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Abstract 25 

Loss of diversity in gut microbiome can persist for extended periods after antibiotic 26 

treatment, impacting microbiome function, antimicrobial resistance and likelyhost health. 27 

Despite widespread antibiotic use, understanding of species and metabolic functions 28 

contributing to gut microbiome recovery is limited. Using data from 4 different discovery 29 

cohorts in 3 continents comprising >500 microbiome profiles from 117 subjects, we 30 

identified 21 bacterial species exhibiting robust association with ecological recovery 31 

post antibiotic therapy. Functional and growth-rate analysis showed that recovery is 32 

supported by enrichment in specific carbohydrate degradation and energy production 33 

pathways. Association rule mining on 782 microbiome profiles from MEDUSA database 34 

enabled reconstruction of the gut microbial ‘food-web’, identifying many recovery-35 

associated bacteria (RABs) as keystone species, with ability to use host and diet-36 

derived energy sources, and support the repopulation of other gut species. Experiments 37 

in a mouse model recapitulated the ability of RABs (Bacteroides thetaiotamicron and 38 

Bifidobacterium adolescentis) to promote recovery with synergistic effects, providing a 39 

two orders of magnitude boost to microbial abundance in early time-points and faster 40 

maturation of microbial diversity.  Identification of specific species and metabolic 41 

functions promoting recovery opens up opportunities for rationally determining pre- and 42 

probiotic formulations that offer protection from long-term consequences of frequent 43 

antibiotic usage. 44 

  45 
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Introduction 46 

The human gut microbiome harbors trillions of bacteria providing diverse metabolic 47 

capabilities and with essential roles in host health, particularly energy metabolism, 48 

immune homeostasis, and xenobiotic metabolism1. A stable consortium of commensal 49 

microbiota is also believed to play a key role in resisting colonization by pathogens, with 50 

reduced diversity being associated with increased risk for infections2,3. Several recent 51 

studies have further highlighted the importance of the gut microbiome for host health, 52 

particularly in infants and the elderly, with alterations and loss of diversity being 53 

associated with various metabolic, immunological and neurological diseases4, and 54 

poorer response to cancer immunotherapy5,6. 55 

Among the many factors that are known to perturb the gut microbiome, antibiotics 56 

are the major cause of profound and long-term alterations7-9. Antibiotics are widely used 57 

in farming and healthcare, and global consumption is estimated to have increased by 58 

65% from 2000 to 201510. While the impact of antibiotics on host health through 59 

microbiome disruption is likely to be significant, it has not been fully quantified to 60 

date11,12. Antibiotic associated diarrhea and Clostridium difficile colitis are common early 61 

complications of microbiome disruption13, while antibiotics also select for drug 62 

resistance genes and organisms, thus creating a reservoir for transmission of resistance 63 

cassettes14,15. In the medium to long term, recovery of the microbial community can be 64 

slow and variable7-9, and is conditioned on the initial state16. Epidemiological and model 65 

organism studies suggest that long-term consequences of antibiotic usage include 66 

immunological diseases in children17, metabolic diseases in adults18, and an increased 67 

risk of infections19. 68 

Despite mounting evidence on the importance of gut microbiome function and how 69 

antibiotic usage can severely impact it, our understanding of the post-antibiotic recovery 70 

process is limited. Several studies have noted that high initial diversity in the gut 71 

microbiome may be associated with better recovery from antibiotic-induced 72 

perturbations16,20-22. In addition, the carriage of specific antibiotic resistance genes has 73 

been linked with the recovery process in some studies22,23. While it is expected that 74 

bacteria that are resistant to the antibiotic used will have an advantage in seeding the 75 
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repopulation of the gut, it is unclear if antibiotic resistance alone is sufficient or 76 

necessary to recover the ecological and functional richness of the gut microbiome. In 77 

particular, we do not know which specific groups of microbial taxa, and the functions 78 

they perform, accelerate or impede the process and explain the substantial variability in 79 

speed and extent of recovery that is seen across individuals7-9,16. For example, while 80 

commonly used probiotics can be generally beneficial to host health, their utility after 81 

antibiotic treatment remains unclear, with a recent study providing evidence that they 82 

may in fact delay microbiome recovery24.  83 

The interactions between species play a key role in the recovery of many 84 

ecosystems after severe perturbations25,26. Typically, reseeding by a few keystone 85 

species is essential to trigger a chain of food-web interactions that eventually lead to 86 

recovery of the overall ecosystem. Several important constituents of the healthy gut 87 

microbiome have been identified (e.g. Bacteroides species27,28) and correlations in their 88 

abundance have been used to postulate cross-feeding interactions27,29,30. However, the 89 

role of these species and their interactions in the context of post-antibiotic microbiome 90 

recovery has not been explored31.  91 

In this study, we employed a metagenome-wide association approach32 to identify 92 

microbial species and functions that could contribute to robust recovery of the 93 

microbiome after antibiotic usage. We then show how in vivo human metagenomic data 94 

from multiple cohorts supports a mechanistic model where gut microbiome recovery is 95 

facilitated by carbohydrate degradation and microbial cross-feeding triggered by a 96 

subset of the identified species. Validation experiments in a mouse model demonstrate 97 

how recovery-associated bacterial species (RABs) can synergistically provide a >100-98 

fold boost to absolute microbial abundance and higher diversity in the gut microbiome 99 

after antibiotic treatment. Systematic investigations using higher-order combinations of 100 

RABs can thus help us understand the interactions between them that likely contribute 101 

to the complex ecological processes underlying gut microbiome recovery.   102 



 5 

RESULTS 103 

Robust identification of microbial taxa associated with gut microbiome recovery  104 

In order to identify microbial markers associated with gut microbiome recovery, we 105 

assembled and systematically analyzed longitudinal data from 4 cohorts (a total of 117 106 

individuals with >500 samples; Methods). These cohorts represent individuals from 4 107 

countries on 3 continents (Singapore, Canada16, England8, Sweden8), a range of age 108 

groups (21-81) and using different classes of antibiotics, allowing us to infer common 109 

factors associated with microbiome recovery  (Table 1). Data from the Singaporean 110 

cohort was newly generated and analyzed (deep shotgun metagenomic sequencing of 111 

74 samples; >80 million reads on average), involving mostly elderly subjects receiving 112 

inpatient antibiotic treatment (Suppl. Data File 1). Each cohort was analyzed 113 

independently to account for cohort-specific biases, and the results were aggregated 114 

using a cross-cohort validation approach to only identify microbial taxa that were 115 

independently associated with recovery in at least 2 cohorts (Methods).  116 

To stratify individuals based on their recovery status, we noted that many individuals 117 

exhibited a U-shaped profile for gut microbial diversity, with a significant drop in diversity 118 

during antibiotic treatment, but with recovery of diversity in post-treatment timepoints 119 

(‘recoverers’, Fig. 1a). A subset of individuals, however, continued to have low gut 120 

microbial diversity even 3 months post antibiotics (‘non-recoverers’, Fig. 1a), contrasting 121 

with those at the other end of the diversity spectrum (Suppl. Fig. S1a). We therefore 122 

stratified subjects based on post-antibiotic microbial diversity as a readily defined 123 

reference-free metric for recovery across cohorts23 (Methods). This metric correlated 124 

well with alternative definitions, for e.g. as expected, post-antibiotic microbiomes for 125 

recoverers were much more similar to control microbiomes overall, compared to non-126 

recoverers (one-sided Wilcoxon p-value<0.001; Fig. 1b, c). This pattern was seen to be 127 

consistent across cohorts and using different diversity metrics (Suppl. Fig. S1b). 128 

Recoverers and non-recoverers also did not have significant differences in microbial 129 

diversity in the pre-antibiotic state (Wilcoxon p-value>0.05). 130 

To determine microbial taxa with a role in microbiome recovery, a two-stage 131 

approach and cross-cohort validation strategy was used to increase sensitivity and 132 
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specificity of the association analysis across all timepoints (Methods; Suppl. Data File 133 

