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Abstract—The problem of estimating the missing mass or total
probability of unseen elements in a sequence of n random samples
is considered under the squared error loss function. The worst-

case risk of the popular Good-Turing estimator is shown to be
between 0.6080/n and 0.6179/n. The minimax risk is shown to
be lower bounded by 0.25/n. This appears to be the first such
published result on minimax risk for estimation of missing mass,
which has several practical and theoretical applications.

I. INTRODUCTION

Given independent samples from an unknown distribution,

missing mass estimation asks for the sum of the probability

of the unseen elements. Missing mass estimation is a basic

problem in statistics and has wide applications in several fields

ranging from language modeling [1], [2] to ecology [3]. Per-

haps the most used missing mass estimator is the Good-Turing

estimator which was proposed in a seminal paper by I. J.

Good and Alan Turing in 1953 [4]. The Good-Turing estimator

is used in support estimators [3], entropy estimators [5] and

unseen species estimators [6]. To describe the estimator and

the results, we need a modicum of nomenclature.

Let p be an underlying unknown distribution over an

unknown domain X . Let Xn , (X1, X2, . . . , Xn) be n
independent samples from p. For x ∈ X , let Nx(X

n) be the

number of appearances of x in Xn. Upon observing Xn, our

goal is to estimate the missing mass

M0(X
n) ,

∑

u∈X

p(u)I(Nu(X
n) = 0), (1)

where I(·) denotes the indicator function. For example, if

X = {a, b, c, d} and X3 = b c b, then M0(X
3) = p(a)+p(d).

The above sampling model for estimation is termed the

multinomial model. We note that 1−M0(X
n) is often referred

as sample coverage in the literature [7].

An estimator for missing mass M̂0(X
n) is a mapping from

Xn → [0, 1]. For a distribution p, the ℓ22 risk of the estimator

M̂0(X
n) is

Rn(M̂0, p) , EXn∼p[(M̂0(X
n)−M0(X

n))2],

and the worst-case risk over all distributions is

Rn(M̂0) , max
p

Rn(M̂0, p),

and minimax mean squared loss or minimax risk is

R∗
n = min

M̂0

Rn(M̂0).

The goal of this paper is to characterize R∗
n.

A. Good-Turing estimator and previous results

Let

Φi(X
n) ,

∑

u∈X

I(Nu(X
n) = i)

denote the number of symbols that have appeared i times in

Xn, 1 ≤ i ≤ n. For example, if X3 = a, b, c, then Φ1 = 3
and Φi = 0 for all i > 1. The Good-Turing estimator [4] for

the missing mass is

MGT(Xn) ,
Φ1(X

n)

n
.

One of the first theoretical analysis of the Good-Turing esti-

mator was in [8], where it was shown that

∣

∣E
[

MGT(Xn)−M0(X
n)
]∣

∣ ≤
1

n
. (2)

This shows that the bias of the Good-Turing estimator falls as

1/n. They further showed that with probability ≥ 1− δ,

∣

∣MGT(Xn)−M0(X
n)
∣

∣ ≤
2

n
+

√

2 ln(3/δ)

n
(1 + 2 ln(3n/δ)) .

Various properties of the Good-Turing estimator and several

variations of it have been analyzed for distribution estimation

and compression [9], [10], [11], [12], [13], [14], [15]. Several

concentration results on missing mass estimation are also

known [16], [17]. Despite all this work, the risk of the

Good-Turing estimator and the minimax risk of missing mass

estimation have still not been conclusively established.

B. New results

Unlike parameters of a distribution, missing mass itself is

a function of the observed sample and that makes finding the

exact minimax risk difficult.

We first analyze the risk of the Good-Turing estimator and

show that for any distribution p,

Rn(M
GT, p) =

1

n
E

[

2Φ2

n
+

Φ1

n

(

1−
Φ1

n

)]

+ o

(

1

n

)

,

where Φi is abbreviated notation for Φi(X
n). By maximizing

the RHS in the first equation above over all distributions, in

Theorem 4, we show that

0.6080

n
+ o

(

1

n

)

≤ Rn(M
GT) ≤

0.6179

n
+ o

(

1

n

)

.
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We note that under the multinomial model, the numbers of

occurrences of symbols are correlated, and this makes finding

the worst case distribution for the Good-Turing estimator

difficult.

