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Maximal Packing with Interference Constraints

Rakshith Jagannath, Radha Krishna Ganti and Neelesh S Upadhye

Abstract

In this work, we study the problem of scheduling a maximal setof transmitters subjected to an

interference constraint across all the nodes. Given a set ofnodes, the problem reduces to finding the

maximum cardinality of a subset of nodes that can concurrently transmit without violating interference

constraints. The resulting packing problem is a binary optimization problem and is NP hard. We propose

a semi-definite relaxation (SDR) for this problem and provide bounds on the relaxation.

Index Terms

semi-definite relaxation, interference, maximal packing,Euclidean random matrix, randomization

algorithms

I. INTRODUCTION

Interference is a major impediment in the current wireless networks, particularly in ad-hoc

and wireless sensor networks. In these networks, interference is primarily managed through

scheduling wherein the transmitting nodes are carefully chosen to avoid interference at the

active links, while simultaneously maximizing the spatialreuse. The maximum number of nodes

that can be spatially scheduled with a network interferenceconstraint is an important metric that

quantifies the performance of the scheduler. However, to thebest of our knowledge, even this

simple metric is difficult to be computed for general networktopologies.

In this paper, we focus on the problem of computing the cardinality of the largest subset of

nodes that can be scheduled from a given set of nodes with a constraint on the interference

across the network. We assume an arbitrary network topologyand model the spatial interference

pattern through a path-loss function. The cardinality of the maximal set can be obtained by
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solving a binary problem, which is NP-hard. Hence, we obtainbounds on the maximal node

packing with interference constraints through a semi-definite relaxation (SDR) of the original

binary problem by using Shor’s technique [1], [2].

In [3], the maximal packing problem has been studied with theprotocol model for interference

with results from random geometric graphs. It has been shownthat the maximal density of

scheduled nodes scales asO(1/
√
N), whereN is the total number of nodes. In [4], [5], a

related problem of sensor selection,i.e., selectingK out ofN sensors that minimize the error in

estimating network parameters is studied and solutions areproposed using several frameworks

such as convex optimization, hypothesis testing, experiment design, compressed sensing and

sparse signal recoveryetc. Another related problem is the signal-to-interference-and-noise ratio

(SINR) maximization problem wherein the SINR at each node ismaximized [6]–[8] using

techniques from semi-definite programming and graph theory. However, the above methods

assume that the maximum number of nodes is fixed and the interference amongst the selected

nodes is optimised. In the current work, a more fundamental question of finding the maximum

number of nodes for a given interference constraint across the network is explored.

Notation: In this paper, we use bold lower case letters to represent vectors and bold upper case

letters to represent matrices. For a given matrix (vector)A, AT denotes the regular transpose.

For a vectorx, ‖x‖0, ‖x‖1, ‖x‖2 denote thel0 pseudo norm which is equal to the number of

non-zero elements inx, l1 and l2 norms respectively.E denotes the expectation operation while

P denotes probability. For a matrixA and a vectoru, D(A) denotes a vector of diagonal entries

of A, T(A) denotes the trace ofA, S(u) denotes the sign of elements ofu, S(u) = +1, if

u > 0, elseS(u) = −1. arcsinA denotes sine-inverse of each element ofA (see [1]) andA � 0

impliesxTAx ≥ 0 for all x 6= 0.

II. SIGNAL MODEL

We considerN nodes located at{v1,v2, . . . ,vN} ⊂ R
2. The Euclidean distance between node

i and nodej is denoted byrij. In this paper, we neglect thermal noise and assume free space

channel between nodes1. The path loss function is denoted by the functionℓ(x) : R2 → [0,∞).

A commonly used path loss function isℓ(v) = ‖v‖−β
2 , whereβ > 2 is the path loss exponent.

