
 Procedia Engineering   55  ( 2013 )  394 – 401 

1877-7058 © 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

Selection and peer-review under responsibility of the Indira Gandhi Centre for Atomic Research.
doi: 10.1016/j.proeng.2013.03.270 

6th International Conference on Cree

Microstructural Degradat
Assessment of P

Kulvir S
aMetallurgy Department, Cor

bMetallurgical and Materials

Abstract 

Extensive creep testing was carried out on 1Cr1Mo¼
tempered) and aged condition. Both the steels exhibit
the temperature range between 813 and 873 K (540°C 
higher temperature ranges. Casting steel showed wedge 
of forged steel, the voids were elliptical and flat which
deformation and creep ductility of the two steels investi
tertiary stage. Based on detailed microstructural investi
damage mechanisms such as structural transformation, 
applied for remaining life assessment of the two steels.
slightly on aging; both for rotor forging and casing 
Mo2C carbides and coagulation of others resulting in
aging times was due to recovery in ferrite, gradual de
and transitional character of precipitated carbides. Cre
assessment calculations have also been carried out using 

© 2013 Published by Elsevier Ltd. Selection and/o
Atomic Research. 

Keywords: Creep; ductility; low alloy steels; aging; microstructu

1. Introduction 

Most components of a steam turbine are ma
elements nickel, chromium, molybdenum and
temperature rotors, bolting, blades and valve s
made of low alloy steels. Low alloy steels find w
as steam turbine rotors and casings. The basic

∗
 Corresponding author: 

E-mail address: kulvir@bhelrnd.co.in 

ep, Fatigue and Creep-Fatigue Interaction [CF-6

tion in Power Plant Steels and Life
Power Plant Components 

Singha, M Kamarajb∗ 

rporate R&D, BHEL, Hyderabad, 500 093, India 
Engg Dept, IIT Madras, Chennai, 600 036, India 

¼V low alloy forging and casing steels in as received (normaliz
ted considerable secondary and tertiary stages in the creep tests cond

and 600°C). The primary stage, though present, was rather negli
type cavities which grew as cracks along the grain boundaries. In t
h developed during the tertiary stage of creep deformation. Tertiar
igated have been analyzed based on the type of voids developed du
igations using scanning and transmission electron microscope, pr
 particle coarsening, grain boundary thickening have been identif
 Hardness and other mechanical properties were observed to d
casting steel.  The softening occurred due to dissolution of M

n reduced creep strength. Gradual fall of creep strength at interm
epletion of solid solution carbides from the ferrite matrix, metas
eep crack growth studies have also been carried out on both the stee

g creep crack growth methodology.  

or peer-review under responsibility of the Indira Gandhi Cen

ure; minimum creep rate  

ade of steels containing various amounts of principal al
d vanadium [1].  With the exception of some of the
tems, which   are made of 12% Cr steels, all componen

wide application in high temperature power plant componen
c strengthening mechanisms in these alloys are solid s

6] 

e

zed and 
ducted in 
igible in 
the case 
ry creep 
uring the 
evailing 
fied and 
decrease 

M3C and 
mediate 
stability 
els. Life 

ntre for 

lloying 
e high 
nts are 

nts such 
olution 

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

Selection and peer-review under responsibility of the Indira Gandhi Centre for Atomic Research.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


395 Kulvir Singh and M. Kamaraj  /  Procedia Engineering   55  ( 2013 )  394 – 401 

strengthening and precipitation strengthening. These steels derive their strength mainly by solid solution 
strengthening and are widely used in steam turbine components. Molybdenum and vanadium present in these 
steels, improve the creep resistance as compared to the plain carbon steels with the creep ductility retained at around 
20-25%. Solid solution strengthening reduces the stacking fault energy, thus impeding cross slip at elevated 
temperature. Chromium improves the oxidation-corrosion resistance [2,3]. This investigation was undertaken to 
analyze the damage evolution in these solid solution strengthened steels. 

