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MASAS AND BIMODULE DECOMPOSITIONS OF II1 FACTORS

KUNAL MUKHERJEE

Abstract. The measure-multiplicity-invariant for masas in II1 factors was intro-
duced in [10] to distinguish masas that have the same Pukánszky invariant. In
this paper we study the measure class in the measure-multiplicity-invariant. This is
equivalent to studying the standard Hilbert space as an associated bimodule. We
characterize the type of any masa depending on the left-right-measure using Baire
category methods (selection principle of Jankov and von Neumann). We present a
second proof of Chifan’s result [2] and a measure theoretic proof of the equivalence
of weak asymptotic homomorphism property (WAHP) and singularity that appeared
in [35].

1. Introduction

This is the first of a series of two papers developed by the author for his Phd the-
sis. The moral of this paper is : “The phenomena regularity, semiregularity, singular-
ity, weak asymptotic homomorphism property (WAHP) and asymptotic homomorphism
property (AHP) of masas in finite von Neumann algebras can all be explained by mea-
sure theory”. Throughout the entire paperM will always denote a separable II1 factor.
Let A ⊂ M be a maximal abelian self-adjoint subalgebra henceforth abbreviated as a
masa. It is a theorem of von Neumann that A is isomorphic to L∞([0, 1], dx). So the
study of masas in type II1 factors is understanding its position (up to automorphisms)
of the ambient von Neumann algebra. For a masa A ⊂ M, Dixmier in [5] defined the
group of normalizing unitaries (or normaliser) of A to be the set

N(A) = {u ∈ U(M) : uAu∗ = A} ,
where U(M) denotes the unitary group of M. He called
(i) A to be regular (also Cartan) if N(A)′′ = M,
(ii) A to be semiregular if N(A)′′ is a subfactor of M,
(iii) A to be singular if N(A) ⊂ A.
He also exhibited the presence of all three kinds of masas in the hyperfinite II1 factor.
Two masas A,B of M are said to be conjugate if there is an automorphism θ of M

such that θ(A) = B. If there is an unitary u ∈ M such that uAu∗ = B then A and B
are called unitarily (inner) conjugate.
Feldman and Moore in [11], [12] characterized pairs A ⊂ M, where A is a Cartan

subalgebra, as those coming from r-discrete transitive measured groupoids with a fi-
nite measure space X as base. It is a remarkable achievement of Connes, Feldman and
Weiss [3] that any countable amenable measured equivalence relation is generated by
a single transformation of the underlying space. When translated into the language of
operator algebras via the Feldman-Moore construction, this theorem together with a
theorem of Krieger [17] says that, if M is any injective von Neumann algebra then any
two Cartan subalgebras are conjugate by an automorphism of M. However it follows
from their theorem that, there are uncountably many equivalence classes of Cartan
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masas up to unitary conjugacy in the hyperfinite II1 factor. See [23] for more exam-
ples. There exist II1 factors with non conjugate Cartan masas (see [4]). These masas
were distinguished with the presence or absence of nontrivial centralizing sequences.
Recently Ozawa and Popa have exhibited examples of II1 factors with no or at most
one Cartan masa up to unitary conjugacy (see [22]).

The absence of Cartan masas in II1 factors was first due to Voiculescu in [36]. In
fact, it was his amazing discovery that, for any diffuse abelian algebra A ⊂ L(Fn), the
standard Hilbert space l2(Fn) as a A, A-bimodule contains a copy of L2(A)⊗ L2(A).
His result was improved by Dykema in [9] to rule out the presence of masas in free
group factors with finite multiplicity.

Getting back to singular masas, in 1960 Pukánszky showed in [28] that there are
countable non conjugate singular masas in the hyperfinite II1 factor by introducing an
algebraic invariant for masas in II1 factors, today known as the Pukánszky invariant.

In 1983 Popa [24] succeeded in showing that all separable continuous semifinite von
Neumann algebras and all separable factors of type IIIλ, 0 ≤ λ < 1 have singular
masas. Although they exist, citing explicit examples is a very hard job. In this di-
rection, Smith and Sinclair in [33] have given concrete examples of uncountably many
non conjugate singular masas in the hyperfinite II1 factor. White and Sinclair [32]
have given explicit examples of a continuous path of non conjugate singular masas
(Tauer masas) in the hyperfinite II1 factor. All the masas in this path have the same
algebraic invariant of Pukánszky. Subsequently, White in [37] proved that, any possi-
ble value of the Pukánszky invariant can be realized in the hyperfinite II1 factor, and
any McDuff factor which contains a masa of Pukánszky invariant {1} contains masas
of any arbitrary Pukánszky invariant.

Singularity is often quite hard to check (see [29]). In order to check if a masa
is singular analytical properties “AHP” and “WAHP” were discovered in [30], [31].
Subsequently Smith, Sinclair, White and Wiggins in [35] characterized pairs A ⊂ M,
where A is a singular masa in a II1 factor M to be precisely those for which A satis-
fies “WAHP”. All the theories that we have outlined have a common theme namely,
“What is the structure of the standard Hilbert space as a w∗ A, A-bimodule.

Although many invariants of masas in II1 are known the first successful attempt to
distinguish masas with a natural invariant, which have the same Pukánszky invariant
was due to Dykema, Smith and Sinclair in [10]. We call this the measure-multiplicity-
invariant. This invariant has two main components, a measure class and a multiplicity
function. This invariant is not a new one and has existed in the literature for quite
some time. For Cartan masas this invariant has very deep meaning and it is very
hard to distinguish Cartan masas with this invariant. The term multiplicity in the
measure-multiplicity-invariant is actually the Pukánszky invariant of the masa, mak-
ing it a stronger invariant. A slightly different invariant was considered by Neshveyev
and Størmer in [19].

Our intention is to study singular masas and distinguish them. In order to do so,
it is necessary to think of singularity from a different point of view. The theory of
Cartan masas and singular masas have so far been viewed from two different angles.
While Cartan masas fit to the theory of orbit equivalence on one hand [12], singular
masas fit to the intertwining techniques of Popa on the other [35]. But we would like
to have an unique approach that explains all these phenomena. This is the primary
goal of this paper. In this paper, we characterize masas by studying the structure of
the standard Hilbert space as its associated bimodule.

Our second goal is to investigate that, after such a theory is outlined whether it is
possible to obtain proofs of important theorems regarding masas that were obtained
by a number of researchers by using different ideas. Many old theorems can indeed be
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proved but we will mainly prove Chifan’s result on tensor products [2] and the equiv-
alence of WAHP and singularity [35]. In fact, it seems that studying the bimodule is
the most natural way to approach these problems as one can exploit a lot of results
from Real Analysis.
In order to distinguish singular masas which have the same multiplicity understand-

ing the measure in the measure-multiplicity-invariant is the most important task. So
we study this invariant thoroughly throughout this article. The second paper will con-
tain explicit calculations of the invariant and questions related to conjugacy of masas.
We have learned latter that Popa and Shylakhtenko in [26] has results of similar

flavor in this direction. However our way of approaching is completely different. We
think that what is really involved in understanding the types of masas are the mea-
surable selection principle of Jankov and von Neumann and some generalized version
of Dye’s theorem on groupoid normalisers. This is evident from [3], [11] and [12].
We present completely measure theoretic proofs based upon Baire category methods
(selection principle). As an outcome of our approach many theorems related to struc-
ture theory of masas that were proved by different techniques just follows easily from
our technique.
Singular masas are often constructed by considering weakly or strongly mixing ac-

tions of infinite abelian groups on finite von Neumann algebras. We will show that
the definition of WAHP can be strengthened by considering Haar unitaries and Cesàro
sums which exactly resembles the definition of weakly mixing actions. Weakly mixing
actions are characterized by null sets of certain measures. The story for singular masas
is also similar.
This paper is heavily measure theoretic. Much of the measure theory tools we require

are scattered here and there in the literature. This article is organized as follows. In
Sec. 2 we present some preliminaries of direct integrals, masas and define the measure-
multiplicity-invariant. In Sec. 3 we study disintegration of measures and masas. Sec.
4 deals with generalized versions of Dye’s theorem. Sec. 5 contains the main result i.e
the characterization theorem and a second proof of Chifan’s normaliser formula. This
is a very technical section. Sec. 6 contains results on calculating certain two-norms
and a second proof of the equivalence of WAHP and singularity. Sec. 4 uses the theory
of L1 and L2 spaces associated to finite von Neumann algebras for which we have cited
related results in that section without proofs. Appendix A contains structure theo-
rems of measurable functions satisfying condition (N) of Lusin which is used in Sec. 5.

Acknowledgements : I thank Ken Dykema, my advisor, for many helpful discus-
sions. I also thank Roger Smith and David Kerr for providing me with many helpful
ideas. I am grateful to Roger Smith and Allan Sinclair for making their book, “Finite
von Neumann Algebras and Masas” available to me for my reference, much before it
reached the bookstore. I would also like to thank Stuart White for helpful conversa-
tions and for suggesting some of the results which appear in this paper.

2. Preliminaries

The paper relies on the theory of direct integrals. So we have divided this section
into three subsections. In the first subsection we give some well known results about
direct integrals of Hilbert spaces with respect to an abelian von Neumann algebra. In
the second part we give some preliminaries about masas in II1 factors and in the third
subsection we will define the measure-multiplicity-invariant of masas in II1 factors.
Notation: Throughout the entire article N∞ will denote the set N ∪ {∞}.

2.1. Direct Integrals.

Let a separable Hilbert space H be the direct integral of a µ-measurable field of
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Hilbert spaces {Hx}x∈X over the base space (X, µ) where X is a σ-compact space and
µ is a positive, complete Borel measure.

Definition 2.1. An operator T ∈ B(H) is said to be decomposable relative to the

decomposition H ∼=
∫ ⊕

X
Hxdµ(x) if there exists a µ-measurable field of operators Tx ∈

B(Hx), such that x 7→ ‖Tx‖ ∈ L∞(X, µ) and T =
∫ ⊕

X
Txdµ(x).