1Fading is neglected so as to simplify the notation and can be introduced without any modifications to the results.
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Let xj ∈ {0, 1} denote an indicator variable which equals one if nodej is active and zero

otherwise. Assuming unit power transmission, the interference power at a nodei due to other

transmitting nodes is

wi =

N∑

j=1

ℓ(rij)xj , i = 1, 2, . . . , N. (1)

Let

di =
[
ℓ(ri1), . . . , 0, ℓ(rii+1), . . . , ℓ(riN)

]T
,

andx =
[
x1, x2, . . . , xN

]T
. Then the interference (or received signal power) at nodei is

wi = dT
i x. (2)

Let w =
[
w1, w2, . . . , wN

]T
. Thenw = Dx, whereD =

[
d1,d2, . . . ,dN

]T
is the distance

matrix whose elements are non-negative.

Using the above notation, the maximum number of nodes in the network while limiting the

interference powers across all the nodes to be less thanǫ, is given by

σ = max
x∈{0,1}N

‖x‖0 s.t. ‖w‖22 ≤ ǫ. (3)

In the above optimization problem, we consider the two norm of the interference across all the

nodes for analytical tractability. However, since‖w‖2 ≥ ‖w‖∞, the constraint‖w‖22 ≤ ǫ implies

a bound on the interference at individual nodes.

Since,x ∈ {0, 1}N , we have‖x‖0 = ‖x‖1 = ‖x‖22. Also, w = Dx, and hence the above

optimization problem can be rewritten as

σ = max
x∈{0,1}N

‖x‖22 s.t. xTFx ≤ ǫ, (4)

whereF = DTD is a symmetric positive semi-definite matrix. The properties of D andF are

discussed in detail in [9]. The optimization problem (4) is an NP hard [10], discrete optimization

problem and there are no closed form analytical solutions tothe above problem.

Observe thatǫ is a network wide interference constraint and hence for a uniform network, it is

easy to observe thatǫ should scale withN if a significant subset of nodes have to be activated.

Also note thatσ ≤ N is a trivial bound, since the number of active nodes is alwaysbounded

above by the total number of nodes.
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In this paper, we first obtain a SDR of (4). Since SDR is a relaxation of (4), the optimum value

of the SDR (ρ) is related toσ asρ ≤ σ. This relaxation is then used to propose a randomization

algorithm (rounding) to obtain ax for (4) also called as rounding in literature [11]. This rounding

technique is then used to obtain bounds of the typeρ ≤ θσ for some constantθ > 1.

III. SEMI-DEFINITE RELAXATION

The binary problem in (4) is first converted into a{−1,+1} problem using the transformation

v = 2x− 1. Hence the equivalent problem is

σ = max
v

1

4

(
vTv + 1Tv + vT1+ 1T1

)
, (5)

s.t. vTFv + 1TFv + vTF1 + 1TF1 ≤ 4ǫ,

v2i = 1, i = 1, 2, . . . , N.

The above optimization problem can be rewritten as

σ = max
v

1

4

[
vT 1

]
Q


v
1


 , (6)

s.t.
[
vT 1

]
R


v
1


 ≤ 4,

vT
(
eie

T
i

)
v = 1, i = 1, 2, . . . , N, (7)

whereei is the columni of the identity matrix andQ andR are given by

Q =


 I 1

1T 1T1


 , R =

1

ǫ


 F F1

1TF 1TF1


 . (8)

Observe that
[
vT 1

]
Q


v
1


 = T


Q


v
1



[
vT 1

]

. Denoting


v
1



[
vT 1

]
by H and drop-

ping the rank one constraint, we obtain the following [1] semi-definite relaxation of the opti-

mization problem in (6)

ρ = max
H

T(QH)/4, s.t. T(RH) ≤ 4, (9)

H = HT � 0, Hii = 1, i = 1, 2, . . . , N. (10)
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Algorithm 1 Rounding algorithm

1: Input: Ĥ, K.

2: Initialize: SetN = φ andr = S(n), wheren is a zero mean Gaussian random vector with

covariance matrix̂H.

3: Decision: If rTRr ≤ 4 andrN+1 = 1, N = N ⋃
r.

4: Iterate: from step-2 forK > N steps.

5: Output: r∗ = argmaxr∈N ‖r‖22, σ = ‖r∗‖22.