We then prove estimator-independent information-theoretic

lower bounds on R∗
n using two approaches. We first com-

pute the lower bound via Dirichlet prior approach [18]. In

Lemma 7, we show that

R∗
n ≥

4

27n
.

We then improve the constant by reducing the problem of

missing mass estimation to that of distribution estimation. In

particular, in Theorem 11, we show that

R∗
n ≥

1

4n
+ o

(

1

n

)

Combining the lower and upper bounds, we get

0.25

n
+ o

(

1

n

)

≤ R∗
n ≤

0.6179

n
+ o

(

1

n

)

,

Finding the exact minimax risk for the missing mass estima-

tion problem remains an open question.

The rest of the paper is organized as follows. In Section II,

we analyze the Good-Turing estimator. In Section III-A, we

use Dirichlet prior approach to obtain lower bounds and in

Section III-B we obtain lower bounds via reduction.

II. RISK OF GOOD-TURING ESTIMATOR

The analysis of [8] can be extended to characterize the risk

of the Good-Turing estimator for missing mass. The squared

error of the Good-Turing estimator MGT(Xn) can be written

down as follows:

(

MGT(Xn)−M0(X
n)
)2

=

(

∑

u∈X

1

n
I(Nu = 1)− p(u)I(Nu = 0)

)

(

∑

v∈X

1

n
I(Nv = 1)− p(v)I(Nv = 0)

)

=
1

n2

∑

u,v∈X

(

I(Nu = 1)I(Nv = 1)

− 2np(u)I(Nu = 0)I(Nv = 1)

+ n2p(u)p(v)I(Nu = 0)I(Nv = 0)

)

(3)

For u, v ∈ X , E[I(Nu = i)I(Nv = j)] = P(Nu = i, Nv = j).
Using the notation Pn(i, j) = P(Nu(X

n) = i, Nv(X
n) = j),

we get

Rn(M
GT, p) =

1

n2

∑

u,v∈X

(

Pn(1, 1)− 2np(u)Pn(0, 1)

+ n2p(u)p(v)Pn(0, 0)

)

. (4)

The probability Pn(i, j) can be written down as

Pn(i, j) =







(

n
i j

)

p(u)ip(v)j(1 − p(u)− p(v))n−i−j , u 6= v,

(

n
i

)

p(u)i(1− p(u)n−i, u = v, i = j,
(5)

where
(

n
i j

)

= n!
i!j!(n−i−j)! and

(

n
i

)

= n!
i!(n−i)! . The summation

in (4) is first split into two cases: u 6= v and u = v. Denoting

P (u, v) = p(u)p(v)(1−p(u)−p(v))n−2, we have, for u 6= v,

p(u)p(v)Pn(0, 0) = (1− p(u)− p(v))2P (u, v),

p(u)Pn(0, 1) = n(1− p(u)− p(v))P (u, v),

Pn(1, 1) = n(n− 1)P (u, v).

For u = v, observe that Pn(0, 1) = 0. Using the above

observations, the summation in (4) simplifies to

Rn(M
GT, p) =

1

n

∑

u,v∈X
v 6=u

P (u, v)

[

n
(

p(u) + p(v)
)2

− 1

]

+
1

n

∑

u∈X

[

p(u)(1− p(u))n−1 + np(u)2(1− p(u))n
]

. (6)

The following lemma is useful in bounding certain terms in

the first summation above as a function of n, independent of

the unknowns X and p.

Lemma 1. For i ≥ 1, j ≥ 1,

∑

u,v∈X ,u6=v

p(u)ip(v)j(1−p(u)−p(v))n ≤
(i− 1)! (j − 1)! n!

(n+ i+ j − 2)!
.

Proof: Let X and Y be a pair of independent and

identical random variables with marginal distribution p. Define

a random variable T (X,Y ), whose value T (u, v) = 0 for

u = v and, for u 6= v,

T (u, v) =

(

n+ i+ j − 2

i− 1 j − 1

)

p(u)i−1p(v)j−1(1−p(u)−p(v))n.