2; 34 bacterial species in stage 1). In total, 21 microbial species were identified to be 134 

significantly associated with microbiome recovery in at least 2 cohorts (Recovery 135 

Associated Bacteria – RAB; Table 2), with 9 species identified in 3 cohorts and 1 in all 4 136 

cohorts (Bacteroides uniformis; Fig. 1d, using data for all timepoints). Variability across 137 

cohorts may reflect differences in diet33, environment34 and antibiotics used, while 138 

genus-level consistencies (e.g. Bacteroides species; Fig. 1d; Table 2) may reflect 139 

functional redundancies in associated species. While some RABs are common gut 140 

bacteria (e.g. Alistipes putredinis), are known to have host-beneficial functions (e.g. 141 

Faecalibacterium prausnitzii35) and have been observed to be depleted in disease 142 

states (e.g. B. uniformis36), others are more variably distributed, with limited 143 

understanding of their function in the gut microbiome, and their role in gut microbiome 144 

recovery after antibiotic treatment being unknown (Table 2). The distribution of most 145 

RABs across recoverers and non-recoverers suggests that their abundance, rather than 146 

their presence or absence, likely contributes to the recovery process. In addition, as no 147 

RAB segregates recoverers and non-recoverers on its own in any cohort, the combined 148 

influence of multiple RABs likely determines successful microbiome recovery.  149 

RABs were initially identified across treatment stages (pre-, during and post- 150 

antibiotics; Methods) to capture species that may contribute to recovery at any stage. 151 

We then investigated abundance patterns of RABs across stages and noted that while 152 

some were 2-4 more abundant in recoverers before treatment (e.g. B. uniformis), 153 

others were enriched in later timepoints, indicating that they may play a secondary or 154 

synergistic role in recovery (Suppl. Fig. S2; e.g. F. prausnitzii), and that combinatorial 155 

effects across treatment stages may play a role in recovery. Interestingly, no RABs 156 

were depleted in the gut microbiomes of recoverers versus non-recoverers, indicating 157 

that they do not have specific inhibitory roles. Training of machine learning models 158 

across cohorts showed that post-antibiotic recovery status can be predicted to an extent 159 

using pre-antibiotic taxonomic abundances for an individual (70.4% accuracy; Suppl. 160 

Note 1). 161 
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We enlisted a fifth cohort of healthy young adults in Singapore taking antibiotics 162 

(NUH, Table 1), whose metagenomes were not sequenced at the point of initial 163 

association analysis with the original four cohorts, to study the consistency of RABs 164 

across cohorts. Overall, 12 out of 21 RAB species were significantly associated (one-165 

sided Wilcoxon p-value <0.1) in the new cohort as well, similar to the overlap of the four 166 

original cohorts with RAB species (6-14 species, Table 2), confirming the robustness of 167 

associations despite differences in age, location and antibiotics used. In addition, 168 

incorporation of the fifth cohort in the cross-cohort association analysis only increase 169 

the list of RABs by 2, highlighting the consistency and reproducibility of this list. 170 

Enrichment in carbohydrate degradation and energy metabolism pathways links 171 

RABs with microbial community growth and recovery  172 

To study microbial functions that link RABs to microbiome recovery, we systematically 173 

identified all differentially abundant gene families and pathways in the pre- and during 174 

treatment metagenomes of recoverers and non-recoverers (CA and SG cohorts, 175 

Methods; FDR adjusted p-value<0.1 and LDA score >1.25; Suppl. Data File 3). This 176 

analysis highlighted a core set of growth-associated pathways pertaining to the 177 

biosynthesis of amino acids, nucleotides, co-factors and cell wall constituents (Suppl. 178 

Fig. S3). In addition, pathways involved in carbohydrate degradation and energy 179 

production were also significantly over-represented in the gut microbiomes of 180 

recoverers. Analysis of inferred pathway abundances from 16S rRNA profiles in the pre- 181 

and during treatment stages of the English and Swedish cohorts further confirmed these 182 

associations (carbohydrate and butanoate metabolism, Wilcoxon test p-value<0.05; 183 

Suppl. Fig. S4; Suppl. Data File 3). In comparison, analysis of resistomes of 184 

recoverers and non-recoverers in the pre- and during treatment stages did not show any 185 

significant enrichment for RAB species indicating that antibiotic resistance functions do 186 

not, in general, explain the taxonomic differences observed (Methods; Suppl. Fig. S5). 187 

To further understand the role of carbohydrate processing functions in microbiome 188 

recovery, carbohydrate-active enzyme families were annotated in RABs and the gut 189 

metagenomes of recoverers and non-recoverers (based on CAZyme families, 190 

Methods). Overall, RABs exhibited a significant enrichment for CAZyme families 191 
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compared to non-RABs (two-sided Wilcoxon test p-value<0.001; Fig. 2a), though this 192 

does not seem to be a necessary or sufficient condition for identification as a RAB37. 193 

The enrichment of CAZyme families in RABs was also reflected at the community level 194 

where the metagenomes of recoverers at all timepoints were enriched in CAZyme 195 

families compared to non-recoverers (one-sided Wilcoxon test p-value<0.001 and <0.05 196 

for CA and SG respectively; Fig. 2b; Suppl. Data File 4), consistent with enriched 197 

pathways in Suppl. Fig. S3.  198 

Linking the two major classes of pathways enriched in recoverers versus non-199 

recoverers, we hypothesized that in broad terms, higher carbohydrate metabolism 200 

capabilities in RABs could enable better nutritional harvest, thus enhancing biosynthesis 201 

and microbial growth (Suppl. Fig. S3), and subsequent recovery of gut microbial 202 

diversity and biomass (Fig. 2). Using in silico estimates of community growth rates 203 

(from DNA coverage skews in replicating cells) from metagenomic data38 (Suppl. Data 204 

File 5), we observed that recoverers exhibited higher microbial community growth rate 205 

overall than non-recoverers across all stages of antibiotic treatment (one-sided 206 

Wilcoxon test p-value<0.001 and <0.05 for CA and SG cohorts, respectively; Fig. 2c). 207 

Additionally, we noted that the pre- and during treatment abundance of RABs had a 208 

significantly higher correlation with post-treatment community growth rate across 209 

individuals (one-sided Wilcoxon test p-value<0.001 for CA cohort; Fig. 2d). Finally, in 210 

both the CA and SG cohorts, community growth rate at all timepoints was positively 211 

correlated with the number of CAZyme families (for CA, r=0.729; for SG, r=0.556; p-212 

value<0.001; Fig. 2e). Taken together, these analyses consistently link together 213 

enrichment in RABs, carbohydrate degradation potential, microbial community growth 214 

rate and microbiome recovery as successive steps in a plausible mechanism for how 215 

RABs promote recovery. 216 

Specific carbohydrate degradation functions define the role of RABs in the gut 217 

microbial food-web 218 

Carbohydrate active enzymes can be varied in their function and their differential and 219 

combinatorial usage by RABs could contribute to microbiome recovery. To study this, 220 

we clustered a set of 137 bacterial genomes annotated for their CAZyme repertoire37 221 
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based on their genome-wide profiles of substrate-specific enzyme copy numbers to 222 

obtain 5 distinct clusters (Suppl. Fig. S6). Interestingly, RABs were primarily observed 223 

to aggregate in 2 out of the 5 clusters, with significant enrichment in cluster 1 containing 224 

genomes abundant in host (mucins) as well as diet-derived (plant and animal) 225 

carbohydrate degrading enzymes (Fisher’s exact test p-value<0.001). The ability to 226 

degrade mucins is key for bacterial colonization of the intestine39, and may assist some 227 