2. Experimental procedure 

Materials used in the present investigation are 1Cr1Mo¼V steam turbine rotor forging and casing casting 
steels. Grain size of the rotor forging steel was ASTM No.6-7 and that of the casing steel was ASTM No.4-5. 

Creep is a microstructure sensitive property of the material. Therefore, to study the creep behaviour of these 
steels in service exposed condition equivalent to 2,00,000 hours at 813 K (540oC), these steels were subjected 
to an equivalent aging treatment at 873 K for 3648 hours.  The idea behind this aging heat treatment is to study 
the creep behaviour also in the material condition equivalent to the service exposed steels.   

Creep experiments on round specimens were carried out at temperatures of 773, 813, 848 and 873 K (500, 
540, 575 and 600°C) with a temperature stability of ±2°C. The rupture time ranged from 40 h to 4000h. The 
details of experimental set up and test procedure are given elsewhere [3,4].  

3. Results and discussion  

3.1. Creep data correlations 

A typical relation between creep strain, e and time, t, for rotor forging steel at 873 K (600°C) is shown in 
Fig. 1. The creep curves in general, show the three stages, - primary, secondary and tertiary. However, the first 
stage primary creep strain, e, is very small as compared to the overall rupture strain, ef, which is contributed 
mainly by the secondary and tertiary strains, e2 and e3, respectively. Creep strain, e23, where the transition from 
secondary to tertiary stage occurs and the corresponding time, t23, are indicated in the figure. Various plots for 
rotor forging steel are given in Figs.1 to 6. 

The relation between minimum (steady state) creep rate, es, and the applied stress  for aged rotor steel is 
shown in Fig. 2. The log-log plot for the two alloys yields a linear relation over the experimental stress range 
studied thus follows the power law equation given by 

s = o [  / o ] n (1) 

where o and o  are temperature dependent constants. Values of creep stress exponent, ‘n’ are around 7.6 
and 6.6 for as received and aged rotor forging steel and 6.8 and 5.8 for as received and aged casing casting 
steel, respectively at 873 K (600oC).  Monkman and Grant [5] have noted that the minimum creep rate, s, can be 
related to the rupture time, tr, by the relation 

s . tr = CMG  (2) 

where CMG is a constant. The relation between the minimum creep rate, εs, and the rupture time, tr, is shown in 
Fig. 3 on the log-log plot. The value of ‘n’ for as-received rotor steel varies from 7.75 to 12.13 in the 
temperature range of 773 to 873 K. For aged steel the values of ‘n’ vary from 6.67 to 10.64 in the same 
temperature range.  Values of stress exponent ‘n’ are found to decrease with increase in temperature, as the 
creep processes at higher temperature become more diffusion controlled. At higher stresses, creep rate is 
determined by the deformation processes associated with larger ‘n’ values. Conversely, in the lower stress 
regime, the contribution made by the process with larger ‘n’ values decreases rapidly with decreasing stress so 
the over all creep rate is governed by the process having lower ‘n’ value such as diffusion creep.  Also the 
values of ‘n’ are found decreasing with aging indicating the prominent occurrence of diffusion controlled creep 
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processes in aged material.  Values of ‘n’ ranging from 1 at low stresses and 14 at high stresses have been 
reported [6].  Low ‘n’ values are associated with lower stress, grain boundary sliding, diffusion creep and 
dislocation climb whereas high ‘n’ values are associated with higher stress, matrix deformation and dislocation 
bowing between the particles. The cavity formation in rotor and casing casting steels can be seen in Figs.7 and 
8, respectively. 
 

 

Fig.1. Creep strain vs time plots of aged 1Cr1Mo¼V rotor 
steel tested at 873 K. 

Fig. 2. Stress vs minimum creep rate plot for aged rotor steel. 

 

Fig. 3. Minimum creep rate vs rupture time plot for rotor 
steel. 

Fig. 4. s/ ef vs rupture time plot for rotor steel. 

 

Fig. 5. Creep fracture strain vs es.tr plots for rotor steel. Fig. 6. tr2/3 vs rupture time plot for rotor steel. 

