Table.VI over a wide
range of densities (about 4 orders of magnitude).

TABLE VI. Comparison of the variation of speed of sound(cs)
of argon in the gas regime at 300K for different densities(ρ)
calculated and estimated from MD simulation and that of the
NIST values.

Sound speed(cs) (m/s)

P(MPa) ρ(kg/m3) Estimated
from slope
(MD)

Computed
via bulk
κT (MD)

NIST

0.004 0.064 277.1 324.95 322.6
0.03 0.48 282.04 319.79 322.62
0.3 4.8 286.71 325.54 322.83
3 48.87 326.2 337.47 325.58

These estimates can be seen not to agree entirely with
the NIST [32] bulk phase data. Further, sound speed
estimates from standard expressions cs = 1√

ρκS
and κT

= γκs, and using κT from the fourth column of Table.V,
leads to consistently higher values than the NIST bulk
phase data. These discrepencies may be indicative of
the need to re-examine the standard relation κT = γκs
and perhaps cs = 1√

ρκS
under strong confinement.

IV. SUMMARY AND CONCLUSIONS

We have carried out MD simulations of a confined gas
to investigate the role of partial confinement, effected
by two plane parallel reflective walls, on the particle
dynamics. The study, done using LAMMPS, considered
a system of 20000 particles both in bulk and in partial
confinement, interacting via the Lennard-Jones poten-
tial, at T = 300K and pressures ranging from 0.004 MPa
to 3 MPa simulating a wide range of densities. The
confinement spacing ranged from 20 Å (≈ 6 σ) to 300 Å
(≈ 90 σ).

Confinement changes MSD⊥ and VACF⊥ strongly. It
has very little effect on MSD‖ and VACF‖. At short
time scales (ballistic regime) MSD⊥ is barely influenced
by confinement. Over intermediate time scales (diffusive
regime), the diffusion coefficient (D⊥) is significantly
reduced, with respect to the bulk, due to confinement.
Over longer time scales, confinement effects are the
strongest leading to sub-diffusive motion. The transition
from diffusive to sub-diffusive behaviour correlates with
the wall spacing (≈ 1

3 of wall spacing for P = 0.004

MPa, 0.03 MPa, 0.3 MPa and ≈ 1
3.9 for P = 3 MPa).

Irrespective of pressure, we observe for all P,T state
points and for all the spacings studied, the asymptotic
values for

√
MSD⊥ turns out to be H

2.45 .

A well-defined time-window is found that marks the
end of ballistic regime and the beginning of the diffusive
regime in the bulk as well as under confinement. For
small wall spacing, the time-window is small. It is
worth noting that experiments in the bulk confirms
the existence of this time-window [33, 34] albeit for
Brownian particles.

It may be noted that unlike the particle dynamics in
the gas phase studied in this article, particle dynamics
parallel to the walls, have been found to be affected in
the dense liquid phase [15], and in the glass forming
phase [14].

VACF⊥ shows a rapid decay corresponding to the
diffusive regime and exhibits a well-defined minimum
over time scales corresponding to the transition from
diffusive to sub-diffusive regimes and nearly vanishes
in the sub-diffusive regime. The Fourier transform of
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VACF, related directly to the density of states (DoS),
indicates the presence of non-diffusive modes in the
spectrum of normalized VACF⊥ and diffusive modes in
the spectrum of normalized VACF‖ . The frequencies at
which maxima in the DoS occur are found to move closer
to zero as the wall spacing is increased confirming the
role of confinement in sustaining the non-diffusive modes.

Reducing the contributions of the thermal collisions,
by diluting the gas further, reveals the presence of
sustained velocity reversals induced by wall-mediated
collisions. The results confirm the significant role played
by non-thermal collisions in controlling the dynamics of
the particles under confinement over intermediate and
long time scales.

It is established from the strong linear relationship
between the wall spacing and the time at which the
VACF⊥-minima occurs, that there exists a phenomenon
involving a higher speed than the average particle speed.
It is conjectured that collective motion triggered at the
early stages of the diffusive regime propagates at the
higher speed, gets reversed at the wall and acts back on
the particle leading to the minima in the VACF⊥. Using
the characteristic distance associated with the starting
of the diffusive motion, and the tmin associated with
VACF⊥, the speed of this collective excitation regarded
as sound speed, is estimated for several pressures spread
over the whole range considered in this study.

These features, particularly the connection with
speed of sound, combined with the observation that
the compressibility has been found to be higher in the
low pressure regimes, when compared with that in the
high pressure regimes, suggest that correlated motion

resembling sound waves can be spontaneously generated
and sustained at low pressure regimes better than at the
higher pressure regimes.

Although the possibility of sound-wave generation and
reflection from confining boundaries has been reported
in the literature for liquids [9, 10], the present study
has systematically investigated the effects of partial
confinements for a gas-like phase, established strong
correlation between MSD⊥ and VACF⊥ and shown the
possibility of spontaneous generation and propagation of
sound-wave like disturbances normal to the walls.

The density fluctuations seem to be considerably
influenced by the confinement even though they are over
larger length scales than the length scales associated
with particle-particle and particle-wall interactions.
Further, the sound speed estimates made in the present
study appear not to agree entirely with the NIST
bulk phase data. It would be interesting to conduct
experiments to validate these findings. Further there
appears a need to re-examine the relation κT = γ κs
and perhaps cs = 1√

ρκs
for strongly confined systems.
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