If Tx = c(x)IHx
, where c(x) ∈ C for almost all x, then T is said to be diagonalizable.

It is easy to see that the fibres of a decomposable operator are uniquely determined
up to an almost sure equivalence. The collection of diagonalizable and decomposable
operators both form von Neumann subalgebras of B(H), with the later being the
commutant of the former. Whenever there is no danger of confusion we will use the
term measurable instead of µ-measurable.

Theorem 2.2. Let A ⊂ B(H) be a diffuse abelian von Neumann algebra on a separable
Hilbert space H. Then there exists a measure space (X, µ), where X is a σ-compact
space, µ is a positive, Borel, non-atomic, complete measure on X and a measurable
field of Hilbert spaces {Hx}x∈X , such that H is unitarily equivalent to,

(2.1) H ∼=
∫ ⊕

X

Hxdµ(x)

and A is (unitarily equivalent to) the algebra of diagonalizable operators on
∫ ⊕

X
Hxdµ(x)

with respect to this decomposition.

The dimension function of the decomposition in Thm. 2.2 is defined as

m : X 7→ N∞ by, m(x) = dim(Hx).

The dimension function m is µ-measurable. Such results are known in greater gener-
ality. For a measure space (X, µ) we denote by [µ] the equivalence class of measures
on X that are mutually absolutely continuous with respect to µ. This decomposition
in Thm. 2.2 and hence the multiplicity function is unique up to measure equivalence
from Thm. 3, 4 of Chapter 6 of [6].

We will be always working with finite measures. Since direct integrals of Hilbert
spaces does not change when the measures are scaled, we will most of the time assume
that the measures have total mass 1. Details of these facts can be found in [15], [20].

2.2. Basics on Masas in II1 factors.

Definition 2.3. Given a type I von Neumann algebra B we shall write Type(B) for
the set of all those n ∈ N∞ such that B has a nonzero component of type In.

Let M be a separable II1 factor with the faithful, normal, tracial state τ . This
trace induces the two-norm ‖x‖2 = τ(x∗x)1/2 on M and we write L2(M) for the
Hilbert space completion of M with respect to this norm. Let M act on L2(M)
via left multiplication. Let J denote the anti-unitary conjugation operator on L2(M)
obtained by extending the densely defined map J(x) = x∗. Inclusions of von Neumann
algebras will always be assumed to be unital until further notice.

Given a von Neumann subalgebra N of M, let EN be the unique trace preserving
conditional expectation from M onto N . This conditional expectation is obtained by
restricting the orthogonal projection eN from L2(M) onto L2(N ) to M.

Let A ⊂ M be a masa. Then the augmented algebra A = (A∪JAJ)′′ is an abelian
algebra, with a type I commutant, the commutant being taken in B(L2(M)) and the
center of A′ is A. The Jones projection eA onto L2(A) lies in A [34]. Hence, A′(1−eA)
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decomposes as,

(2.2) A′(1− eA) = ⊕n∈N∞A′Pn

where Pn ∈ A are orthogonal projections summing up to 1−eA andA′Pn is homogenous
algebra of type n whenever Pn 6= 0.

Lemma 2.4. If A ⊂ M be a masa and B ⊆ M be any subalgebra, then (A ∪ JBJ)′′
is diffuse.

Definition 2.5. The Pukánszky invariant of a masa A in II1 factor M, denoted by
Puk(A) (or PukM(A) when the containing factor is ambiguous) is { n ∈ N∞ : Pn 6= 0}
which is precisely Type(A′(1− eA)).

Definition 2.6. If A is an abelian von Neumann subalgebra of M, let GN (A) or
GN (A,M) be the normalising groupoid, consisting of those partial isometries v ∈ M
that satisfy v∗v, vv∗ ∈ A and vAv∗ = Avv∗ = vv∗A.

A theorem of Dye [7] says that, a partial isometry v ∈ GN (A) if and only if there
is an unitary u ∈ N(A) and a projection p ∈ A such that v = up = (upu∗)u. Thus
GN (A)′′ = N(A)′′. Popa in [25] connected the Pukánszky invariant to the type of a
masa showing that if 1 6∈ Puk(A), then A is singular and that the Pukánszky invariant
of a Cartan masa is {1}.
Singularity is difficult to verify. The following two conditions were introduced in

[31], [30] and [35] as they imply singularity and are often easier to verify in explicit
situations.
Definition 2.7. (Smith, Sinclair) Let A be a masa in a II1 factor M.
(i) A is said to have the asymptotic homomorphism property (AHP) if there exists an
unitary v ∈ A such that

lim
|n|→∞

‖EA(xv
ny)− EA(x)v

nEA(y)‖2 = 0 for all x, y ∈ M.

(ii) A has the weak asymptotic homomorphism property (WAHP) if, for each ǫ > 0
and each finite subset x1, · · · , xn ∈ M there is an unitary u ∈ A such that

∥

∥EA(xiux
∗
j)− EA(xi)uEA(x

∗
j )
∥

∥

2
< ǫ for 1 ≤ i, j ≤ n.

In [35] it was shown that singularity is equivalent to WAHP. We will prove in Sec. 6
that WAHP is indeed the most natural property. The next proposition is well known,
we state it for completeness.

Proposition 2.8. Let N ⊆ B(H) be a von Neumann algebra and let xi,j ∈ N and
x′i,j ∈ N ′ for i, j = 1, 2, · · · , n. Then the following conditions are equivalent:

(i)
∑n

k=1 xi,kx
′
k,j = 0 for all 1 ≤ i, j ≤ n.

(ii) There exist elements zi,j ∈ Z(N ), i, j = 1, 2, · · · , n such that for all i, j
n
∑

k=1

xi,kzk,j = 0,
n
∑

k=1

zi,kx
′
k,j = x′i,j .

2.3. Measure-Multiplicity-Invariant.

We consider the conjugacy invariant for a masa A in a II1 factor M derived from
writing the direct integral decomposition of its left-right action. More precisely, we
choose a compact Hausdorff space Y such that C(Y ) ⊂ A, is a norm separable unital
C∗ subalgebra and C(Y ) is w.o.t dense in A. τ restricted to C(Y ) gives rise to a
probability measure ν on Y so that A is isomorphic to L∞(Y, ν), with ν a completion
of ν. For simplicity of notation we will use the same symbol ν to denote its completion.
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Now a ⊗ b 7→ aJb∗J , a, b ∈ C(Y ) extends to an injective ∗-homomorphism π of
C(Y )⊗ C(Y ) in L2(M). Indeed, as M is a factor so the map,

n
∑

i=1

ai ⊗ bi 7→
n
∑

i=1

aiJb
∗
iJ

is injective by Prop. 2.8. Hence it induces a norm on C(Y )⊗alg C(Y ). Since abelian
C∗ algebras are nuclear, this norm must be the min norm, and therefore a⊗b 7→ aJb∗J
extends to an injective representation of C(Y )⊗C(Y ) in L2(M). Therefore C(Y×Y )
is a w.o.t dense unital subalgebra of A, so that A is isomorphic to L∞(Y × Y, ηY×Y )
for a complete, positive, Borel measure ηY×Y . By Lemma 2.4, ηY×Y is non-atomic.

Remark 2.9. In general, if we allow M to be a finite von Neumann algebra that is not
a factor then the map

∑n
i=1 ai ⊗ bi 7→

∑n
i=1 aiJb

∗
iJ is never injective and the measure

will be supported on smaller sets. See Rem. 5.17. This is the reason we consider
factors, although most results of this article goes through even for finite von Neumann
algebras.

Thus in view of the uniqueness of direct integrals with respect to an abelian algebra
(see Thm. 2.2), L2(M) admits a direct integral decomposition {Hx,y} over the base
space (Y × Y , ηY×Y ) so that A ∼= L∞(Y × Y, ηY×Y ) is the algebra of diagonalizable
operators with respect to this decomposition. Let mY denote the multiplicity function
of the above decomposition. It is clear from the direct integral decomposition that,
the Pukánszky invariant of A is the set of essential values of mY (also check Cor. 3.2,
[19]). We will call [ηY×Y ] the left-right-measure of A. For reasons that will become
clear, we will in most situation use the same terminology for the class of the measure
ηY×Y when restricted to the off diagonal. This will be clear from the context and will
cause no confusion. A related invariant was considered by Neshveyev and Størmer in
[19], which was a complete invariant for the pair (A, J).

Although the existence of such a measure is guaranteed we need an algorithm to
figure out the left-right-measure. In order to do so fix a nonzero vector ξ ∈ L2(M).
The cyclic projection Pξ with range [Aξ] is in A′ and hence decomposable. For f , g
∈ C(Y ), there exists a complete positive measure µξ (we complete it if necessary) on
Y × Y such that

(2.3) 〈fJg∗Jξ, ξ〉L2(M) =

∫

Y×Y

f(t)g(s)dµξ(t, s).

APξ is a diffuse abelian algebra in B(Pξ(L
2(M))) with a cyclic vector, so is maximal

abelian. Thanks to von Neumann, we have only one. Therefore,

(2.4) Pξ(L
2(M)) ∼=

∫ ⊕

Y×Y

Ct,sdµξ(t, s) where Ct,s = C.

Moreover APξ is the diagonalizable algebra with respect to the decomposition in Eq.
(2.4).