 



397 Kulvir Singh and M. Kamaraj  /  Procedia Engineering   55  ( 2013 )  394 – 401 

 
The as-received rotor forging steel contains mostly Fe3C, VC and Mo2C carbides. Fe3C plate like particles 

are of approximately 0.4μ diameter.  The VC particles are in the form of 0.1μ wide and 0.5μ long needles.  The 
carbides in the aged steel have transformed into M23C6, M6C and VC (Fig.9).  M6C and VC are mostly matrix 
carbides.  As revealed by EDX analysis, these are rich in Cr, Mo and V.  Grain boundaries mostly contain 

a b

Fig. 7.(a). Wedge type creep cavities in as received casing steel away from the fracture tip tested at 873K, 110 MPa,  
(b) Grain boundary cavities in aged casing steel along with coarse carbides. 

Fig. 8. Microstructure of as received rotor forging steel specimen creep tested at 873 K, 110 MPa showing elliptical creep 
cavities. 

a b

Fig. 9.Transmission electron micrographs of aged rotor forging steel specimen creep tested at 813K, 250 MPa. 

a b
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M23C6 as also corroborated by EDX analysis, which indicated presence of Cr and Mo. The size of M23C6 and 
M6C particles is around 0.5μ. M6C particle is also surrounded by a few dislocations as shown in Fig.9b. 

As discussed above, microstructural damage in rotor forging and casing casting occurs due to structural 
softening, microstructural changes with respect to change in carbide chemistry, void formation etc. 

4. Effect of corrosion on life prediction of boiler tubes 

In thermal power plants, the efficiency of power plant depends on the outlet steam temperature. The steam 
temperature should be maintained for efficient output of power plant. In order to maintain a constant outlet 
steam temperature, heat energy is transferred to steam through boiler tube walls from flue gas produced in 
combustion of coal. In these harsh conditions boiler tubes undergo different degradation processes like creep, 
fireside corrosion/erosion on outer wall of tubes and steamside oxidation on inner wall of boiler tubes. 
Therefore, remaining life assessment of boiler tubes is necessary at regular time intervals for better 
functionality of power plant. In laboratory scale, the creep life is estimated using accelerated stress rupture test 
on service exposed boiler tube. Accelerated stress rupture tests are carried out at higher temperatures under the 
nominal steam load and remaining life is estimated by extrapolating the results to service temperature.  

Crucial parameter in estimating creep life is operating temperature of the metal. But, this temperature varies 
during long run of power plant because of the insulating effect of oxide layer. The mid wall metal temperature 
at a particular time is calculated using following equations. For a particular time step, mid wall temperature can 
be calculated using equations 3-10 which can be used in estimating rupture life from accelerated stress rupture 
testing. 

4.1. Governing Equations 

   

 

 

 

4.2. Boundary Conditions 

 
 

 

 

 

4.3. Initial Conditions 

 
 
 

 
r1 = inner radius of oxide scale 
r2 = outer radius of oxide scale 
r3 = outer radius of metal tube 
T1 =  Temperature of oxide-scale at a particular radius and time 
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T2 = Temperature of metal at a particular radius and time 
1 = Thermal diffusivity of oxide layer 
2 = Thermal diffusivity of metal tube 

K1 = Thermal conductivity of oxide scale 
K2 = Thermal conductivity of Metal tube 
h = convective heat transfer co-efficient of flue gas 
Ts = steam temperature 
Tg = Flue gas temperature 
 

4.4. Assumptions 

• Hoop stress value is assumed to be constant, though there is a thinning effect of the boiler tubes because of 
fireside corrosion, erosion on outer wall and steamside oxidation on inner wall of boiler tube.  

• No exfoliation of the steam oxidation scale in the continuous operation of boiler tube. 
• Oxide scale growth rate and thinning rate of the boiler tubes are constant.  
• Steam temperature is maintained constant throughout the process and inner surface temperature of oxide 

scale is assumed to be equal to steam temperature at any time step. 
• The average metal temperature is used in estimating the residual life of boiler tubes. 
• Thermal properties are assumed to remain constant in the operational temperature range. 
• Creep rupture occurs when it satisfies the Robinson’s rule. 