RABs in seeding the recovery process. While a few RABs fall in cluster 2 that is 228 

characterized by diet-derived (plant and animal) carbohydrate degrading enzymes, 229 

clusters 3, 4 and 5 (Starch, Fungal carbohydrate and Peptidoglycan degradation, 230 

respectively) were sparsely represented, highlighting the importance of specific 231 

carbohydrate degradation processes in microbiome recovery. 232 

The recovery of many natural ecosystems is driven by ecological interactions25,26 233 

and we hypothesized that a similar ‘food-web’ of cross-feeding between RABs and other 234 

constituents of the gut microbiome is important for microbiome recovery. As  235 

experimental information about the gut microbial food-web is sparse, we developed a 236 

data-driven approach based on association rule mining (782 microbiome profiles from 237 

the MEDUSA database40; Methods) to identify dependency relationships between 238 

bacteria in the gut microbiome (A → B), where the presence of species B appears 239 

conditional on the presence of species A (but not vice versa). The resulting network 240 

contains 1,166 directed edges linking 266 bacterial species, identified directly from gut 241 

microbiome data (Suppl. Data File 6), and recapitulating several known cross-feeding 242 

interactions. (e.g. Bacteroides species and group C. coccoides species41).  243 

We noted in the bacterial food-web that a few species mostly have outgoing edges, 244 

indicating that they are essential for the presence of other species, while many species 245 

have mostly incoming edges highlighting their dependence on the presence of many 246 

other species. Based on this, we visualized the network by sorting species based on the 247 

difference in outgoing to incoming edges (bottom to top), revealing a pyramidal web 248 

structure (with RAB nodes highlighted, Fig. 3a). Interestingly, many RABs belonging to 249 

cluster 1, and correspondingly enriched in mucin degrading enzymes, were clustered in 250 

the bottom third of this network (denoted as primary species). No RABs were found in 251 
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the middle third of the network (secondary species), while RABs in the top third of the 252 

network belong to a diverse set of CAZyme clusters (tertiary species). These 253 

observations are in agreement with the ecological expectation that while some RABs 254 

should be keystone species that are essential to triggering the repopulation effect 255 

(primary species), others play a synergistic role in later stages or serve as indicator 256 

species for ecological recovery (tertiary species).  257 

Overall, the carbohydrate degradation profiles of RABs and their organization in the 258 

food-web is consistent with a model (Fig. 3b) where: (i) primary RABs employ their 259 

mucin degrading capabilities to successfully colonize/recolonize the gut 260 

epithelium39,42,43; some of the primary RABs also serve as specialists in breaking down 261 

complex diet-derived carbohydrates42 (e.g. B. uniformis), (ii) this helps initiate a chain of 262 

cross-feeding interactions that support the repopulation of other bacteria (secondary or 263 

tertiary species) that cannot degrade mucins and/or are dependent on the breakdown of 264 

complex carbohydrates into simple sugars44, (iii) as the microbial community 265 

repopulates, some RABs (e.g. F. prausnitizii and Roseburia species) contribute to 266 

production of SCFAs that in turn provide energy for colonocytes45,46, and (iv) the 267 

resulting increased production of mucin creates a positive feedback loop that drives 268 

faster recovery of microbial biomass47,48. The overall effect is the rebuilding of a food-269 

web in the gut microbial ecosystem to support a diverse community concurrently and is 270 

distinct from the microbial succession processes that have been described in other 271 

contexts49.  272 

A mouse model of microbiome recovery recapitulates synergy between primary 273 

and tertiary RABs in vivo 274 

To study synergistic interactions between RABs, genome scale metabolic models were 275 

used to evaluate the benefit of co-culture for various species (Methods). Overall, RABs 276 

were observed to derive greater metabolic support from each other than from other non-277 

RAB species (Wilcoxon p-value<0.001). In particular, tertiary RABs such as B. 278 

adolescentis, Ruminococcus bromii and Alistipes shahii could derive metabolic benefits 279 

from several other species, including the primary RAB B. thetaiotamicron (Suppl. Fig. 280 

S7, Suppl. Data File 7). For investigating potential synergies in vivo and cause-effect 281 
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relationships, we used a physiologically relevant mouse model of microbiome recovery 282 

after antibiotic treatment. Specifically, conventional healthy mice (C57BL/6J, normal gut 283 

development, mucin production) were given antibiotics for 5 days before being randomly 284 

allocated to four different groups to study treatment effects in a case-control setting: oral 285 

gavage with (a) the primary RAB species B. thetaiotamicron (Bt), (b) tertiary RAB 286 

species B. adolescentis (Ba), (c) combination of B. thetaiotamicron and B. adolescentis 287 

(Bt+Ba), and (d) PBS media (Vehicle; Methods). Recovery was then monitored over a 288 

period of 22 days by collecting stool samples every three days and analyzing the 289 

microbiome with shotgun metagenomic sequencing (9 timepoints and 2-6 cages per 290 

group with 2 mice per cage, Methods; Fig. 4a).  291 

As expected, all treatment groups exhibited a >3-log reduction in microbial biomass 292 

after antibiotic treatment (Methods; Fig. 4b). Starting from 1 day after gavage (day 7), 293 

and more noticeably at 4 days after gavage (day 10), the Bt and Bt+Ba groups exhibited 294 

significantly enhanced biomass recovery (>100×; excluding gavaged species) 295 

compared to the PBS and Ba groups (Fig. 4b; Suppl. Fig. S8a; qPCR verification in 296 

Methods). While the Bt and Bt+Ba groups converge to their microbial biomass at pre-297 

antibiotic levels by day 10, the PBS and Ba groups continued to have lower biomass 298 

than pre-antibiotic levels at day 22. Enhanced recovery was also associated with 299 

successful colonization, confirmed based on comparisons with metagenomic data from 300 

a control gavage (Bacillus spp, Suppl. Fig. S9). Interestingly, the Bt+Ba group was 301 

distinct from other treatment groups in recovering higher microbiome diversity at day 19 302 

and 22 (Fig. 4c). This was also accompanied by reconstruction of a community that was 303 

more similar to the pre-antibiotic microbiome at day 22 in the Bt+Ba group (Suppl. Fig. 304 

S8b). These results highlight that while Bt gavage and colonization was sufficient for 305 

biomass recovery and Ba gavage alone was not, the combination of Bt and Ba 306 

promotes biomass and diversity recovery in a synergistic fashion. As observed in the 307 

human cohorts, an enrichment of mucin as well as dietary carbohydrate degradation 308 

pathways (but not peptidoglycan degradation, as control) was associated with the 309 

recovery process in the Bt and Bt+Ba groups (Fig. 4d, e, f).  310 



 12 

Discussion 311 

Cross-cohort analysis is a powerful way to account for confounding effects within 312 

individual studies, enabling the identification of consistent associations with microbiome 313 

recovery despite variations in cohort characteristics such as antibiotics used and patient 314 

demographics. The bacterial species and functions identified in this study provide a 315 

data-driven view of how shared microbial factors contribute to gut microbiome recovery 316 

in diverse human cohorts around the world, highlighting the value of data-sharing and 317 

re-analysis. Our findings emphasize the central role of enabling energy harvest from 318 

diet, and the ability to colonize the host by degrading mucins in the keystone species 319 

that underpin ecological recovery (primary RABs), connecting recovery of key 320 

microbiome functions to ecological recovery of biomass and diversity. Additional factors 321 

such as antibiotic resistance likely contribute to this process in a time and context-322 

dependent manner. As environmental factors strongly influence the gut microbiome34, 323 

the specific keystone species that are important for an individual could further vary with 324 

host and dietary factors. The analytical approaches used here could uncover these in 325 

larger cohorts, helping to train antibiotic and environment-specific machine learning 326 

models to predict microbiome recovery. We anticipate that such models would have 327 

clinical utility, especially for at-risk elderly or cancer patients, to guide targeted 328 

intervention strategies mitigating the impact of antibiotics on the gut microbiome. 329 

 Consistent with the emerging understanding of how diet modulates the gut 330 

microbiome33,34, an additional perspective that emerges from this study is the potential 331 

to promote RABs and microbiome recovery via prebiotic effects, especially since few 332 