Two orthogonal cyclic subspaces [Aξ1] and [Aξ2] with cyclic vectors ξ1, ξ2 does not
necessarily keep the fibres of its associated projections Pξ1 and Pξ2 orthogonal, neither
does assert that they are direct integrals over disjoint subsets of Y × Y . However,
using the “gluing lemma” (Lemma 5.7, [10]) we single out a measure µξ1,ξ2 so that
(Pξ1 + Pξ2)(L

2(M)) has a direct integral decomposition with respect to (Y × Y, ηξ1,ξ2)
and A(Pξ1 + Pξ2) is the diagonalizable algebra respecting that decomposition. This is
the step where one will see the possible updates of the multiplicity function. Since we
are working on a separable Hilbert space, after at most a countable infinite iterations
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of this procedure we will finally find a measure µ on Y × Y so that

(2.5) L2(M) ∼=
∫ ⊕

Y×Y

H′
xdµ(x)

and A is diagonalizable with respect to the decomposition in Eq. (2.5). Modulo the
uniqueness of direct integrals we have found the measure. Needless to say, different
choices of cyclic subspaces will produce same measure modulo the uniqueness. However
for purpose of explicit computation to distinguish masas one learns, that nice choices
of cyclic projections (vectors) is perhaps a little too costly.
For a set X we denote by ∆(X) the set {(x, y) ∈ X × X : x = y}. The restriction of

τ to C(Y ) ⊂ A gives rise to a Borel probability measure whose completion is denoted
by νY .

Lemma 2.10. The measure ηY×Y has the following properties:
(i) [ηY×Y ] is invariant under the flip map θ :(s, t) 7→ (t, s) on Y × Y .
(ii) If π1 and π2 denote the coordinate projections from Y × Y onto Y then,

(2.6) [(πi)∗ηY×Y ] = [νY ] for i = 1, 2.

(iii) The subspace
∫ ⊕

∆(Y )
Ht,sdηY×Y (t, s) is identified with L2(A) and mY (t, t) = 1, ηY×Y

a.e. on ∆(Y ).
(iv) The topological (closed) support of ηY×Y is Y × Y .
The multiplicity function mY has the property that

mY (s, t) = mY (t, s)

almost all ηY×Y .

Lemma 2.10 is known so we omit its proof. Interested readers can consult [19] or
[18]. In fact, it is possible to obtain a choice of ηY×Y such that ηY×Y = θ∗ηY×Y .
We are now almost ready to give the definition of the measure-multiplicity-invariant

of a masa in a separable II1 factor. Let A be a masa in M. Let Y be any compact
Hausdorff space such that the unital inclusion of C(Y ) in A is w.o.t dense and C(Y ) is
norm separable. To each such Y, we associate a quadruple (Y, νY , [ηY×Y ], mY ). Define
an equivalence relation on the quadruples (Y, νY , [ηY×Y ], mY ) by
(Y, νY , [ηY×Y ], mY ) ∼m.m (Y ′, νY ′ , [ηY ′×Y ′], mY ′) if and only if there exists a Borel iso-
morphism F : Y 7→ Y ′ such that,

F∗νY = νY ′ ,

(F × F )∗[ηY×Y ] = [ηY ′×Y ′] and(2.7)

mY ◦ (F × F )−1 = mY ′ , ηY ′×Y ′ a.e.

We also have, [ηY×Y ] = [η|∆(Y )] + [η|∆(Y )c ].
Therefore if (Y, νY , [ηY×Y ], mY ) ∼m.m (Y ′, νY ′, [ηY ′×Y ′], mY ′) then,

(F × F )∗[η|∆(Y )c ] = [η|∆(Y ′)c ],(2.8)

m|∆(Y )c ◦ (F × F )−1 = m|∆(Y ′ )c , η|∆(Y ′)c a.e.

Lemma 2.11. If C(Y1) ⊆ C(Y2) ⊂ A ⊂ M be two w.o.t dense, unital, norm separable
C∗ subalgebras of A then (Y1, νY1

, [ηY1×Y1
], mY1

) ∼m.m (Y2, νY2
, [ηY2×Y2

], mY2
).

Proof. The inclusion i : C(Y1) →֒ C(Y2) results from a continuous surjection θ : Y2 7→
Y1. Therefore for all f ∈ C(Y1),

τ(f) =

∫

Y1

fdνY1
=

∫

Y2

i(f)dνY2
=

∫

Y2

(f ◦ θ)dνY2
=

∫

Y1

fd(θ∗νY2
).



8 KUNAL MUKHERJEE

Therefore, θ∗νY2
= νY1

.
The inclusion i preserves least upper bounds at the level of continuous functions. So i
extends to a surjective ∗-homomorphism ĩ between L∞(Y1, νY1

) and L∞(Y2, νY2
) which

is normal (Lemma 10.1.10 [15]). It is easy to see that ĩ is also implemented by θ. That
ĩ is injective is obvious. So θ is a Borel isomorphism between the underlying measure
spaces.
Arguing similarly it is easy to see that θ × θ : Y2 × Y2 7→ Y1 × Y1 implements an
isomorphism between L∞(Y1 × Y1, ηY1×Y1

) and L∞(Y2 × Y2, ηY2×Y2
). The statements

regarding the measure classes now follows easily.
The statement about the multiplicity function is obvious from the uniqueness of direct
integrals in Thm. 2.2 and the fact L∞(Y1×Y1, ηY1×Y1

) ∼= L∞(Y2×Y2, ηY2×Y2
) ∼= A. �

Proposition 2.12. Let A ⊂ M be a masa. The collection of quadruples (Y, νY , [ηY×Y ],
mY ) for Y a compact Hausdorff space such that C(Y ) ⊂ A is unital, norm separable
and w.o.t dense in A, under the equivalence relation ∼m.m has exactly one equivalence
class.

Proof. If C(Y1), C(Y2) ⊂ A be two w.o.t dense, unital, norm separable subalge-
bras of A then C∗(C(Y1) ∪ C(Y2)) ∼= C(Y3) for a compact Hausdorff space Y3, and
C(Y3) is unital, norm separable and w.o.t dense in A. Therefore by Lemma 2.11,
(Y3, νY3

, [ηY3×Y3
], mY3

) ∼m.m (Yi, νYi
, [ηYi×Yi

], mYi
) for i =1, 2. �

Definition 2.13. Let A ⊂ M be a masa. We define themeasure-multiplicity-invariant
of A as the equivalence class of the quadruples (Y, νY , [η|∆(Y )c ], m|∆(Y )c) under ∼m.m

where,
(i) Y is a compact Hausdorff space such that C(Y ) is an unital, norm separable and
w.o.t dense subalgebra of A.
(ii) νY is the completion of the probability measure obtained from restricting τ on
C(Y ).
(iii) [η|∆(Y )c ] is the equivalence class of the measure ηY×Y restricted to ∆(Y )c,
(iv) m|∆(Y )c is the multiplicity function restricted to ∆(Y )c,
obtained from the direct integral decomposition of L2(M) over the base space (Y
× Y, ηY×Y ) so that A is the algebra of diagonalizable operators with respect to this
decomposition.

The measure-multiplicity-invariant is an invariant for masas in the following sense.
If A ⊂ M and B ⊂ N are masas in II1 factors M,N respectively, and there is an
unitary U : L2(M) 7→ L2(N ) such that, UAU∗ = B and UJMAJMU∗ = JNBJN then
for any choice of compact Hausdorff spaces YA, YB with

C(YA)
s.o.t

= A and C(YB)
s.o.t

= B, 1M ∈ C(YA), 1N ∈ C(YB) and C(YA), C(YB) norm
separable, there exists a Borel isomorphism

FYA,YB
: (YA, νYA

) 7→ (YB, νYB
) such that,

(FYA,YB
)∗νYA

= νYB
,

(FYA,YB
× FYA,YB

)∗[η|∆(YA)c ] = [η|∆(YB)c ] and(2.9)

m|∆(YA)c ◦ (FYA,YB
× FYA,YB

)−1 = m|∆(YB)c , η|∆(YB)c a.e.

We will denote themeasure-multiplicity-invariant of a masa A bym.m(A) (orm.mM(A)
when the containing factor is ambiguous).
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3. Conditional measures and Masas

As we will see latter, the measure-multiplicity-invariant contains substantial infor-
mation of the masa. In order to extract more information we need to establish some
house keeping results in measure theory.
Disintegration of measures is a very useful tool in ergodic theory, in the study of

conditional probabilities and descriptive set theory. Measurable selection principle is
a term closely linked with disintegration of measures and has been studied by a num-
ber of mathematicians in the last century. A detailed exposition of the existence of
disintegration can be found in [1].
For the general definition of disintegration of measures we will restrict to the fol-

lowing set up. Let T be a measurable map from (X, σX) to (Y, σY ) where σX , σY are
σ-algebras of subsets of X, Y respectively. Let λ be a σ-finite measure on σX and µ a
σ-finite measure on σY . Here λ is the measure to be disintegrated and µ is often the
push forward measure T∗λ, although other possibilities for µ is allowed.

Definition 3.1. We say that λ has a disintegration {λt}t∈Y with respect to T and µ
or a (T, µ) disintegration if:
(i) λt is a σ-finite measure on σX concentrated on {T = t} (or T−1{t}), i.e. λt({T 6=
t}) = 0, for µ-almost all t,
and for each nonnegative measurable function f on X
(ii) t 7→ λt(f) is measurable.

(iii) λ(f) = µt(λt(f))
defn
=
∫

Y
λt(f)dµ(t).

In probability theory the measures λt are called the disintegrating measures and µ
is the mixing measure. One also writes λ(· | T = t) for λt(·) on occasion.
When λ and almost all λt are probability measures one refers to the disintegrating

measures as (regular) conditional distributions and t 7→ λt is called the transition
kernel.
The reader should be cautious that “measurable” in Defn. 3.1 (ii), (iii) means

measurable with respect to the σ-algebra of completion of λ.

Theorem 3.2. [1](Existence Theorem) Let λ be a σ-finite Radon measure on a metric
space X and T be a measurable map into (Y, σY ). Let µ be a σ-finite measure on σY
such that T∗λ ≪ µ. If σY is countably generated and contains all singleton sets {t},
then λ has a (T, µ) disintegration. The measures λt are uniquely determined up to an
almost sure equivalence: if λ∗t is another (T, µ) disintegration then µ({t : λt 6= λ∗t}) =
0.
The condition T∗λ ≪ µ in Thm. 3.2 is actually necessary for the disintegration to

exist. The original version of Thm. 3.2 is due to von Neumann.