4.5. Robinson’s rule 

 

 

4.6. Algorithm for computing residual life of service exposed tubes 

The following parameters are required for estimating the residual life 

(a) Thermal properties of oxide scale and steel should be obtained. 
(b) Initial and final tube diameter and thickness should be measured. 
(c) Oxide scale thickness is measured using ultrasonic non-destructive equipment. 
(d) Linear growth rate of oxide is calculated using equation13. 

Linear growth rate = (oxide scale thickness/service exposure time)                                     (13) 
(e) Thinning rate of the tube is calculated using equation14 

Thinning rate = (initial thickness-final thickness)/service exposure time                              (14) 
(f) At a particular time interval, oxide scale thickness and average temperature are obtained using 

equations 3&14, respectively. 
(g) Average temperature is used in equation 15 to obtain the rupture life. 

T = a*log tr+b                                                                                                                        (15) 
(h) Life fraction is calculated using equation 11. 
(i) Total residual life can be estimated using Robinson’s rule 12. 

Several T22 tubes from various sections of Platen Superheater, Final Superheater and Reheater are subjected 
to accelerated stress rupture tests. Creep life is calculated by extrapolating the results to service exposure 
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temperature. After incorporating the effect of oxide scale, the creep life is recalculated using above algorithm. 
The results are plotted in the Fig.10. The remaining life of boiler tubes obtained from incorporating the effect 
of oxide layer is one order less than the life estimated from accelerated stress rupture test, which is much closer 
to realistic values. 
 

 

5. Conclusions 

From the experimental investigations carried out to study the creep behaviour of 1Cr1Mo¼V low alloy 
forging and casing steels, the following conclusions are arrived, 
• Creep deformation for both as received and aged materials shows three stages of creep.  However, the 

primary and tertiary stages are rather short and the total strain is contributed mainly by the secondary and 
tertiary stages.  The creep fracture strain decreases, in general, with increasing exposure time. Aging has 
been found to increase creep deformation rates and decrease rupture time as compared to as received 
specimens.  

• Stress versus minimum creep rate bears a power law relation in the form n
s Ae σ= with creep stress 

exponent around 7.6 and 6.6 for as received and aged rotor forging steel and 6.8 & 5.8 for as received and 
aged casing casting steel, respectively at 873 K (600oC).  

• Time at the beginning of the tertiary stage, t23, appears to bear a relation with the rupture time, tr, in the form 
t23 = 0.5 tr. 

• In the case of rotor steel, failure is contributed by spherical and elongated voids along the grain boundaries. 
In casing steel, flat, elliptical and wedge type of voids, nucleating at triple points, develop as cracks, causing 
failure.  

• In aged steels, rupture life is slightly less but is comparable to as-received steel. It is higher than that for the 
steels aged at intermediate stages. Evolution of more stable microstructure such as coarsened MC, 
precipitation of M23C6, formation of ‘H’ carbides in the ferritic matrix containing low density dislocation 
sub-structure together with freshly formed Mo2C and VC, are responsible for improvement in creep-rupture 
life. 

• SEM and TEM micrographs of as-received and aged materials exhibit the shape, size and distribution of 
carbides. The predominant carbides identified in as-received rotor forging material are Fe3C, VC, Mo2C and 
M23C6 and aged forging steel are M23C6, M6C and VC. 

• The carbides in as-received casing steel are Fe3C, VC, Mo2C and M23C6 whereas in aged steel, they are 
M23C6, M6C, VC and ‘H’ carbides. On aging, the precipitates have coarsened and coagulated. Cr and Mo 
have reverted to matrix in aged casing steel resulting in improvement in creep life. 

Fig. 10. Accelerated stress rupture data Vs effect of oxide layer on accelerated stress rupture 
data.
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• Remaining life of boiler tubes obtained from incorporating the effect of oxide layer is one order less than 
the life estimated from accelerated stress rupture test, which is much closer to realistic values. 
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