RABs are available as probiotics. Many of the identified RABs are specialist 333 

carbohydrate fermenters (e.g. pectin) and a high fiber/low fat diet could aid in selecting 334 

and expanding them. For example, in a study on how gut microbiota differ in twins 335 

discordant for obesity, Ridaura et al identified 3 RABs (B. uniformis, B. thetaiotaomicron 336 

and A. putredinis) as being transplantable features of a “lean microbiome”, but 337 

transplantation was dependent on a high fiber diet50. Similarly, pectin supplementation 338 

can promote species from the Bacteroidetes phylum with associated improvement in gut 339 

barrier function51, as well as more stable fecal microbiota transplantation52. Finally, 340 



 13 

different oligosaccharides can promote the growth of several butyrate producing 341 

RABs53,54 (Fig. 3b), serving as an avenue to contribute to microbiome recovery by 342 

reducing host inflammation and increasing mucin production48. 343 

In general, ecological theory has suggested that ecosystem recovery is a complex, 344 

multi-step process that is determined by interactions between many species25,26. Our 345 

observations in the human gut microbiome are in agreement with this model, with the 346 

identification of multiple recovery-associated species, the potential for synergistic 347 

interactions and microbial cross-feeding, and a conceptual model for how this promotes 348 

ecological recovery in the gut. Results from our mouse experiments demonstrate that 349 

individual RABs likely have distinct functions, but can work in a synergistic fashion to 350 

recover microbial biomass and diversity. As these observations were made in 351 

conventional mice with normal physiology (versus germ-free mice), and in a case-352 

control setting where single species gavages (Bt and Ba groups) serve as ideal controls 353 

for the combination (Bt+Ba), they highlight the robust role that microbial functions play in 354 

the recovery process across species. While investigating all RAB combinations in vivo 355 

might be infeasible, systematic investigation of the top predicted metabolic interactions 356 

between RABs (e.g. between F. prausnitzii and A. shahii) through in vitro co-cultures55 357 

could be the next step to unravel the combinatorial interactions among RABs driving 358 

microbiome recovery in vivo. Metabolic modeling could, in particular, help further 359 

explore the contributions of different carbohydrate degradation genes and processes to 360 

microbiome recovery56, especially for many anaerobic bacteria that are hard to culture 361 

or genetically modify57. Further clinical studies incorporating detailed dietary information 362 

or with a controlled diet are also needed to evaluate the role of diet and its interaction 363 

with RABs and CAZymes in microbiome recovery.  364 

The microbial ‘food-web’ in this study as determined by data-mining techniques is 365 

conceptually a valuable resource for organizing our understanding of how microbes 366 

interact and assemble in the human gut. By using a large database of human gut 367 

microbiome profiles, we were able to determine microbial assemblages that are feasible 368 

and the dependency relationships that they suggest. These can then help interpret 369 

longitudinal studies of recovery and infer the interactions between species that play a 370 
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role. While our current work highlights that introduction of primary species such as B. 371 

thetaiotamicron is necessary for biomass recovery, in comparison to common probiotics 372 

such as B. adolescentis, synergistic combinations can be more beneficial for robust 373 

recovery of a diverse gut microbial ecosystem. Similar interactions could also play a 374 

critical role in recovery from other microbiome perturbations, and thus a broader 375 

understanding of the microbial food-web could set the stage for rational design of pre- 376 

and probiotic formulations that promote functional and ecological resilience in gut 377 

microbiota. 378 

379 
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METHODS 380 

Study Populations 381 

(a) Singapore: The Singaporean cohort ('SG'; manuscript in preparation) is a natural 382 

history cohort consisting of individuals admitted to Tan Tock Seng Hospital (TTSH) in 383 

Singapore and prescribed antibiotics for 1-2 weeks (primarily Co-amoxiclav and 384 

Clarithromycin; Table 1). Stool samples were collected as soon as possible after 385 

admission (pre-/early: <3 days into treatment), during and up to 3 months after antibiotic 386 

usage. The study was approved by the Institutional Review Board at TTSH (DSRB 387 

2013/00769).  388 

(b) Canada: Shotgun metagenomic datasets for a Canadian cohort16 (‘CA’) were 389 

obtained from the European Nucleotide Archive database (Study Accession Number: 390 

PRJEB8094; Table 1). The study analyzed fecal samples from healthy individuals who 391 

were administered antibiotics (Cefprozil; three timepoints: pre-antibiotic day 0, during 392 

treatment day 7 and post treatment day 90). 393 

(c) England and Sweden: 16S rRNA sequencing datasets for an English and a Swedish 394 

cohort8 (‘EN’, ‘SW’) were obtained from the NCBI short read archive (Project ID: 395 

SRP057504; Table 1). In both cohorts, healthy volunteers were given antibiotics (EN: 396 

Amoxicillin, SW: Clindamycin/Ciprofloxacin) and fecal samples analyzed for day 0 (pre-397 

antibiotic), day 7 (during treatment) and for one and two month follow-ups (post 398 

treatment). 399 

(d) National university hospital (NUH): A prospective cohort of young Chinese adults 400 

was recruited to study the impact of antibiotics on the gut microbiome at the National 401 

University Hospital (NUH; 5-day course of Co-amoxiclav; manuscript in preparation). 402 

Stool samples were collected before (day 0), during (day 1-5) and after antibiotic 403 

cessation (day 8 and day 28). The study was approved by the Institutional Review 404 

Board at NUH (DSRB 2012/00776).  405 

For the CA, EN and SW cohorts, all antibiotic treated subjects with data from the 3 406 

treatment stages were further analyzed to identify recovery associated bacterial taxa 407 

and functions.   408 
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DNA extraction and sequencing for SG and NUH cohorts 409 

Extraction of DNA from stool samples was carried out using PowerSoil DNA Isolation Kit 410 

(MoBio Laboratories, California, USA) with minor modifications to the manufacturer’s 411 

protocol (volume of solutions C2, C3 and C4 were doubled and centrifugation time was 412 

extended to twice the original duration). Purified DNA was eluted in 80µl of Solution C6. 413 

DNA libraries were prepared by using 20ng of extracted DNA re-suspended in a volume 414 

of 50µl and subjected to shearing using Adaptive Focused AcousticsTM (Covaris, 415 

Massachusetts, USA) with the following parameters; Duty Factor: 30%, Peak Incident 416 

Power (PIP): 450, 200 cycles per burst, Treatment Time: 240s. Sheared DNA was 417 

cleaned up with 1.5 Agencourt AMPure XP beads (A63882, Beckman Coulter, 418 

California, USA). End-repair, A-addition and adapter ligation was carried out using the 419 

Gene Read DNA Library I Core Kit (Qiagen, Hilden, Germany) according to the 420 

manufacturer’s protocol. Custom barcode adapters (Suppl. Table 1) were used in place 421 

of GeneRead Adapter I Set for adapter ligation. DNA libraries were cleaned up twice 422 

using 1.5 Agencourt AMPure XP beads (A63882, Beckman Coulter, California, USA) 423 

before enrichment of libraries using the protocol adapted from Multiplexing Sample 424 

Preparation Oligonucleotide kit (Illumina, California, USA). Enrichment PCR was carried 425 

out with PE 1.0 and custom index-primers (Suppl. Table 1) for 14 cycles. Libraries were 426 

quantified using Agilent Bioanalyzer and prepared with Agilent DNA1000 Kit (Agilent 427 

Technologies, California, USA), pooled in equimolar concentrations. Sequencing of the 428 

samples was performed using the Illumina HiSeq 2500 (Illumina, California, USA) 429 

sequencing instrument to generate >80 million 2×101 bp reads on average. 430 

Taxonomic and functional profiling for all cohorts 431 

For metagenomic sequencing datasets (CA, SG and NUH cohorts) raw reads were 432 

quality filtered and trimmed using default options in famas (https://github.com/andreas-433 

wilm/famas). Reads that are potentially from human DNA were removed by mapping to 434 

the hg19 reference using BWA-MEM58 (default parameters; coverage >80% of read). 435 