Proposition 3.3. Let λ be a Radon measure on a compact metric space X and T be
a measurable map into (Y, σY ). Let µ be a σ-finite measure on σY such that T∗λ≪ µ.
Assume that σY is countably generated and contains all singleton sets. Let t 7→ λt
denote the (T, µ) disintegration of λ. Let Xa denote the set of atoms of {λt}t∈Y i.e.

Xa = {x ∈ X | ∃ t ∈ Y : λt({x}) > 0} .
Then Xa is a measurable set, measurable with respect to the σ-algebra of the completion
of λ.

Proof. There is a measurable set E ⊆ Y with µ(Ec) = 0 such that for t ∈ E, λt
is concentrated on the set {T = t}. We can assume without loss of generality that
E = Y . Now for t ∈ Y , the measure λt is concentrated on {T = t}, so

{x ∈ X | ∃ t ∈ Y : λt({x}) > 0} = {x ∈ X | λTx({x}) > 0} .
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Let B be a countable base for the topology on X . Then

{x ∈ X | λTx({x}) > 0} = ∪∞
n=1X

(n)
a with

X(n)
a =

{

x ∈ X | ∀U ∈ B : x ∈ U ⇒ λTx(U) ≥
1

n

}

=
⋂

U∈B

(

(X \ U) ∪
{

x ∈ U | λTx(U) ≥
1

n

})

.

Therefore, {x ∈ X | ∃ t ∈ Y : λt({x}) > 0} is a measurable set by property (ii) of
disintegration. �

The next few lemmas are undoubtedly known to probablists but we lack the refer-
ence. So we record them for convenience. We will omit their proofs. For details check
[18].

Lemma 3.4. Let λ1, λ2 be two Radon measures on a compact metric space X and
T be a measurable map into (Y, σY ). Let µ be a σ-finite measure on σY such that
T∗λ1, T∗λ2 ≪ µ. Assume σY is countably generated and contains all singleton sets
{t}. Let λ1t , λ

2
t be the (T, µ) disintegration of λ1, λ2 respectively. Let λ0t be the (T, µ)

disintegration of λ1 + λ2. Then

λ0t = λ1t + λ2t -µ a.e.

Lemma 3.5. Let λ1, λ2 be two Radon measures on compact metric spaces X, Y and
T, S be measurable maps from X, Y into (Z, σY ), (W,σW ) respectively. Let µ, ν be
σ-finite measures on σY , σW respectively such that T∗λ1 ≪ µ, S∗λ2 ≪ ν.
Assume σY , σW are countably generated and contains all singleton sets {t}, {s} respec-
tively. Let λ1t , λ

2
s be the (T, µ), (S, ν) disintegration of λ1, λ2 respectively. Let λ0t,s be

the (T ⊗ S, µ⊗ ν) disintegration of λ1 ⊗ λ2. Then

λ0t,s = λ1t ⊗ λ2s -µ⊗ ν a.e.

Lemma 3.6. Let λ1, λ2 be two Radon measures on a compact metric space X and T be
a measurable map into (Y, σY ). Let µ be a σ-finite measure on σY such that T∗λ1 ≪ µ
and T∗λ2 ≪ µ. Assume σY is countably generated and contains all singleton sets {t}.
Let λ1t , λ

2
t be the (T, µ) disintegrations of λ1, λ2 respectively.

(i) Assume that λ1 ≪ λ2 ≪ λ1. Then for µ almost all t, λ1t ≪ λ2t ≪ λ1t . Moreover, if

g = dλ1

dλ2

then
dλ1

t

dλ2
t

= gt a.e. µ, where

gt =
{

g|{T=t} on {T = t},
0 otherwise.

Conversely if λ1t ≪ λ2t ≪ λ1t for µ almost all t then λ1 ≪ λ2 ≪ λ1.
(ii) If λ1 ⊥ λ2 then λ1t ⊥ λ2t for µ almost all t.

Lemma 3.7. Let λ be a Radon measure on X × X where X is a compact metric
space. Let µ be a σ-finite measure on X such that (πi)∗λ ≪ µ where πi, i = 1, 2 are
coordinate projections onto X.
Assume that λ is invariant under the flip of coordinates i.e. θ∗λ ≪ λ ≪ θ∗λ, where
θ : X×X 7→ X×X by θ(x, y) = (y, x). Let λ1s, λ

2
t be the (π1, µ), (π2, µ) disintegrations

of λ respectively. Then for µ almost all t,

λ1t ≪ θ∗λ
2
t ≪ λ1t .

In particular, if for µ almost all t, λ2t has an atom at (s, t), then λ1t has an atom at
(t, s) almost everywhere.
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Theorem 3.8. Let A ⊂ M and B ⊂ N be masas in separable II1 factors M,N .
Let C(X1) ⊂ A, C(X2) ⊂ B be w.o.t dense, norm separable, unital subalgebras of
A,B respectively, where Xi are compact metric spaces for i = 1, 2. Let νXi

denote
the tracial measures with respect to the w.o.t dense subalgebras on Xi respectively for
i = 1, 2. Let [λ1], [λ2] denote the left-right-measures of A and B respectively. All
the mentioned measures are assumed to be complete. Suppose there is an unitary
U : L2(M) 7→ L2(N ) such that UAU∗ = B and UJMAJMU∗ = JNBJN .
Then there exists isomorphism of measure spaces F : X1 7→ X2 such that, F∗νX1

= νX2

and the following is true:

Denoting by λ
1,X1

t , λ2,X1

s the (π1, νX1
), (π2, νX1

) disintegrations of λ1 respectively and

λ
1,X2

t′ , λ
2,X2

s′ the (π1, νX2
), (π2, νX2

) disintegrations of λ2 respectively, one has

[λ1,X2

t′ ] = [(F × F )∗λ
1,X1

F−1t′ ], νX2
almost all t′,

[λ2,X2

s′ ] = [(F × F )∗λ
2,X1

F−1s′], νX2
almost all s′,

where π1, π2 denotes the projection onto the first and second coordinates respectively.

If (X, σ) be a measurable space and µ is a signed measure on X then we denote by
‖µ‖t.v to be the total variation norm of µ. The next Lemma is used in this paper but
it will be of significant use for computation in the next paper.

Lemma 3.9. Let λn, λ, λ0 be Radon measures on a compact metric space X such that,
λ0 6= 0, λn ≪ λ for n = 1, 2, · · · , λ0 ≪ λ and λn → λ0 in ‖·‖t.v. Let T be a measurable
map into (Y, σY ). Let µ be a σ-finite measure on σY such that T∗λ≪ µ. Assume σY is
countably generated and contains all singleton sets {t}. Let λnt , λ

0
t , λt be the (T, µ)

disintegrations of λn, λ0, λ respectively.
(i) Then there is a µ null set E and a subsequence {nk} (nk < nk+1 for all k) such
that for all t ∈ Ec,

sup
A⊆{T=t},A Borel

∣

∣λnk

t (A)− λ0t (A)
∣

∣→ 0 as k → ∞.

(ii)Moreover, if for µ almost all t one has λnt is completely atomic (or completely
non-atomic) for all n, then so is λ0t almost everywhere.

The proof is straight forward. We omit the proof. For details check [18].
For a masa A ⊂ M, fix a compact Hausdorff space X such that C(X) ⊂ A is

an unital, norm separable and w.o.t dense C∗ subalgebra. For ζ ∈ L2(M) let κζ :
C(X)⊗ C(X) 7→ C be the linear functional defined by

κζ(a⊗ b) = 〈aζb, ζ〉.
Then κζ induces an unique Radon measure ηζ on X ×X given by

κζ(a⊗ b) =

∫

X×X

a(t)b(s)dηζ(t, s)(3.1)

and ‖ηζ‖t.v = ‖κζ‖.
For ζ1, ζ2 ∈ L2(M) let ηζ1,ζ2 denote the possibly complex measure onX×X obtained

from the vector functional

〈aζ1b, ζ2〉 =
∫

X×X

a(t)b(s)dηζ1,ζ2(t, s), a, b ∈ C(X).(3.2)

We will write ηζ,ζ = ηζ . Note that ηζ is a positive measure for all ζ ∈ L2(M). It is
easy to see that the following polarization type identity holds:

4ηζ1,ζ2 = (ηζ1+ζ2 − ηζ1−ζ2) + i (ηζ1+iζ2 − ηζ1−iζ2) .(3.3)
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Note that the decomposition of ηζ1,ζ2 in Eq. (3.3) need not be its Hahn decomposition
in general, but

|ηζ1,ζ2| ≤ (ηζ1+ζ2 + ηζ1−ζ2) + (ηζ1+iζ2 + ηζ1−iζ2) = 4(ηζ1 + ηζ2).

So
|ηζ1,ζ2| ≤ ηζ1 + ηζ2 .(3.4)

Lemma 3.10. If ζn, ζ ∈ L2(M) be such that, ζn → ζ in ‖·‖2 then

ηζn → ηζ in ‖·‖t.v .
Proof. Obvious. �

Proposition 3.11. Let A ⊂ M be a masa. Let X be a compact Hausdorff space such
that C(X) ⊂ A is unital, norm separable and w.o.t dense in A and let ν be the tracial
measure. Let 0 6= ζ ∈ L2(N(A)′′). Then ηζt , ηζs is completely atomic ν almost all
t, s where ηζ is the measure defined in Eq. (3.1) and ηζt , ηζs are (π1, ν) and (π2, ν)
disintegrations of ηζ respectively.

Proof. We only prove for the (π1, ν) disintegration. If ζ = u where u ∈ N(A) then the
result is obvious as the measure ηu will be concentrated on the automorphism graph.
The span of N(A) being s.o.t dense in N(A)′′ it suffices by Lemma 3.10 and 3.9 to
prove the statement when ζ =

∑n
i=1 ciui where ui ∈ N(A) and ci ∈ C for 1 ≤ i ≤ n.