The relaxed solution of the SDR of equation (9) can now be obtianed using numerical solvers

(e.g. [12]). Now, given the optimal solution̂H for the SDR, we propose below a randomization

algorithm to obtain a solution (v) for the unrelaxed problem (6).

Now, we obtain the bounds relatingσ (optimal value of the unrelaxed problem) andρ (optimal

value of the SDR) using the proposed randomization algorithm.

Theorem 1. Let Λ denote the diagonal matrix with eigenvalues of RĤ. Let p2 = P((R−Λ) � 0),

then

σ ≤ ρ ≤ π

2

(
1

1− p

)
σ. (11)

Proof: The left side of the inequality holds because of the relaxation argument. To prove

the right side, letĤ be the optimal solution of the SDR in (9). So we haveĤ = ĤT � 0,

D(Ĥ) = 1 andT(RĤ) ≤ 4. We observe that̂H satisfies the properties of the covariance matrix

of a Gaussian random vector. Letn be a Gaussian random vector with mean0 and covariance

matrix Ĥ. Let r = S(n), so thatr2i = 1, i = 1, 2, . . . , N + 1. We can now choose a realization

of r such thatrN+1 = 1, so that it can be a feasible solution for the optimization problem in

(5). Clearly, such a realization ofr always exists. Now, to obtain the right side of the inequality

(11), our goal is to show that such a realizationr also satisfiesθrTQr ≥ T(QĤ) andrTRr ≤ 4

for someθ > 1.
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Let f(n) be the density of the Gaussian vectorn. We have

P
(
rTQr ≥ 1

θ
T(QĤ), rTRr ≤ 4, rN+1 = 1

)

=

∫

rTQr≥ 1

θ
T(QĤ),rTRr≤4,rN+1=1

f(n)dn

(a)
=

∫

rTQr≥ 1

θ
T(QĤ),rTRr≤4,rN+1=−1

f(n)dn

= P
(
rTQr ≥ 1

θ
T(QĤ), rTRr ≤ 4, rN+1 = −1

)
,

wherer = S(n). Here(a) follows by the change of variablesn → −n and the fact that a zero

mean multivariate Gaussian density satisfiesf(n) = f(−n). Hence

P
(
rTQr ≥ 1

θ
T(QĤ), rTRr ≤ 4, rN+1 = 1

)

=
1

2
P
(
rTQr ≥ 1

θ
T(QĤ), rTRr ≤ 4

)
.

Hence it suffices to show that the RHS of the above equation is non zero. We have

P
(
rTQr ≥ 1

θ
T(QĤ), rTRr ≤ 4

)
,

≥P
(
rTQr ≥ 1

θ
T(Q arcsin Ĥ), rTRr ≤ 4

)
, (12)

where (12) follows fromT(QĤ) ≤ T(Q arcsin Ĥ) (see [13]). Now, applying the union bound

to inequality (12), we have

≥P
(
rTQr ≥ 1

θ
T(Q arcsin Ĥ)

)
− P

(
rTRr > 4

)
,

Now, T(Q arcsin Ĥ) = π
2
E{rTQr} (see [11]). Using these in the above inequality, we have

≥P
(
rTQr ≥ π

2θ
E{rTQr}

)
− P

(
rTRr > 4

)
,

Using the Paley-Zygmund inequality (see [14]) in the first part

≥
(
1−

(
π

2θ

))2

(
E{rTQr}

)2

E{(rTQr)2} − P
(
rTRr > 4

)
,

≥
(
1−

(
π

2θ

))2

− P
(
rTRr > 4

)
(13)
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where we have usedE[x2] ≥ (E[x])2 in (13). LetΛ be a diagonal matrix of eigenvalues ofRĤ.

SinceT(RĤ) ≤ 4, andrTΛr = T(RĤ) becauser2i = 1. Hence, (13) reduces to

≥
(
1−

(
π

2θ

))2

− P
(
rTRr > rTΛr

)
, (14)

≥
(
1−

(
π

2θ

))2

− P
(
R− Λ � 0), (15)

=

(
1−

(
π

2θ

))2

− p2, (16)

We getθ > π
2

(
1

1−p

)
by imposing

(
1−

(
π
2θ

))2 − p2 > 0.