The remaining reads were used for taxonomic profiling using MetaPhlAn with default 436 

parameters59,60 (Suppl. Data File 1). Functional profiles for the metagenomes were 437 

obtained using the HUMAnN261 program (Suppl. Data File 3). 438 

https://github.com/andreas-wilm/famas
https://github.com/andreas-wilm/famas
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For the 16S rRNA sequencing datasets (EN and SW cohorts) taxonomic 439 

classification was done by mapping reads to the SILVA database62 (v123) using blastn. 440 

For each read, the species corresponding to the best hit (with identity > 97% and query 441 

coverage > 95%) was obtained and was taken as the source species of the read. In the 442 

case of multiple hits, the source taxon was computed as the Lowest Common Ancestor 443 

of the hit species. Reads assigned to each taxon were aggregated to obtain a relative 444 

abundance profile for each sample (Suppl. Data File 1). PICRUSt63 was used to infer 445 

KEGG pathway abundances from the corresponding taxonomic profiles (Suppl. Data 446 

File 3). 447 

Identification of recovery associated bacterial taxa and functions  448 

Individuals were classified as ‘recoverers’ and ‘non-recoverers’ in each cohort to enable 449 

cohort-specific association analysis and identification of recovery associated bacterial 450 

taxa and functions. As post-antibiotic microbiomes may not necessarily resemble the 451 

pre-antibiotic state for an individual (e.g. due to enterotype switching64), we used the 452 

post-treatment gut microbial diversity (species-level; Simpson) to define recoverers and 453 

stratify subjects into balanced groups (median threshold). Samples within a 10% 454 

window of the interquartile range from the median were marked as having indeterminate 455 

status and excluded from further analysis. A two-stage approach was used to combine 456 

results from all cohorts to sensitively identify recovery associated taxa and a cross-457 

cohort validation strategy was used to identify taxa that are significant in at least 2 out of 458 

4 cohorts. In stage 1, a non-parametric test was used within each cohort  to identify 459 

candidate taxa (one-sided Wilcoxon test). The resulting p-values were merged across 460 

cohorts to compute a combined p-value using Fisher’s method and filtered with a FDR 461 

adjusted p-value threshold of 0.01 (Benjamini-Hochberg method). Next, in stage 2, 462 

cohort-specific FDR adjusted p-values (Benjamini-Hochberg method) were re-computed 463 

for this subset of taxa and only taxa with consistent (in terms of direction of change) 464 

significant associations (FDR<0.05) in at least 2 cohorts were retained. This analysis 465 

was done within each treatment stage (pre-, during and post- antibiotics) as well as 466 

jointly to increase sensitivity in identifying recovery associated taxa regardless of 467 

treatment stage.  468 
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Functional profiles computed with HUMAnN2 were compared between 469 

recoverers and non-recoverers in the SG and CA cohorts using the linear discriminant 470 

analysis approach in LEfSe65 (version 1.1.0) to identify differentially abundant pathways. 471 

Microbial community growth rate analysis 472 

An in silico approach, originally proposed by Korem et al38, was used to compute the 473 

skew of DNA copy number starting from around the origin of replication to the 474 

termination region (peak-to-trough ration or PTR), as an estimate of growth rates for 475 

individual species in the microbiome from shotgun metagenomic data (PTRC1.1: 476 

https://genie.weizmann.ac.il/software/bac_growth.html, default parameters). The 477 

community growth rate (CGR) for each sample was then computed from the common 478 

species in the community (PTR values in >50% of samples) as the median PTR value 479 

(PTR set to lower-bound of 1 when not available; Suppl. Data File 5). 480 

Profiling of carbohydrate active enzymes (CAZymes) 481 

An in-house nucleotide gene database for CAZymes was created by downloading 482 

sequences from NCBI corresponding to Accession IDs for different CAZyme families 483 

annotated in dbCAN66 (http://csbl.bmb.uga.edu/dbCAN/). Metagenomic reads were 484 

mapped to this database for each sample with BWA-MEM58 (default parameters) to 485 

compute the fraction of reads mapping to the CAZyme gene per kbp per million reads in 486 

the metagenome (RPKM). Results were aggregated for each CAZyme family based on 487 

values for individual CAZyme genes belonging to a family.  488 

Analysis of antibiotic resistance genes within gut microbiomes 489 

Resistome profiling within a microbiome was performed similarly by mapping 490 

metagenomic reads using BWA-MEM (default parameters) to the ARG-ANNOT 491 

database67, and calculating the fraction of reads mapping to a resistance gene per kbp 492 

per million reads of the metagenome (RPKM). Kraken68 was used with default 493 

parameters to obtain the taxonomic classification of reads and thus obtain the relative 494 

representation of different taxonomic groups within the resistome.  495 

https://genie.weizmann.ac.il/software/bac_growth.html
http://csbl.bmb.uga.edu/dbCAN/
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Clustering of species based on their carbohydrate degradation profiles 496 

The substrate-specificities of different Glycoside hydrolase (GH) and Polysaccharide 497 

lyase (PL) families were obtained from previous studies43,69. These included substrates 498 

such as plant cell wall carbohydrates, animal carbohydrates, peptidoglycans, fungal 499 

carbohydrates, sucrose/fructose, dextran, starch/glycogen and mucins. Copy number 500 

annotations for each GH and PL family in 137 bacterial species were obtained from a 501 

previous genome scale analysis of CAZymes in species belonging to the human gut 502 

microbiome37. Copy numbers of GH/PL genes within each of the 8 substrate 503 

specificities were aggregated and normalized to obtain an overall carbohydrate 504 

degradation profile for each bacterial species. Degradation profiles were then clustered 505 

using hierarchical clustering (‘hclust’ function in R with Euclidean distance and complete 506 

linkage clustering) to group species based on their enzyme repertoire for different 507 

categories of carbohydrates. Association of the identified recovery associated bacteria 508 

to one or more of these clusters was then evaluated using Fisher’s exact test. 509 

Construction of microbial food-web using association rule mining 510 

To identify directed associations between bacterial species where the presence of one 511 

is important for the presence of another (but not vice versa), a data-mining technique 512 

called ‘association rule mining’70 was applied to a large public collection of gut 513 

microbiome profiles in the MEDUSA database40 (782 gut microbiome profiles from USA, 514 

China and Europe). To convert relative abundance profiles from MEDUSA into 515 

presence-absence profiles (1 if a species is present and 0 otherwise), relative 516 

abundances < min𝑗 𝑎𝑖𝑗 + 0.01 × (Q95𝑗 𝑎𝑖𝑗 − min𝑗  𝑎𝑖𝑗) , i.e. within 1% of the minimum 517 

relative abundance values 𝑎𝑖𝑗  for species 𝑖  across subjects 𝑗 (Q95 or 95% percentile 518 

was used instead of max to improve robustness to outliers), were assumed to be due to 519 

technical noise. Note that overall results were confirmed to be robust (in terms RAB 520 

placement) to a range of threshold values (50% of original values; Suppl. Fig. S10). 521 

Binary association rules between species were then inferred using the apriori algorithm 522 

implemented in the Python package ‘efficient_apriori’ (using Confidence threshold of 523 

0.95 and Support threshold of 0.05). After removal of transitive edges and symmetric 524 
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relationships, a total of 1166 directed association edges remained across 266 species 525 