Now for a, b ∈ A

〈a(
n
∑

i=1

ciui)b, (
n
∑

i=1

ciui)〉 =
n
∑

i=1

|ci|2 〈auib, ui〉+
n
∑

i 6=j=1

cic̄j〈auib, uj〉.

The measures given by a ⊗ b 7→ |ci|2 〈auib, ui〉, a, b ∈ C(X) are concentrated on the
automorphism graphs implemented by ui and hence definitely disintegrates as atomic
measures and so does their sum from Lemma 3.4. The measures given by a ⊗ b 7→
cic̄j〈auib, uj〉, a, b ∈ C(X) for i 6= j are possibly complex measures. However Eq. (3.4)
forces that these measures are also concentrated on the union of the automorphism
graphs implemented by ui and uj. Thus ηP

n

i=1
ciui

is concentrated on the union of the
automorphism graphs implemented by ui, 1 ≤ i ≤ n. Hence the result follows. �

4. Fundamental Set and Generalized Dye’s Theorem

This section is intended to characterize some operators in the normalizing algebra
of a masa. Throughout this section N will denote a finite von Neumann algebra gifted
with a faithful, normal, normalized trace τ . B ⊂ N will denote a von Neumann
subalgebra of N .

As usual N will be assumed to be acting on L2(N , τ) by left multipliers. L2(N , τ)
is a B-B Hilbert w∗-bimodule for any von Neumann subalgebra B ⊂ N . We know
if EB denotes the unique trace preserving conditional expectation onto B, then EB is
given by the Jones projection eB associated to B via the formula EB(x)1̂ = eB(x1̂).
For b1, b2 ∈ B and ζ ∈ L2(N , τ) one has

eB(b1ζb2) = b1eB(ζ)b2.(4.1)

We will interchangeably use the symbols EB and eB.

Definition 4.1. For a subalgebra B ⊂ N define the fundamental set of B to be

Nf (B) = {x ∈ N : Bx = xB}.
Note that x ∈ Nf (B) implies x∗ ∈ Nf(B).
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Definition 4.2. For a subalgebra B ⊂ N define the weak-fundamental set of B to be

N
f
2 (B) = {ζ ∈ L2(N , τ) : Bζ = ζB}.

Note that ζ ∈ N
f
2 (B) implies ζ∗ ∈ N

f
2 (B) and Nf(B) ⊂ N

f
2 (B). When B is a masa,

ζ ∈ N
f
2 (B) implies aζ, ζa ∈ N

f
2 (B) for all a ∈ B.

To understand the normaliser of a masa the set Nf
2 (B) will naturally arise into the

scene. However working with vectors in L2(N , τ) is always a technical issue. Polar
decomposition of vectors and the theory of L1 spaces are the tools we need, for which
we will give a short exposition. For details check Appendix B of [34] and [18]. To keep
it short we will omit most proofs. It is here, where one usually encounters unbounded
operators. For results proved in this section we have borrowed ideas from Roger Smith.

The positive cone L2(N , τ)+ in L2(N , τ) is defined to be N+
‖·‖

2 i.e. the closure of
the positive elements of N in L2(N , τ). It can be shown that L2(N , τ) is the algebraic
span of L2(N , τ)+. For x ∈ N the equation ‖x‖1 = τ(|x|) defines a norm on N . The
completion of N with respect to ‖·‖1 is denoted by L1(N , τ). It can be shown that

‖x‖1 = sup{|τ(xy)| : y ∈ N , ‖y‖ ≤ 1}.(4.2)

So |τ(x)| ≤ ‖x‖1. Thus by density of N in L1(N , τ), τ extends to a bounded linear
functional on L1(N , τ) which will also be denoted by τ . One can analogously define
the positive cone of L1(N , τ) which we denote by L1(N , τ)+. Clearly ‖x‖1 = ‖x∗‖1.
Consequently, the Tomita operator J extends to a surjective anti-linear isometry to
L1(N , τ) which will also be denoted by J . Moreover J2 = 1. We will interchangeably
use the notations Jζ and ζ∗ for ζ ∈ L1(N , τ).
Both the spaces L1(N , τ) and L2(N , τ) are unitary N -N bimodules. The space

L1(N , τ) can be identified with the predual of N and L2(N , τ) is dense in L1(N , τ).
One also has τ(xζ) = τ(ζx) for x ∈ N and ζ ∈ L1(N , τ). Note that EB is a contraction
from N onto B. It can be shown that for x ∈ N ,

‖EB(x)‖1 ≤ ‖x‖1 .(4.3)

Thus EB has an unique bounded extension to a contraction from L1(N , τ) onto
L1(B, τ), which will as well be denoted by EB. This extension preserves the extension
of the trace τ , is B modular, positive and faithful. The bilinear map Ψ : N ×N 7→ N
defined by Ψ(x, y) = xy satisfies

‖Ψ(x, y)‖1 ≤ ‖x‖2 ‖y‖2(4.4)

by Cauchy-Schwarz inequality. Therefore Ψ lifts to a jointly continuous map from
L2(N , τ)× L2(N , τ) into L1(N , τ). The extension is actually a surjection. Since Ψ is
the product map of operators at the level of von Neumann algebra one calls Ψ(ζ1, ζ2)
to be ζ1ζ2, for ζ1, ζ2 ∈ L2(N , τ).

Lemma 4.3. (B.5.1, [34]) Let a, b ∈ N be positives. Then
∥

∥

∥
a

1

2 − b
1

2

∥

∥

∥

2

2
≤ 2 ‖a− b‖1 .(4.5)

Elements of L1(N , τ) and L2(N , τ) can be regarded as unbounded operators on
L2(N , τ). By using the unbounded operator theory for operators affiliated to N , for
each ζ ∈ L1(N , τ)+ there exists an unique 0 ≤ ζ0 ∈ L2(N , τ) such that ζ∗0ζ0 = ζ20 = ζ .

In this case, ζ0 is said to be the square root of ζ and one writes ζ0 =
√
ζ = ζ

1

2 .
For ζ ∈ L2(N , τ) one has ζ∗ζ ∈ L1(N , τ). From Eq. 4.4 and Lemma 4.3 it follows
that ζ∗ζ ∈ L1(N , τ)+. In particular,

√
ζ∗ζ ∈ L2(N , τ) for any ζ ∈ L2(N , τ) and the
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square root of any positive in L1(N , τ) is an unique element of L2(N , τ). One also
writes |ζ | = √

ζ∗ζ for ζ ∈ L2(N , τ). If ζ ∈ L1(N , τ) be self adjoint i.e. ζ = ζ∗ then
ζ = ζ+− ζ− where ζ± ∈ L1(N , τ)+ and this decomposition is unique by requiring that

ζ+
1

2 ζ−
1

2 = 0.
Let ζ ∈ L2(N , τ). Consider the projections p, q in B(L2(N , τ)) whose ranges are

JNJ
√
ζ∗ζ, JNJζ respectively. Since the ranges of p, q are invariant subspaces of

JNJ = N ′ so p, q lies in N . Using unbounded operators one obtains polar decompo-
sition of vectors (Eq. (4.7)) which we formalize below.

Theorem 4.4. There is an unique partial isometry v ∈ N with initial projection p
and final projection q which satisfy the following condition:

vJx∗J
√

ζ∗ζ = Jx∗Jζ, x ∈ N .(4.6)

In particular,

v
√

ζ∗ζ = ζ.(4.7)

(i) Let B ⊂ N be a masa, then ζ ∈ L2(B, τ) imply p, q ∈ B.
(ii) For ζ ∈ L2(N , τ) if ζ∗ζ ∈ N then ζ ∈ N .

For ζ ∈ L2(N , τ) we define the left and right kernel of ζ to be respectively Kerl(ζ) =
{x ∈ N : ζx = 0} and Kerr(ζ) = {x ∈ N : xζ = 0}. Then Kerl(·), Kerr(·) are
subspaces of N . Kerl(·), Kerr(·) are w.o.t and s.o.t closed.

If ζ ∈ L1(N , τ) then the left and the right kernels of ζ can be defined analogously.
We will denote the kernels of the L1 vectors by Kerl(·), Kerr(·) as well. This is slight
abuse of notation. In this case, they are norm closed subspaces of N .

For ζ ∈ L2(N , τ) we have

Kerl(ζ) = Kerl(
√

ζ∗ζ) = Kerl(ζ
∗ζ).(4.8)

However the righthand side is defined in L1 sense. Therefore for ζ ∈ L2(N , τ),
Kerl(ζ

∗ζ) (respectively Kerr(ζζ
∗)) are in fact w.o.t closed. Similar statements hold

for Kerr(·) as well.
For ζ ∈ L2(N , τ) we define the left and right ranges of ζ to be respectively Ranl(ζ) =

{ζx : x ∈ N} and Ranr(ζ) = {xζ : x ∈ N}.
Note that for ζ ∈ L2(N , τ),

{x ∈ N : ζx = 0} = {x ∈ N : 〈ζx, y〉 = 0 for all y ∈ N}(4.9)
= {x ∈ N : 〈x, ζ∗y〉 = 0 for all y ∈ N}

implies Kerl(ζ) = Ranl(ζ
∗)⊥.

Proposition 4.5. Let ζ ∈ L2(N , τ) and let ζ = v
√
ζ∗ζ be its polar decomposition.

Then v∗v is the projection from L2(N , τ) onto Kerl(ζ)
⊥ and vv∗ is the projection onto

Ranl(ζ).

Proposition 4.6. Let ζ ∈ L2(N , τ) and let ζ = v |ζ | be its polar decomposition. Then

|ζ | 1

2k → v∗v as k → ∞ in ‖·‖2.
The proof of Prop. 4.6 is a direct application of monotone convergence theorem.

Lemma 4.7. Let A ⊂ N be a masa. Let ζ ∈ L1(N , τ) be a nonzero vector such that
aζ = ζa for all a ∈ A. Then ζ ∈ L1(A, τ).