We see that T (X,Y ) is a probability for X 6= Y , and that it

takes values in [0, 1] in all cases. Therefore, its expectation

E[T (X,Y )] =
∑

u,v∈X
u6=v

p(u)p(v)T (u, v)

=
∑

u,v∈X
u6=v

(

n+ i+ j − 2

i− 1 j − 1

)

p(u)ip(v)j(1− p(u)− p(v))n ≤ 1,

which concludes the proof.

A useful univariate version of Lemma 1 is the following.

Lemma 2. For i ≥ 1,

∑

u∈X

p(u)i(1− p(u))n ≤
(i− 1)! n!

(n+ i− 1)!
.

Proof: For X ∼ p, define T (X) =
(

n+i−1
i−1

)

p(X)i−1(1−
p(X))n and follow the proof of Lemma 1.

Using Lemma 1, observe that
∑

u,v∈X ,u6=v

P (u, v)(p(u) + p(v))2 = o(1/n). (7)



Therefore, the risk can be written as

Rn(M
GT, p) =

1

n

[

∑

u∈X

p(u)(1− p(u))n−1 −
∑

u,v∈X
v 6=u

P (u, v)

+
∑

u∈X

np(u)2(1 − p(u))n
]

+ o(1/n). (8)

The summation terms above can be rewritten as follows:

∑

u∈X

p(u)(1− p(u))n−1 = E

[

Φ1(X
n)

n

]

. (9)

∑

u∈X

np(u)2(1− p(u))n =
2

n− 1

∑

u∈X

Pn(2, 0)(1− p(u))2

(a)
=

2

n− 1

∑

u∈X

Pn(2, 0)± o

(

1

n

)

= E

[

2Φ2(X
n)

n

]

± o

(

1

n

)

, (10)

where (a) follows using Lemma 2.

∑

u,v∈X
v 6=u

P (u, v) =
1

n(n− 1)

∑

u,v∈X
v 6=u

Pn(1, 1)

=
1

n(n− 1)
E

[

∑

u,v∈X
v 6=u

I(Nu(X
n) = 1)I(Nv(X

n) = 1)

]

= E

[

1

n(n− 1)
Φ1(X

n)(Φ1(X
n)− 1)

]

= E

[

Φ2
1(X

n)

n

]

± o(1). (11)

Using the above expressions in (8), we get the following

characterization of the risk.

Theorem 3. The risk of the Good-Turing estimator under

squared error loss satisfies

Rn(M
GT, p) =

1

n
E

[

2Φ2

n
+

Φ1

n

(

1−
Φ1

n

)]

+ o

(

1

n

)

.

(12)

A. Upper bound on risk

To obtain a tight upper bound on the risk, we start with the

following upper bound on one of the terms in (8):

∑

u∈X

np(u)2(1− p(u))n ≤
∑

u∈X

p(u)
(

np(u)e−np(u)
)

≤ e−1, (13)

where the first step follows because 1−x ≤ e−x for a fraction

x, and the second step follows because te−t ≤ e−1 for t ≥ 0.

Using (9), (10) and (13) in (8), an upper bound for the risk

of the Good-Turing estimator is

Rn(M
GT, p) ≤

1

n
E

[

Φ1

n

(

1−
Φ1

n

)]

+
e−1

n
± o

(

1

n

)

≤
0.25 + e−1

n
± o

(

1

n

)

, (14)

where the last step follows because x(1 − x) ≤ 0.25 for a

fraction x. The above constant e−1 + 0.25 ≈ 0.6179 is not

best possible, and could be marginally improved by more

careful analysis. However, we show that the improvement

is not significant through a lower bound on Rn(M
GT) =

maxp Rn(M
GT, p) by picking p to be a suitable uniform

distribution.

B. Lower bound on the Good-Turing worst-case risk

A lower bound can be obtained for the worst case risk of the

Good-Turing estimator by evaluating the risk for the uniform

distribution pU on X . Let |X | = cn and pU (x) = 1
cn for all

x ∈ X , where c is a positive constant. Using (8), we get

Rn(M
GT, pU ) =

1

n

[

cn · n

(cn)2

(

1−
1

cn

)n

+
cn

cn
·

(

1−
1

cn

)n−1

−

(

cn

cn
·

(

1−
1

cn

)n−1
)2
]

+ o

(

1

n

)

(a)
=

1

n

(

(

1

c
+ 1

)(

1−
1

cn

)n

−

(

1−
1

cn

)2n
)

+ o

(

1

n

)

(b)
=

1

n

((

1

c
+ 1

)

e−
1

c − e−
2

c

)

+ o

(

1

n

)

(15)

where the reasoning for the steps is as follows:

a) replacing
(

1− 1
cn

)n−1
with

(

1− 1
cn

)n
(1 + o(1)).

b) using the fact that
(

1− 1
cn

)n
= e−1/c (1 + o(1)).