(Suppl. Data File 6). Association edges and corresponding nodes for species were 526 

plotted using the hierarchical layout of Cytoscape71, where the hierarchical level of a 527 

species is influenced by the difference between the number of outgoing and incoming 528 

edges.  529 

Metabolic interaction analysis 530 

Genome-scale metabolic models (GSMMs) for RABs and control species were 531 

downloaded from the AGORA database72 (v1.03). Metabolic interactions were 532 

quantified by computing the Metabolic Support Index73 (MSI) which quantifies the 533 

percentage of metabolic reactions in an organism that become feasible in the presence 534 

of another organism. All simulations were conducted under anoxic conditions with high-535 

fiber diet, and mucin and bile acid derived metabolite supplementation. Species pairs 536 

with high MSI values (top 10%) were visualized using Cytoscape71 (v3.7.2). 537 

Promoting microbiome recovery in a mouse model 538 

Ethics statement: Mouse experimental protocols were reviewed, approved and carried 539 

out in strict accordance to the recommendations by the Institutional Animal Care and 540 

Use Committee (IACUC) in the animal facility at Comparative Medicine, National 541 

University of Singapore (NUS). The care and use of animals for research and teaching 542 

in NUS is bound by the Singapore Animals and Birds Act, Animals and Birds (Care and 543 

Use of Animals for Scientific Purposes) Rules 2004, and is carried out in accordance 544 

with the National Advisory Committee for Laboratory Animal Research (NACLAR) 545 

Guidelines. NUS is an AAALAC-accredited institution. For this study, animals were used 546 

under Protocol R15-0135 as approved by the NUS IACUC. 547 

Bacterial strains and culture conditions: Lyophilized probiotic strains (ATCC 29148 548 

Bacteroides thetaiotaomicron, DSM 20083 Bifidobacterium adolescentis) were revived 549 

in TSB media supplemented with 5% defibrinated sheep blood under anaerobic 550 

conditions at 37C. Upon revival, B. thetaiotaomicron was subcultured and maintained 551 

in TYG media, whereas B. adolescentis and an environmental Bacillus isolate were 552 

subcultured and maintained in BHI media. 553 
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Antibiotic administration and inoculation with test strains: Eight-week-old C57BL/6J 554 

male mice from a single breeding colony were purchased from InVivos Singapore. The 555 

mice were gavaged individually with 2.5 mg ampicillin sodium salt (Sigma Aldrich) 556 

prepared in 1XPBS per day for 5 days using flexible sterile plastic feeding tubes 557 

(Instech Labs) under specific pathogen-free conditions. Upon cessation of antibiotic 558 

treatment, mice were allowed to recover for 24 hours, before the cages of mice (two 559 

mice per cage; two experimental batches) were each orally inoculated with: A) 5  107 560 

CFUs B. thetaiotaomicron, B) 5  107 CFUs Bacillus spp., C) 5  107 CFUs B. 561 

adolescentis, D) 5  107 CFUs B. thetaiotaomicron + 5  107 CFUs B. adolescentis, E) 5 562 

 107 CFUs Bacillus spp. + 5  107 CFUs B. adolescentis, or F) phosphate-buffered 563 

saline (PBS). Mice were kept on a 12h light/dark cycle, and water and autoclaved 564 

standard chow diet were provided ad libitum. Mice were caged in pairs in transparent 565 

plastic cages with corn cob bedding that had been pre-sterilised by autoclaving. Only 566 

mice in Bt/Bt+Ba cages where gavage was successful to result in detection in fecal 567 

samples were used for further analyses. Strains were transported from anaerobic 568 

chamber to animal facility via anaerobic “balch-type” culture tubes with aluminum seals 569 

(Chemglass Life Sciences, New Jersey, USA).  570 

Fecal sample collection and DNA extraction: Fecal pellets were freshly collected as a 571 

cage unit (two mice per cage) over multiple times points: before antibiotic treatment 572 

(Day 0), mid-point of antibiotic treatment (Day 3), end-point of antibiotic treatment (Day 573 

6), 1-day post-gavage (Day 7), 4-days post-gavage (Day 10), 7-days post-gavage (Day 574 

13), 10-days post-gavage (Day 16), 13-days post-gavage (Day 19) and 16-days post-575 

gavage (Day 22). Total bacterial DNA was extracted from fecal samples using the 576 

PowerSoil DNA isolation kit (MoBio Laboratories) according to the manufacturer’s 577 

instructions. 578 

Library preparation and deep sequencing: DNA libraries were prepared and sequenced 579 

with the same kits and workflow as used for the SG and NUH cohorts, except that the 580 

input DNA amount was 50ng. 581 

Taxonomic profiling: For obtaining the taxonomic profiles of the mouse gut 582 

metagenomes, reads were mapped to the NR database using DIAMOND74. The 583 
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taxonomic classification of each sequence was then obtained by using the LCA-based 584 

approach in MEGAN75 (default parameters, minimum score of 50).  585 

Calculation of microbial biomass: Bacterial biomass (up to a constant factor) was 586 

estimated by taking all reads classified to bacterial taxa and normalizing by non-587 

microbial reads. Specifically, plant or host-derived reads were used, respectively, based 588 

on the assumption that the absolute amounts of their DNA would remain roughly 589 

constant in the analyzed mouse fecal samples. Similar trends were observed for both 590 

forms of normalization (default=plant normalized), normalization based abundances 591 

were found to correlate with qPCR estimates (plant normalized, r=0.73, p-value=10-4; 592 

host normalized, r=0.82, p-value=3.510-6), and the observed differences between Bt 593 

and Bt+Ba groups versus other groups were also validated using qPCR (day 10, fold-594 

change=94-170). Note that sequencing based biomass estimates have the advantage 595 

that they allow us to subtract reads belonging to the gavaged species and are also not 596 

affected due to variations in 16S rRNA copy number across taxa. This approach was 597 

also further validated based on spike-in of isolate DNA into mouse stool samples 598 

showing that (i) qPCR based measurement of 16S rRNA DNA copies correlates highly 599 

with microbial CFUs (slope=0.98, R2=1.0; Suppl. Fig. S11a), (ii) Metagenomic 600 

sequencing based calculation of host-normalized microbial reads accurately quantitated 601 

varying microbial CFUs (Suppl. Fig. S11b). 602 

qPCR Analysis: Absolute quantification of the 16S rRNA gene was done by quantitative 603 

PCR (qPCR). A pair of universal 16S bacterial primers76 were used to amplify DNA 604 

extracted from the six different treatment groups on days 0, 3, 10 and 13 (Suppl. Table 605 

1). Reactions were prepared on a 384-well plate, in triplicates, using 5 µL of PowerUp 606 

SYBR Green Master Mix (Thermo Fisher Scientific, Massachusetts, USA), 0.5 µL of 607 

5µM primers and 1 µL of 10 diluted DNA, in a total volume of 10 µL for each reaction. 608 

The ViiA 7 Real-Time PCR System (Thermo Fisher Scientific, Massachusetts, USA) 609 

was used for qPCR with the following amplification parameters: 1 cycle of 95˚C for 2 610 

min, 40 cycles of 95˚C for 15 s, 60˚C for 15 s, and 72˚C for 1 min. A standard curve was 611 

created using serial dilution of synthesized double-stranded DNA oligomers (gBLOCK, 612 

Integrated DNA Technologies, Inc., Iowa, USA; Suppl. Table 1) to convert CT values to 613 
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copy numbers. Copy numbers from day 0 were used to scale bacterial abundances to 614 

the same starting baseline. 615 

Data Availability 616 

Illumina sequencing data for this study (mouse models) has been deposited to the 617 

Sequence Read Archive under project ID SRP142225. Samples are labelled in SRA as 618 

shorthand (e.g. PBS6D22) where “PBS” represents gavage condition, “6” represents 619 

cage number and “D22” represents day of sampling. 620 

Code Availability 621 

Analysis scripts are available at 622 

https://github.com/CSB5/Recovery_Determinants_Study. 623 
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FIGURE LEGENDS 637 

Figure 1: Gut microbiome recovery profiles and key associated taxa. (a) Density 638 

plots showing the two different recovery profiles for microbial diversity (Simpson) that 639 

were observed in the antibiotic treatment cohorts (CA, SG). (b) Principal Component 640 

Analysis (PCA) plot showing the distribution of post-antibiotic gut microbiome profiles for 641 

recoverers and non-recoverers in relation to healthy control gut microbiome profiles 642 