Proof. First assume ζ ≥ 0. Then use uniqueness of square roots of L1 vectors. In, the
general case write ζ as a linear combination of four positives. We omit the details. �
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Proposition 4.8. Let A ⊂ N be a masa. Let 0 6= ζ ∈ L1(N , τ)+ be such that

Aζ = ζA. Then ζ ∈ L1(A, τ)
+
.

Proof. Let I = {a ∈ A : aζ = 0}. Then I is a weakly closed ideal (see Eq. (4.8) and
related discussion) in A and so has the form A(1−p) for some projection p ∈ A. Then
pζ = ζ , so ζ = ζp by operating with extended Tomita’s involution operator. Thus
Apζ = Aζp = ζAp.
For a1, a2 ∈ A if ζa1p = ζa2p then ζ(a1 − a2)p = 0, so p(a∗1 − a∗2)ζ = 0. Hence
p(a∗1 − a∗2) ∈ I, but 1− p is the identity for I. So p(a∗1 − a∗2) = 0 and hence a1p = a2p.
This means there is a well defined map ψ : Ap 7→ Ap such that

apζ = ζψ(ap) for a ∈ A.

Taking conditional expectation (see Eq. (4.3) and related discussion) one gets (ap −
ψ(ap))EA(ζ) = 0 (the left and the right action by elements of A coincides on L1(A, τ)).
Suppose there is an operator a ∈ A such that ap− ψ(ap) 6= 0. Write ap− ψ(ap) = bp
for b ∈ A. Then pb∗bpEA(ζ) = 0, so EA(pb

∗bpζ) = 0. Let ζ = lim
n
xn in ‖·‖1 where

xn ∈ N+. Therefore

lim
n
τ(x

1

2

n (bp)
∗bpx

1

2

n ) = lim
n
τ(pb∗bpxn) = lim

n
τ(EA(pb

∗bpxn)) = 0.

The last statement follows from Eq. (4.2) and Eq. (4.3). So lim
n
bpx

1

2

n = 0 in ‖·‖2
and hence bpζ = lim

n
bpxn = 0, in ‖·‖1 by Lemma 4.3 and Eq. (4.4). Thus bp ∈ I so

bp = bp(1 − p) = 0, a contradiction. Thus ψ(ap) = ap for all a ∈ A.
Now ζ ∈ L1(pN p, τ) and Ap is a masa in pN p, thus ζ ∈ L1(Ap, τ) as apζ = ζψ(ap) =
ζap for all a ∈ A, from Lemma 4.7. �

Theorem 4.9. (Generalized Dye’s theorem-L2 form) Let A ⊂ N be a masa. Then

ζ ∈ N
f
2 (A) if and only if ζ = vξ for some ξ ∈ L2(A, τ) and v ∈ GN (A). In particular,

spanNf (A)
‖·‖

2 = L2(N(A)′′, τ).

Proof. Case 1: Assume ζ ∈ N
f
2 (A) and ζ ≥ 0 i.e. ζ ∈ N+

‖·‖
2 . Then ζ ∈ L1(N , τ)+

as well. From Prop. 4.8 we get ζ ∈ L1(A, τ) ∩ L2(N , τ) = L2(A, τ).

Case 2: Let ζ ∈ N
f
2 (A). We may without loss of generality assume that ‖ζ‖2 = 1.

Then as Aζ = ζA we also have Aζ∗ = ζ∗A. So Aζ∗ζ = ζ∗Aζ = ζ∗ζA. From Prop. 4.8,

ζ∗ζ ∈ L1(A, τ)

and similarly we have ζζ∗ ∈ L1(A, τ). Then ‖ζ∗ζ‖1 ≤ 1.
Arguing as in Prop. 4.8, there are projections p1, p2 ∈ A such that J1 = {a ∈ A : aζ =
0} = A(1 − p1) and J2 = {a ∈ A : ζa = 0} = A(1 − p2). Therefore we have p1ζ = ζ
and ζp2 = ζ .
Then there is a well defined map (as explained before) ψ : Ap1 7→ Ap2 such that

ap1ζ = ζψ(ap1) for all a ∈ A.

Let ζ = v
√
ζ∗ζ be the polar decomposition of ζ from Thm. 4.4. Then v is a partial

isometry in N and the initial space of v is

{√ζ∗ζx : x ∈ N}−‖·‖
2 and the final space is {ζx : x ∈ N}−‖·‖

2. Moreover the projec-
tions v∗v and vv∗ are in A.
Indeed, by Prop. 4.5, v∗v is the projection onto Kerl(ζ)

⊥ and vv∗ onto Ranl(ζ). By
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Prop. 4.6, v∗v ∈ A. Replacing ζ by ζ∗ and using Kerl(ζ)
⊥ = Ranl(ζ∗) (see Eq. (4.9)),

a similar argument will yield vv∗ ∈ A. Clearly v∗v = p2 and vv∗ = p1. Then

ap1v
√

ζ∗ζ = v
√

ζ∗ζψ(ap1).

Now
J0 = {b ∈ A : ap1vb = vbψ(ap1) for all a ∈ A}

is a weakly closed ideal in A and its closure in ‖·‖2 is precisely the set

J
−‖·‖

2

0 = {ξ ∈ L2(A, τ) : ap1vξ = vξψ(ap1) for all a ∈ A}
which contains

√
ζ∗ζ.

Since the left and right action of A on L2(A, τ) agree, so ξ0 ∈ J
−‖·‖

2

0 and a ∈ A implies

that ξ0a, aξ0 ∈ J
−‖·‖

2

0 .
Since the w.o.t closed ideal J0 in A is just a cutdown of A by a projection from A any

positive ζ0 ∈ J
−‖·‖

2

0 is a limit in ‖·‖2 of an increasing sequence of positive operators

from J0. Now it follows that |ζ | 1

2k ∈ J
−‖·‖

2

0 for all k ∈ N. Therefore by Prop. 4.6 it

follows that v∗v = p2 ∈ J
−‖·‖

2

0 and hence p2 ∈ J0 ⊆ A. Similarly arguing with ζζ∗ one
shows p1 ∈ A. Therefore

ap1vp2 = vp2ψ(ap1) for all a ∈ A.

Then
v∗av = (vp2)

∗avp2 = v∗ap1v = v∗vp2ψ(ap1) = ψ(ap1).
Therefore v∗ and hence v are groupoid normalisers. So

ζ = vξ.

for v ∈ GN (A) and ξ = |ζ | ∈ L2(A, τ)+. �

5. Characterization by Baire Category Methods

The study of Cartan masas in II1 factors has received special attention by many
experts. Our approach of studying measure-multiplicity-invariant was also considered
implicitly by Popa and Shlyakhtenko in [27]. In this section we will use an alternative
approach to characterize masas by their left-right-measure. As it turns out, many
known theorems related to structure and normalisers of masas that were solved using
different techniques can be solved by a single technique.

Let A = L∞(X, νX), B = L∞(Y, νY ) be two diffuse commutative von Neumann
algebras, where νX , νY are probability measures. Let C(A,B) denote the set of all
A,B-bimodules. This set C(A,B) contains three distinguished subsets.

We will use the variable s to denote the first variable and t to denote the second
variable. Following [27] we define:

Definition 5.1. A discrete (respectively, diffuse, mixed) A,B-bimodule is a Hilbert
space H so that H ∼= ⊕

i∈I
L2(X × Y, µi) where for all i, µi disintegrates as µi(s, t) =

µ
(i)
t (s)νY (t) with µ

(i)
t atomic (respectively non-atomic, a combination of both nonzero

atomic part and nonzero non-atomic part) for νY almost all t.

It is to be noted that in view of Lemma 3.6, the definition above only cares about
the equivalence class of the measures µi and not a particular member of the class. The
definition forces µi to be a non-atomic measure, and the existence of such a disintegra-
tion actually forces the push forward of µi’s on the space Y to be dominated by νY . We
will restrict ourselves to the case I is countable. Let Cd(A,B), Cn.a(A,B), Cm(A,B)
denote the set of all discrete, diffuse, mixed A,B-bimodules respectively.

Denote by Cd(A) ⊂ Cd(A,A) ⊂ C(A,A) the set of those bimodules H ∈ Cd(A,A)
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for which H̄ ∈ Cd(A,A). Here H̄ is the opposite Hilbert space of H with left and right
actions interchanged. Bimodules in Cd(A) are precisely those for which the associated
measures µi’s in Defn. 5.1 also have a completely atomic νX disintegration. Similarly
define Cn.a(A), Cm(A). Note that the spaces Cd(A), Cn.a(A), Cm(A) are all closed with
respect to taking sub bimodules.
When A,B are masas in a II1 factor M the standard Hilbert space L2(M) is natu-

rally a w∗-continuous A,B bimodule, meaning it carries a pair of mutually commuting
normal representations of A and B.
Note that when we deal with the left-right-measure of a masa, knowing the disinte-

gration along the second variable enables us to know the disintegration along the first
variable as well, by pushing forward the former with the flip map (see Lemma 3.7).
Before we proceed to the characterization of masas we will have to make few defini-

tions and statements that are very valuable tools yet not appear in standard measure
theory courses. For details see [14], [21].

Definition 5.2. Let X be a Polish space. A subset B of X is said to have Baire
property if there is an open set O ⊂ X and a comeager set A ⊂ X such that A∩O =
A ∩ B.
The collection of sets with Baire property forms a σ-algebra which includes the Borel

σ-algebra.

Definition 5.3. Let X and Y be Polish spaces. A function f : X 7→ Y is said to be
Baire measurable if the inverse image of any open set has Baire property. The function
f is said to be universally Baire measurable if given any Borel function g into X the
function f ◦ g is Baire measurable.

Note that in particular every Borel function is Baire measurable.

Definition 5.4. A subset E of a Polish space is said to be universally measurable if
it is measurable with respect to any complete Borel probability measure.

Definition 5.5. A subset E of a Polish space X is said to be Σ
∼

1
1 or analytic, if there

is a Polish space Y , a Borel subset B of Y and a Borel function f : Y 7→ X such that
f(B) = E. In other words, Σ

∼

1
1 sets are Borel images of Borel sets.