The coefficient of 1
n in (15) can be maximized numerically

to obtain a maximum value of 0.6080 at c ≈ 1.1729. Hence,

from (14) and (15), we have:

Theorem 4. The worst-case risk of the Good-Turing estimator

satisfies the following bounds:

0.6080

n
+ o

(

1

n

)

≤ Rn(M
GT) ≤

0.6179

n
+ o

(

1

n

)

. (16)

Therefore, the constant in (14) is fairly tight.

III. LOWER BOUNDS ON THE MINIMAX RISK

In this section, we consider lower bounds on the squared

error risk of an arbitrary estimator of missing mass. The main

result is that the minimax risk is lower-bounded by c/n for

a constant c. Two methods are described for finding lower

bounds - the first one is a Dirichlet prior approach, and the

second one is reduction of the missing mass problem to a

distribution estimation problem.

Both approaches provide the same order of 1/n for the

lower bound, but the second reduction approach provides a

better constant. However, the Dirichlet prior approach has sig-

nificant potential for further optimization for better constants,

and is an interesting extension of the standard prior method

to the case of estimation of random variables such as missing

mass, which depend on both the distribution p and the sample

Xn.



A. Lower Bounds via Prior Distributions

The first approach is to bound the minimax risk by the aver-

age risk obtained by averaging over a family of distributions

with a prior. Let P be a random variable over a family of

distributions P , having an alphabet X = {0, 1, 2, . . . k − 1}.

In the following section, the missing mass will be denoted

as M0 (X
n, p) to explicitly show the dependence on the

distribution p.

Lemma 5. For any missing mass estimator M̂0(X
n) and a

random variable P over a family of distributions P ,

min
M̂0

max
p∈P

EXn∼p

(

M0(X
n, p)− M̂0(X

n)
)2

≥ EXn∼P

[

varP |Xn [M0 (X
n, P )|Xn]

]

Proof:

min
M̂0

max
p∈P

E

(

M0 (X
n, p)− M̂0 (X

n)
)2

≥ min
M̂0

EP

(

EXn|P

(

M0 (X
n, P )− M̂0 (X

n)
∣

∣

∣P
)2
)

(a)
= min

M̂0

EXn

(

EP |Xn

(

M0 (X
n, P )− M̂0 (X

n)
∣

∣

∣Xn
)2
)

(b)
= EXn∼P

[

varP |Xn [M0 (X
n, P )|Xn]

]

where (a) follows from the law of total expectation and (b)

follows from the fact that (a) is minimized when M̂0 (X
n) =

EP |Xn (M0 (X
n, P )|Xn).

Lemma 5 gives us a family of bounds depending on the

distribution of the prior P . The RHS in Lemma 5 can be

computed exactly for a Dirichlet prior with some analysis.

Lemma 6. Suppose P has a Dirichlet distribution Dir (k,α),
where α = (α0, α1, . . . , αk−1). Then, we have

EXn

[

varP |Xn [M0 (X
n, P )|Xn]

]

=
B (a, n)

(a+ n)2 (a+ n+ 1)

(

∑

u∈X

αu (a+ n)− α2
u

B (a− αu, n)

−
∑

u∈X

∑

v∈X ,v 6=u

αuαv

B (a− αu − αv, n)



 ,

where B (·, ·) is the Beta function and a =
∑

u∈X αu.

We skip the details for want of space.

Let α =
(

1
n ,

1
n , . . . ,

1
n

)

and k = cn2. For this choice of

parameters, the expression in Lemma 6 can be bounded as

EXn

[

varP |Xn [M0 (X
n, P )|Xn]

]

≥
1

n
·

c

(c+ 1)3
+ o

(

1

n

)

,

where, once again, we skip the details. The coefficient of 1
n

attains a maximum value of 4
27 when c = 1

2 , which results in

the following bound on the minimax risk:

Lemma 7.

min
M̂0

max
p∈P

E

(

M0 (X
n, p)− M̂0 (X

n)
)2

≥
4

27n
+ o

(

1

n

)

The bound is worse than the 1
4n bound obtained from

distribution estimation in the next section, but it can possibly

be improved by better selection of the prior.