(CA; n=8 for recoverers, n=7 for non-recoverers and n=18 for controls). (c) Boxplots 643 

showing the distribution of Bray Curtis Distances for post-antibiotic gut microbiomes for 644 

recoverers and non-recoverers in relation to healthy controls (median value; CA; n=8 for 645 

recoverers and n=7 for non-recoverers). ‘***’ represents p-value (one-sided Wilcoxon 646 

test) less than 0.001. (d) Relative abundance boxplots for 6 of the RABs that were 647 

identified in at least 3/4 cohorts (Table 2) based on all timepoints. Note that ‘*’, ‘**’ and 648 

‘’***’ denote cohort-specific FDR adjusted p-values (one-sided Wilcoxon test; n=24(CA); 649 

32(SW); 16(EN); 41(SG) samples for recoverers and n=21(CA); 24(SW); 24(EN); 650 

22(SG) samples for non-recoverers) less than 0.05, 0.01 and 0.001 respectively. For all 651 

subfigures, boxplots are represented with center line: median; box limits: upper and 652 

lower quartiles; whiskers: 1.5× interquartile range; outlier points not included in 653 

visualization. 654 

Figure 2: Mechanistic model linking microbial functions with recovery. Subfigures 655 

provide evidence for a model of microbiome recovery based on RABs being enriched 656 

for carbohydrate degradation capabilities (CAZyme), which in turn promote faster 657 

community growth (CGR), and ultimately microbiome recovery (associations shown in 658 

each subfigure are highlighted in blue). (a) Empirical distributions for the number of 659 

CAZyme families in RABs and non-RABs showing that RABs are strongly enriched for 660 

CAZymes (two-sided Wilcoxon test;). (b) Bean plots showing the variation in the number 661 

of CAZyme families (empirical distributions) detected in the gut microbiomes of 662 

recoverers and non-recoverers in the CA and SG cohorts (all timepoints; n=24(CA), 663 

41(SG) recoverers and n=21(CA), 22(SG) non-recoverers). In both cohorts, recoverers 664 

have more CAZyme families represented in their metagenomes (one–sided Wilcoxon 665 

test). (c) Bean plots showing variation in the gut microbial community growth rate 666 
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(empirical distributions) of recoverers and non-recoverers in the CA and SG cohorts (all 667 

timepoints; n=18(CA), n=40(SG) recoverers and n=21(CA), n=18(SG) non-recoverers). 668 

In both cohorts, recoverers have higher community growth rates (one-sided Wilcoxon 669 

test). (d) Bean plots showing that the abundance of RABs in the pre- and during phase 670 

of antibiotic treatment was better correlated (Spearman) to the post-treatment 671 

community growth rate of individuals in the CA cohort compared to non-RAB species 672 

(empirical distributions; one-sided Wilcoxon test; n=21(CA) RABs, n=89(CA) non-RABs 673 

; p-value>0.1 for SG cohort). (e) Correlation between the number of CAZyme families 674 

detected and the overall community growth rate across all gut microbiomes constituting 675 

the CA and SG cohorts (all timepoints). In both cohorts, community growth rates were 676 

consistently correlated with CAZyme diversity. Note that ‘*’, ‘**’ and ‘’***’ denote p-677 

values less than 0.05, 0.01 and 0.001 respectively for all subfigures. For all subfigures, 678 

bean plots are represented with beanline: median. 679 

Figure 3: Role of RABs in ecological recovery via the microbial food web.  (a) 680 

Graph showing network structure of microbial dependencies inferred using an 681 

association rule mining approach, where an edge from species A to species B indicates 682 

that A’s presence is required to have B in the community. Nodes are ordered from the 683 

bottom to the top such that species at the bottom have more outgoing edges than 684 

incoming edges (‘Primary Species’), while species at the top have more incoming edges 685 

than outgoing edges (‘Tertiary Species’). RABs (highlighted in different colors based on 686 

the genus they belong to) were observed either at the bottom or top of the graph. Many 687 

RABs at the bottom of the graph were from cluster 1 (degradation profile; Suppl. Fig. 688 

S6), defined by mucin degrading CAZymes. Clusters based on abundance profile over 689 

time (Suppl. Fig. S2) are indicated using numbers and do not seem to be biased in 690 

different regions of the graph. (b) Schematic representation of the gut showing a model 691 

for microbiome recovery based on these observations. RABs from cluster 1 (Suppl. Fig. 692 

S6) colonize the epithelial mucosa better because of their mucin degrading capabilities 693 

(step 1)39,42,43, and since they can also break down dietary plant and animal derived 694 

carbohydrates42 (step 2), they act as primary species that facilitate the growth of other 695 

species44 (step 3). Some of the tertiary RABs and other species can produce short 696 

chain fatty acids (SCFAs), which are then utilized by colonocytes for their growth 697 
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leading to increased mucin production45,46 (step 4). This positive feedback loop may 698 

enable faster ecological recovery in terms of diversity and biomass. 699 

Figure 4: Promoting microbiome recovery in a mouse model using RABs. (a) 700 

Schematic depicting the design of a mouse model experiment to study the impact of 701 

RABs in promoting microbiome recovery. Mice were given antibiotics for 5 days, 702 

followed by a rest day and gavage of different RABs and controls (Vehicle: n=5, Ba: 703 

n=6, Bt: n=2, and Bt+Ba: n=2, where n represents cage units). Shotgun metagenomics 704 

was then used to monitor microbiome changes every 3 days. (b) Microbial biomass 705 

(median ± 1 MAD) in different groups of mice across time (excluding gavaged species). 706 

(c) Microbiome diversity (Simpson) (median ± 1 MAD) in different groups of mice across 707 

time. Stars (‘*’) indicate timepoints where Bt+Ba group differs from other groups (one-708 

sided Wilcoxon test p-value<0.1). (d, e, f) Reads per million (RPM) mapping to 709 

CAZymes (median ± 1 MAD) associated with plant/animal cell wall, mucin and 710 

peptidoglycan degradation, respectively, across different experimental groups and 711 

timepoints. Stars in all subfigures (‘**’) indicate timepoints where the Bt and Bt+Ba 712 

groups were significantly different from other groups (one-sided Wilcoxon test p-713 

value<0.01).  714 
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TABLES 715 

Table 1: Details of the different cohorts used in this study. 716 

Cohort 
No. of 

Subjects/
Samples 

Sequencing Age Range Antibiotics Used 

Singapore 
(SG) 

27/129 
Shotgun 

Metagenomic 
32-81 

Primarily Co-amoxiclav 
and Clarithromycin 

Canada 
(CA) 

24/72 
Shotgun 

Metagenomic 
21-35 Cefprozil 

England 
(EN) 

37/219 16S rRNA 24-26 Amoxicillin 

Sweden 
(SW) 

29/173 16S rRNA 22-30 Clindamycin/Ciprofloxacin 

NUH 24/72 
Shotgun 

Metagenomic 
23-40 Co-amoxiclav 

717 
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Table 2: List of recovery associated bacterial taxa (RABs). RABs are ordered by the 718 

number of cohorts in which they are significantly associated (bold p-values). 719 

Species 
Cohort-specific FDR adjusted p-value  Known functions or 

associations in gut 
microbiome 

NUH 
p-

value Canada England Sweden S’pore 

Bacteroides 
uniformis 

0.009 0.003 0.005 0.019 
Negatively associated with 
obesity41 

0.354 

Alistipes putredinis 0.002 0.737 0.011 <0.001 
Associated with weight 
loss in obese individuals50 