Remark 5.6. The above definition of analytic sets is as per [14]. However in, [15]
continuous images rather than Borel images are used. The two definitions are in fact
equivalent.

A very nontrivial theorem of Lusin says the following.

Theorem 5.7. (Lusin) Every Σ
∼

1
1 set has Baire property. Every Σ

∼

1
1 set is universally

measurable.

For a function f : Y 7→ X , the graph of f will be denoted by Γ(f) = {(f(y), y) :
y ∈ Y }. The next theorem is very crucial in all our analysis.

Theorem 5.8. (Selection Principle - Jankov, von Neumann) Let X, Y be Polish spaces
and let E ⊂ X × Y be in Σ

∼

1
1. Then E can be uniformized by a function that is both

Baire and universally measurable, in the sense that for some h : Y 7→ X we have

Γ(h|πY (E)) ⊆ E

with the property that h−1(U) has the Baire property and is measurable with respect to
any Borel probability measure for all open U ⊆ X.

Remark 5.9. Let νX and νY be any two Borel probability measures on X, Y respec-
tively. Let σνX and σνY be the σ-algebras associated to the measures νX , νY respec-
tively. If h is the function in Thm. 5.8, then the inverse image of any Borel set in X
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under h will lie in σνY , because the collection of subsets of X whose inverse images fall
in σνY is a σ-algebra and contains all open sets. If in addition, h satisfies the property
that νX(h(F )) = 0 if and only if νY (F ) = 0, then h is (σνY , σνX) measurable.

Let A ⊂ M be a masa. Without loss of generality we assume that A = L∞([0, 1], λ)
where λ is the Lebesgue measure on [0, 1]. Let [η[0,1]×[0,1]] denote the left-right-measure
of A. We are including the diagonal. Fix any member η[0,1]×[0,1] from the equivalence
class. Since our base space is now fixed we will rename η[0,1]×[0,1] by η to reduce the
notation. We assume that η is a finite measure.

Consider the set Sa = ([0, 1] × [0, 1])a as defined in Prop. 3.3 with respect to the
disintegration along the y-axis i.e. the t variable. Then by Prop. 3.3, Sa is a [η]-
measurable set, i.e. measurable with respect to the completion σ-algebra associated
to η. Define measures

ηa = η|(Sa\∆([0,1])) and ηn.a = η|(Sc
a\∆([0,1])).

Then
(i) η|∆([0,1])c = ηa + ηn.a, ηa ⊥ ηn.a.
(ii) Both ηa, ηn.a have disintegrations along the x, y axes with respect to λ.

Note that the disintegration of the measure ηa along the x and y-axes must have
at most countably many atoms almost all fibres (see Lemma 3.7), otherwise η is an
infinite measure. Since changing the measure ηa or η on a set of measure 0 does not
change the measure class of ηa or η, we can as well assume without loss of generality
that, the disintegration of the measure ηa along y-axis (second variable) has at most
countable number of atoms for all fibres. With this as set up we formalize the main
theorem of this manuscript. Thm. 5.10 will be proved latter in this section.

Theorem 5.10. (Classification of Types) A masa A ⊂ M is

(i)Cartan if and only if ηn.a = 0 equivalently L2(A)⊥ ∈ Cd(A),

(ii)singular if and only if ηa = 0 equivalently L2(A)⊥ ∈ Cn.a(A),

(iii)A  N(A)′′  M if and only if ηa 6= 0, ηn.a 6= 0 equivalently

L2(A)⊥ ∈ Cm(A).
(iv)A is semiregular if and only if the closed support of ηa

is [0, 1]× [0, 1].

Remark 5.11. First of all, in view of Lemma 3.4 and 3.6, the characterization does not
depend on any particular member of the left-right-measure.
Secondly, L2(A) is always included in Cd(A), the disintegration having one atom at
each point of the diagonal. That is the reason one excludes L2(A) from statements in
Thm. 5.10.
Finally, from our discussion on direct integrals in Sec. 2, it follows that L2(A)⊥ is the
direct integral over [0, 1]× [0, 1] with respect to the measure η|(∆[0,1])c , the measurable
field of Hilbert spaces depending onm[0,1] or the Pukánszky invariant. So the equivalent
statements regarding the type of bimodules and measure in Thm. 5.10 are obvious
statements.

The next technical lemma is the key to characterization of masas. There are several
measures involved in its statement and proof. Since there is danger of confusion with
measurability of objects involved we will always use phrases like “µ-measurable”.

Lemma 5.12. Let ηa 6= 0. Let Y ⊆ (∆[0, 1])c be a η-measurable set of strictly positive
ηa-measure. There exists a λ-measurable set EY ⊆ [0, 1] with λ(EY ) > 0 and a function
hY : [0, 1] 7→ [0, 1] such that
(i) hY is λ-measurable,
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(ii) Γ(hY ) is a η-measurable set,

(iii) η(Γ(hY )) > 0 and (hY (t), t) ∈ Y ∩ Sa for t ∈ EY ,
(iv) for E ⊂ [0, 1], λ(E) = 0 if and only if λ(hY (E)) = 0.

Proof. We have
η(Sa ∩ Y ) = ηa(Sa ∩ Y ) = ηa(Y ) > 0.

Consider the disintegration of η|Y along the y-axis. There is a set F Y ⊆ [0, 1] such that
λ(F Y ) > 0 and for each t ∈ F Y the measure (η|Y )t has atoms with at most countable
number of atoms and for t 6∈ F Y the same disintegration has no atoms. This is true
because η is a finite measure, the set F Y being πy(Sa ∩Y ), πy denoting the projection
on to the y-axis. The set Sa ∩ Y is η-measurable, so Sa ∩ Y = B ∪ N where B is a
Borel set in [0, 1] × [0, 1] and N is a η-null set. The set B is a continuous image of
a Polish space by Thm. 14.3.5 of [15] and so is πy(B). By Defn 3.1, λ(πy(N)) = 0.
So F Y is λ-measurable set by Thm. 5.7. Throwing off another λ-null set from F Y if
necessary we can as well assume without loss of generality that F Y is a Borel set.
Let F Y

a =
(

(Y ∩ Sa) ∩ ([0, 1]× F Y )
)

which is η-measurable. Write F Y
a = EY

a ∪ N1

where N1 is a η-null set and EY
a is a Borel set. Then by Thm. 14.3.5 of [15], EY

a is
in Σ

∼

1
1, in fact it is the continuous image of a Polish space. The hypothesis guarantees

η(EY
a ) > 0.

Let EY = πy(E
Y
a ). Then EY is in Σ

∼

1
1 and hence EY is λ-measurable by Thm. 5.7.

Therefore by Def 3.1, λ(EY ) > 0. By Thm. 5.8 applied to EY
a , there exists a function

hY : [0, 1] 7→ [0, 1] that is both Baire and universally measurable in the sense of Thm.
5.8, such that Γ(hY |EY ) ⊆ EY

a .
The inverse image under hY of any Borel subset of [0, 1] belongs to σλ. Therefore given
ǫ > 0, by Lusin’s theorem there is a closed subset GY ⊆ EY such that λ(EY \GY ) < ǫ
and hY |GY is continuous. Then hY |GY is Borel measurable. So by Cor. 2.11 of [20],
Γ(hY |GY ) is Borel measurable and hence η-measurable.
The disintegration along the y-axis of the measure η|Γ(hY |GY ) is precisely the atom at

the point (hY (t), t) for each t ∈ GY of the measure ηt. Outside GY we don’t care. If
η(Γ(hY |GY )) = 0 then by definition of disintegration

0 =

∫

GY

ηt(Γ(hY ))dλ(t)

which implies that for λ almost all t ∈ GY the point (hY (t), t) is not an atom of ηt
and hence cannot be in Sa. So η(Γ(hY |GY )) > 0.

Clearly, hY |GY satisfies the property that for any E ⊂ GY , λ(E) = 0 if and only
if λ(hY (E)) = 0. Therefore by Thm. A.2, extend hY |GY to a continuous function

h̃Y which satisfies the property that for any E ⊂ [0, 1], λ(E) = 0 if and only if

λ(h̃Y (E)) = 0. So by Rem 5.9, h̃Y is (σλ, σλ) measurable. Rename h̃Y to hY and GY

to EY . The rest is clear from construction. �

Lemma 5.13. Let ηa 6= 0. Let Y ⊆ (∆[0, 1])c be a η-measurable set of strictly positive
ηa-measure. Then U(A)  N(A), where U(A) denotes the unitary group of A.
More precisely, there exists a subset F Y of [0, 1] such that λ(F Y ) > 0, a invertible map
hY : F Y 7→ hY (F

Y ) and a nonzero vector ζY ∈ L2(N(A)′′)⊖ L2(A) such that

(i) ζY = vY ρY with vY ∈ GN (A), ρY ∈ L2(A)+
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(ii) AζYA
‖·‖

2 ∼=
∫ ⊕

Γ(hY )

Cs,tdη(s, t), where Cs,t = C,

(iii) Γ(hY ) ⊆ Y ∩ Sa,

(iv) η(Γ(hY )) > 0,
(v)1 ∈ Puk(A).

Proof. Using Lemma 5.12, choose the function hY that satisfies the conclusion of that
Lemma. Note that hY satisfies the conditions of Prop. A.4. Apply Prop. A.4 to the
function hY and the set EY to extract a set F Y ⊆ EY such that λ(F Y ) > 0 and hY is
one to one on F Y . So

hY : F Y 7→ hY (F
Y ) is invertible.