B. Lower bounds via Distribution Estimation

To bound the minimax risk for missing mass estimation,

one approach is to reduce the problem to that of estimating

a distribution. Let P be the set of distributions over the set

X = {0, 1} such that for all p ∈ P , p (0) ≥ 1
2 . A known

result (refer [19], [20] for instance) states that the minimax ℓ2

loss in estimating p(0) is 1
4n . More precisely, let p̂(Xn) be

an estimator for p(0) from a random sample Xn distributed

according to p. Then, we have

Lemma 8.

min
p̂(0)

max
p∈P

EXn∼p (p (0)− p̂ (Xn))
2

=
1

4n
+ o

(

1

n

)

For an arbitrary positive integer k, let Pc be the set of

distributions over the set X = {0, 1, 2, . . . k − 1}, such that

for any pc ∈ Pc, we have pc (0) ≥
1
2 and pc (i) =

1−pc(0)
k for

all i ≥ 1. We can use Lemma 8 to obtain minimax bounds

in estimating pc (0) for this family of distributions as well.

Let p̂c(X
n) be an estimator for pc from a random sample Xn

distributed according to pc. Let p̂c(X
n, i) be the probability

p̂c assigns to the symbol i.

Lemma 9.

min
p̂(0)

max
p∈Pc

E (pc (0)− p̂c (X
n, 0))2 ≥

1

4n
+ o

(

1

n

)

Proof: Suppose we want to estimate an unknown distri-

bution p ∈ P and we have an estimator p̂c for distributions

in Pc. Then we can use p̂c to estimate p as follows. Take

the observed sample distributed according to p, and if it is 0,

keep it as it is. If it is 1, then replace it with an uniformly

sampled random variable over {1, 2, . . . k}. The result of this

sampling process is a distribution pc in Pc with pc (0) = p (0).
Thus, any estimator for distributions in Pc can be reduced to

an estimator for distributions in P and

min
p̂(0)

max
p∈Pc

EXn∼pc
(pc (0)− p̂c (X

n, 0))
2

≥ min
p̂(0)

max
p∈P

EXn∼p (p (0)− p̂ (Xn))
2

and the proof follows from Lemma 8.

Lemma 10. Let k = en. With probability at least 1 − 1/2n,

the missing mass M0 (X
n) satisfies

M0 (X
n) = 1− p (0) +O

(

ne−n
)

.

Proof: Probability of symbol 0 appearing at least once in

Xn is 1 − (1 − p(0))n ≥ 1 − 1/2n. Furthermore, at most n
distinct symbols from 1, 2, . . . k−1 can appear in Xn. Hence,

with probability 1 − 1/2n, the observed mass 1 − M0 (X
n)

satisfies

p (0) ≤ 1−M0 (X
n) ≤ p (0) + (1− p (0))ne−n,

and hence follows the lemma.



From Lemmas 9 and 10, we can obtain a lower bound

of 1/4n on the minimax risk of missing mass estimation.

Combining the lower bound with the upper bound on the risk

of the Good-Turing estimator from Theorem 4, we have the

following:

Theorem 11. The minimax risk of missing mass estimation,

denoted R∗
n, satisfies the following bounds:

0.25

n
+ o

(

1

n

)

≤ R∗
n ≤

0.6179

n
+ o

(

1

n

)

.

IV. SUMMARY AND FUTURE DIRECTIONS

We studied the problem of missing mass estimation and

showed that the minimax risk lies between 0.617/n and 1/4n.

We further showed that the risk of the Good-Turing estimator

lies between 0.608/n and 0.617/n.

Our results pose several interesting questions for future

work. Two natural questions are: (1) are there priors which

yield better lower bounds on the minimax risk of missing

mass? and (2) are there estimators that have better risk than

the Good-Turing estimator?

We finally remark that it might be interesting to see if the

minimax risk results imply better concentration results for the

missing mass and the Good-Turing estimator.
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