0.011 
 

Alistipes shahii 0.009 0.018 0.113 <0.001  0.026 

Bacteroides 
thetaiotaomicron 

0.002 0.953 0.011 0.002 
Diverse carbohydrate 
degrading enzymes77  

0.007 

Parabacteroides 
distasonis 

0.004 0.927 0.005 <0.001 
Carbohydrate degrading78  

0.218 

Coprococcus catus 0.034 0.003 0.022 0.492  0.096 

Bifidobacterium 
adolescentis 

0.003 0.014 0.342 0.006 
Known probiotic79 

0.008 

Ruminococcus 
bromii 

0.023 0.014 0.477 0.046 
 

0.138 

Subdoligranulum 
variabile 

0.002 0.039 0.039 0.401 
Produces butyrate80 

0.197 

Bacteroides stercoris 0.351 0.013 0.011 0.050  0.977 

Bacteroides eggerthii 0.087 0.570 0.016 0.022  0.039 

Bacteroides 
coprocola 

0.075 0.003 0.933 0.015 
 

0.030 

Bifidobacterium 
bifidum 

0.049 0.737 0.239 0.013 
 

0.327 

Roseburia 
inulinivorans 

0.133 0.024 0.022 0.775 
Produces butyrate80,81 

0.308 

Bacteroides caccae 0.001 0.737 0.156 <0.001 
Negatively associated with 
obesity50 

0.003 

Faecalibacterium 
prausnitzii 

0.001 0.013 0.150 0.504 
Butyrate producing with 
anti-inflammatory 
properties54 

0.081 

Ruminococcus 
torques 

0.775 0.013 0.662 0.015 
Degrades mucin43 

0.003 

Bifidobacterium 
longum 

0.033 0.737 0.150 0.021 
Known probiotic82 

0.378 

Bacteroides 
intestinalis 

0.002 0.737 0.574 <0.001 
Carbohydrate degrading; 
Negatively associated with 
obesity83 

0.377 

Desulfovibrio piger 0.223 0.149 0.011 0.023 Sulfate-reducing bacteria 0.055 

Parabacteroides 
johnsonii 

0.005 0.439 0.933 0.012 
 

0.030 

 720 
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Supplementary Figure S1: Properties of microbiome recovery across cohorts. (A) Cumulative density function for Simpson diversity in

the CA and SG cohorts, highlighting the large number of low diversity samples. (B) Microbiomes of recoverers are more similar to control

microbiomes than for non-recoverers. Jensen-Shannon (JS) divergence and Jaccard distances for each sample were computed in

comparison to the untreated (“control”) microbiomes in each cohort. The figures show the median values for each sample in the form of

a boxplot. Boxplotwhiskers represent 1.5× interquartile range or the maximum/minimum data pointwithin the range.
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Supplementary	Figure	S2:	Enrichment	of	RABs	during	different	stages	of	antibiotic	treatment.	Fold	change	

was	computed	for	median	abundance	in	recovered	vs non-recovered	subjects	per	cohort	and	averaged	across	

all	4	cohorts. Groups	were	determined	manually	(due	to	limited	dimensionality)	based	on	approximate	trends	

and	taxonomic	similarity.	The	symbols	“*”,	“**”	and	“***”	indicate	p-values	<0.1,	<0.05	and	<0.01,	respectively	

based	on	Wilcoxon	test	comparison	between	recoverers and	non-recoverers.
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Supplementary Figure S3: Differentially abundant metagenomic functions in post-antibiotic recovery. Functional pathways

enriched in the gut microbiomes of recoverers or non-recoverers (of the SG cohort) in the ‘Pre/Early’ and ‘During’ stages of

antibiotic treatment. Note that a star (‘*’) indicates those pathways for which significant differences were also obtained in the

CA cohort. Pathways were grouped into those important for energy production (in orange) and those involved in biosynthesis

(in blue), highlighting the role of these two processes in microbiome recovery.
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Supplementary Figure S4: Enrichment of Carbohydrate Metabolism and Butanoate

Metabolism pathways in the gut microbiomes of recoverers in the EN and SW cohorts:

Abundances of the various pathways in the Pre/Early and During stages of treatment were

inferred using PICRUSt and then compared among the recoverers and non-recoverers in

these cohorts.
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Supplementary Figure S5: Enrichment of Bacterial Genera in the Resistome. Reads belonging to the resistome were

assigned to bacterial genera using Kraken (right panel) and odds ratio between groups computed to identify enriched

genera (left panel; * = 𝜒2 test p-value < 0.05). Genera with RAB species are highlighted in green.



Supplementary Figure S6: RABs have distinct preferences for carbohydrate active enzyme families. Copy numbers of CAZymes

having specificities for different categories of carbohydrates were counted for various bacterial species and then range normalized

across species. Four distinct large clusters could be observed among the species based on their carbohydrate degradation

specificities. RABs were observed to be significantly enriched in cluster 1 (Fisher’s exact test) that is defined by an abundance of

enzymes that are specific to plant/animal carbohydrates as well as mucin.
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Supplementary Figure S7: Key metabolic interactions between RABs. Directed

lines indicate RAB species with high metabolic support to other RAB species (top

10% of MSI values). Node sizes reflect the number of incoming edges and the

red edge marks the interaction between B. thetaiotamicron and B. adolescentis

which was evaluated further in an in vivomodel for microbiome recovery.



Supplementary Figure S8: Microbiome recovery profiles across treatment groups. (A) Microbial biomass values obtained after

normalizing by host reads reveal similar trajectories as plant normalized values (Figure 5B). Stars (‘**’) indicate timepoints

where the Bt and Bt+Ba groups were significantly different from other groups (one-sided Wilcoxon test p-value < 0.01). (B)

Median Bray-Curtis distance of species level taxonomic profiles compared to day 0 profiles, in different treatment groups and

across time (median ± 1 MAD). Stars (‘**’) indicate timepoints where the Bt group was significantly different from other groups

(one-sided Wilcoxon test p-value < 0.01).
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Supplementary Figure S9: Successful colonization of B. thetaiotaomicron in the

mouse gut microbiome post gavage. Boxplots showing high number of B.

thetaiotaomicron metagenomic reads from mouse stool after Bt gavage, but not

Bacillus spp. reads after Bacillus gavage (Bc group), indicating successful

colonization specific to Bt. Whiskers represent 1.5× interquartile range.
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Supplementary Figure S10: Placement of RABs in the food web at different

thresholds. Heatmap showing that at different thresholds (±50% from the threshold of

0.01 used for results in Figure 3A), the position of RABs as primary, secondary and

tertiary species in the food-web is retained.



Supplementary Figure S11: Establishing validity of microbial biomass estimation using host

normalised microbial read counts. (A) 16S rRNA qPCR demonstrates that the fold change in 16S

rRNA copies is directly proportional to fold change in microbial biomass (CFUs). (B) Metagenomic

analysis demonstrate that the fold change in host-normalised microbial reads is directly

proportional to fold change in microbial biomass (CFUs). Corynebacterium tuberculostearicum

and Klebsiella pneumonia DNA were mixed in equal CFU ratio, and spiked at different biomass

amounts into multiple mouse stool DNA samples (Day 0) to achieve the varying fold difference.

Data shown for twomouse stool samples (biological replicates).
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Barcode adapter, double 

stranded 

1st strand: 5'P-GATCGGAAGAGCACACGTCT

2nd strand: 5'ACACTCTTTCCCTACACGACGCTCTTCCGATCT

PE 1.0 5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC

ACGACGCTCTTCCGATC* T

Index Primer 5’CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTG

GAGTTCAGACGTGTGCTCTTCCGATC*T

16S Forward 5’ACTCCTACGGGAGGCAGC

16S Reverse 5’TTACCGCGGCTGCTGGCAC

gBLOCK:

5’GGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTC

GGCAATGGACGGAAGTCTGACCGAGCAACGCCGCGTGAG

TGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTAAGAGAA

GAACGAGTGTGAGAGTGGAAAGTTCACACTGTGACGGTAT

CTTACCAGAAAGGGACGGCTAACTACGTGCCAGCAGCCGC

GGTAATACGTAGGTCCCGAG

Supplementary	Table	S1:	Primers	and	adapter	sequences	used	in	this	study.
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