We observe that the necessary condition for the successful working of the randomization

algorithm (step-3) is that the vectorsr constructed in step-2 satisfy the quadratic constraint of

the unrelaxed problem (6). In the above proof, we have assumed that the probability of existence

of such vectorsr with non-zero probability, i.e.P(rTRr ≤ 4) = 1 − p2 > 0. However, asr

is a correlated Bernoulli random vector, evaluating the probability P(rTRr ≤ 4) requires2N

checks which cannot be performed in practice. Hence, we use aweaker upper bound onp2

which depends on the known matricesR andĤ and which was observed (through simulations)

to be satisfied by sparse networks (with node-densityλ ≤ 1√
N

). In boundingp2, we have also

taken care of appropriate probability measures.

We would like to re-emphasize that the value ofθ derived above in Theorem-1 is not

necessarily the best possible bound onρ, because the upper bound onp is very conservative

since there is a major loss of probability measure while applying the union bound and also when

we boundP(rTRr > 4) by P(R− Λ � 0).

IV. SIMULATIONS

In this section, we present numerical simulations to check the performance of the proposed

SDP relaxation and the randomization algorithm. In the simulation set-up, we generateN = λM

points with a uniform distribution over a squareL = [0,
√
M ]2, whereλ is called the density of

the network. We then evaluate the SDR given in (9) using the MATLAB CVX toolbox [12] to

obtain the SDR solutionŝH andρ. We compare the obtained SDR solutionρ, with the optimal

packingσ, by solving (4) using a brute force search for small values ofN ≤ 20. In the brute

force search,σ is obtained by iterating over all subset of nodes and pickingthe set with the

largest cardinality that satisfies the constraints. We repeat the above experiment for1000 different
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Fig. 1: ρ versusN for ǫ = 10, path-loss exponent,β = 3 and different network densities,λ.
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.

spatial realizations for eachN with a fixed ǫ (and vice-versa) and average the values ofρ and

σ obtained at each realization.

In Figure-1, we compare the averageρ (estimated by SDR) with averageσ (obtained by brute

force search) as the number of nodes (N) increases for different network densities (λ) and a

fixed interference level (ǫ = 10).

In Figure-2, we compare the averageρ (estimated by SDR) with averageσ (obtained by brute

force search) as the interference level (ǫ) increases for different network densities (λ) and a

fixed number of nodes (N = 15). We observe that the number of active nodes initially increases

sharply as the interference constraint is relaxed but stabilizes for largeǫ.

From Figures-1 and 2, we observe thatσ is always very close toρ, in-fact we observe that

ρ− σ ≤ 1 in most cases. For the network densityλ = N−0.5, most of the nodes in the network

are switched on. We also observed that the optimal vector,r obtained by the randomization

algorithm was always same (after the transformation) as theoptimalx obtained by brute force

search for all realizations.

In Figure-3, we plot the averageρ (estimated by SDR) as the number of nodes (N) increases

for a fixed network density (λ = 1√
N

) and for different interference levels (ǫ). We observe that

changing the interference level has a small effect on the packing of network.
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From the simulations, we can conclude that the optimal packing of nodes depends critically

on the density of the network. The other parameters such as the number of nodes (N), the

interference level (ǫ) and path-loss exponent (β) play a relatively minor role in the packing.

We can also conclude that the optimal value of the packing problem obtained by the SDR

is very close (In-fact,ρ − σ < 1) to the actual optimal packing value. Hence, SDR is a tight

approximation for the packing problem.

V. CONCLUSION

In this work, we study the maximal packing problem under interference constraints where the

goal is to find the maximum number of active nodes in an area such that the total interference

in the network is less than some fixed valueǫ. This is a discrete optimization problem which is

NP hard. We propose a semi-definite relaxation (SDR) of the NPhard problem, whose solution

upper bounds the number of active nodes in the network. Simulations are performed to compare

the bounds provided by the SDR with a brute-force search solution of the unrelaxed problem

for small networks and we observe that the SDP relaxation provides a good approximation to

the packing problem.
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