Note that as λ(F Y ) > 0 so η(Γ(hY |FY )) > 0. There is no information of the Pukánszky
invariant yet. So assume that Puk(A) = {ni : ni ∈ N∞, i ∈ I}, where the indexing
set I could be finite or countable. Let

Eni
= {(s, t) ∈ ∆([0, 1])c : m[0,1](s, t) = ni},

where m[0,1] denotes the multiplicity function of the direct integral decomposition of
L2(M) over [0, 1]× [0, 1] with respect to the measure η. Then for each i ∈ I it is well
known that Eni

are η-measurable sets. Also
∫ ⊕

Eni

Cni

s,tdη(s, t)
∼= L2(Eni

, η|Eni
)⊗ Cni where Cni

s,t = C
ni , and

⊕
i∈I

L2(Eni
, η|Eni

)⊗ Cni ∼= L2(M)⊖ L2(A).

In the above equation C∞ stands for l2(N). Fix orthonormal bases {e(ni)
j }1≤j≤ni

of Cni

for all i ∈ I.
Then

∑

i∈I

χΓ(hY |FY )∩Eni
⊗ e

(ni)
1

where χ denotes the indicator function, can be identified with a vector ζY ∈ (1 −
eA)(L

2(M)) such that

AζYA = AζY = ζYA.(5.1)

Eq. (5.1) is easy to check, in fact one only uses that fact that hY is locally one to one
and onto. That ζY 6= 0 is due to the fact η(Γ(hY |FY )) > 0. Then from Theorem 4.9,

it follows that ζY = vY ρY where ρY = (ζ∗Y ζY )
1

2 ∈ L2(A)+ and vY ∈ GN (A). Clearly,

vY 6∈ A, as otherwise AζYA
‖·‖

2 ⊆ L2(A) would become the direct integral of complex
numbers over some subset of the diagonal with respect to the measure ∆∗λ, where
∆ : [0, 1] 7→ [0, 1]× [0, 1] is the map ∆(x) = (x, x).

Thus ζY ∈ L2(N(A)′′) and hence AζYA
‖·‖

2 ⊆ L2(N(A)′′). Clearly,

AζYA
‖·‖

2 ∼=
∫ ⊕

Γ(hY |FY )

Cs,tdη(s, t), where Cs,t = C.(5.2)

So AζYA
‖·‖

2 ⊥ L2(A) and AζYA
‖·‖

2 ∈ Cd(A). Since AζYA
‖·‖

2 ⊆ L2(N(A)′′) so
η(Γ(hY |FY ) ∩ Eni

) = 0 if ni ≥ 2 from a result of Popa [25]. Thus 1 ∈ Puk(A). �

Each partial isometry 0 6= v ∈ GN (A) implements a measure preserving local
isomorphism T : ([0, 1], λ) 7→ ([0, 1], λ) such that vav∗ = a ◦ T−1 for all a ∈ A. With
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abuse of notation we will write v = T . Then Γ(v) = {(T (t), t) : t ∈ Dom(T )}, Dom(T )
denoting the domain of T .

Lemma 5.14. Let ηa 6= 0. Let Y ⊆ (∆[0, 1])c be a η-measurable set of strictly positive
ηa-measure. Then there is a nonzero partial isometry v ∈ GN (A) such that Γ(v) ⊆ Y .

Proof. By Lemma 5.13, there exists a subset F Y of [0, 1] such that λ(F Y ) > 0, a
invertible map hY : F Y 7→ hY (F

Y ) and a nonzero vector ζY ∈ L2(N(A)′′) ⊖ L2(A)
such that ζY = vY ρY with vY ∈ GN (A), ρY ∈ L2(A)+ and satisfying property (ii),
(iii), (iv) of Lemma 5.13.
Let ηζY , ηvY be the measures on [0, 1]× [0, 1] defined in Eq. (3.1). Let qY = vY v

∗
Y ∈ A.

With abuse of notation we will regard qY as a measurable subset of [0, 1] as well. We
claim that, ηζY ≪ ηvY ≪ ηζY . Indeed for a, b ∈ C[0, 1],

∫

[0,1]×[0,1]

a(s)b(t)dηζY (s, t) =

∫

Γ(hY )

a(s)b(t)dηζY (s, t)

= τ(ρ∗Y v
∗
Y avY ρY b)

= τ(ρ∗Y v
∗
Y avY bρY ) (as ρY b = bρY )

= τ(v∗Y avY bρY ρ
∗
Y )

= τ(v∗Y avY bρ
∗
Y ρY )

= τ(v∗Y avY ρ
∗
Y ρY b)

=

∫

qY

a(vY (t))b(t) |ρY (t)|2 dλ(t)

=

∫

Γ(vY )

a(s)b(t) |ρY (t)|2 dηvY (s, t)

=

∫

[0,1]×[0,1]

a(s)b(t) |ρY (t)|2 dηvY (s, t).

In the above string of equalities we have used the facts that τ extends to a trace like
functional on L1(A) and the left and right actions of A on L2(A), L1(A) coincides.
Using Thm. 4.9, by standard arguments it follows that ηζY ≪ ηvY ≪ ηζY . Thus the
result follows with v = vY . �

Suppose {vj}j∈J is a family of partial isometries in GN (A) such that Avj ⊥ Avj′
whenever j 6= j′. Denote by [25]

∑

j∈J

Avj =

{

x ∈ M : x =
∑

j∈J

ajvj , for aj ∈ A with
∑

j∈J

‖ajvj‖22 <∞
}

.

Theorem 5.15. (Compare Cor. 2.5 [25]) Let ηa 6= 0. Then A ( N(A)′′. Moreover,
there is a sequence {vn}∞n=0 ⊂ GN (A) of nonzero partial isometries (with possibility
that the sequence could be finite) with v0 = 1 such that,

(i) Γ(vn) ∩ Γ(vm) = ∅ for n 6= m,

(ii) ηa([0, 1]× [0, 1]) =

∞
∑

n=1

ηa(Γ(vn)),

(iii)⊕∞
n=0 Avn

‖·‖
2 ∼=

∫ ⊕

∪∞
n=0

Γ(vn)

Cs,td(ηa +∆∗λ)(s, t) ∼= L2(N(A)′′),

(where Cs,t = C and ∆ : [0, 1] 7→ [0, 1]× [0, 1] by ∆(x) = (x, x))
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(iv) N(A)′′ =
∞
∑

n=0

Avn,

and A restricted to ⊕∞
n=0Avn

‖·‖
2 is diagonalizable with respect to the decomposition in

(iii).

Proof. First of all assuming that (i) in the statement is true it follows that Avn ⊥ Avm

whenever n 6= m. Indeed, Avn
‖·‖

2 ⊆ L2(N(A)′′). Now A restricted to Avn
‖·‖

2 is an
abelian algebra with a cyclic vector, so it is maximal abelian. The projection eAvn

onto Avn
‖·‖

2 is in A. So Avn
‖·‖

2 is the direct integral of complex numbers over a

subset Xn of [0, 1] × [0, 1] with respect to the measure η and A restricted to Avn
‖·‖

2

is diagonalizable with respect to this decomposition. But η(Xn∆Γ(vn)) = 0. Again
ηn.a(Γ(vn)) = 0. So the direct integral as stated above is actually with respect to the
measure ηa + ∆∗λ. The graphs being disjoint for n 6= m forces the orthogonality of
Avn and Avm whenever n 6= m. The sum in (iii) therefore makes sense.
Using Lemma 5.14, choose a maximal family {vα}α∈Λ ⊂ GN (A), for some indexing set
Λ, such that Γ(vα) ⊂ ∆([0, 1])c for all α ∈ Λ and Γ(vα) ∩ Γ(vβ) = ∅ whenever α 6= β.
Since Avα ⊥ Avβ whenever α 6= β (by similar argument as above) so the indexing set
must be countable by separability assumption of L2(M). So we index this maximal
family by {vn}∞n=1. Let v0 = 1. So (i) follows by construction.
If ηa([0, 1] × [0, 1]) >

∑∞
n=1 ηa(Γ(vn)) then Sa \ ∪∞

n=1Γ(vn) is a set of strictly positive
ηa measure. A further application of Lemma 5.14 violates the maximality of {vn}∞n=1.
This proves (ii).
By the argument of the first paragraph and Lemma 5.7 [10],

⊕∞
n=1Avn

‖·‖
2 ∼=

∫ ⊕

∪∞
n=1

Γ(vn)

Cs,tdηa(s, t) ⊆ L2(N(A)′′)⊖ L2(A)(5.3)

and A restricted to ⊕∞
n=1Avn

‖·‖
2 is diagonalizable with respect to the decomposition

in Eq. (5.3).
If 0 6= ζ = ζ∗ ∈ L2(N(A)′′)⊖L2(A) is such that ζ ⊥ Avn for all n ≥ 1 then AζA ⊥ Avn

for all n ≥ 0. By arguments similar to the first paragraph, AζA
‖·‖

2 is the direct integral
over a η-measurable set Xζ , of complex numbers with respect to the measure η and

A restricted to AζA
‖·‖

2 is diagonalizable respecting this decomposition. If ζ as a L2

function stays nonzero on a set of positive ∆∗λ-measure then ζ cannot be perpendicular

to L2(A). By Prop. 3.11, AζA
‖·‖

2 ∈ Cd(A) and hence by Theorem 3.8 and Lemma 5.7
[10], we can assume Xζ ⊂ Sa \ ∆([0, 1]). Since ζ 6= 0 so η(Xζ) = ηa(Xζ) > 0. Since
ηa is concentrated on ∪∞

n=1Γ(vn), so Xζ ∩ Γ(vn) has strictly positive ηa and hence η
measure for some n ≥ 1. Note that eN(A)′′ ∈ A and AeN(A)′′ = A′eN(A)′′ from [25]. On
the other hand, by Lemma 5.7 [10], L2(N(A)′′)⊖ L2(A) will be expressed as a direct
integral over some subset of [0, 1] × [0, 1] with respect to η, with multiplicity strictly
bigger than 1 on a set of positive η-measure. This contradicts AeN(A)′′ is maximal
abelian. Thus

⊕∞
n=0Avn

‖·‖
2 ∼=

∫ ⊕

∪∞
n=0

Γ(vn)

Cs,td(ηa +∆∗λ)(s, t) ∼= L2(N(A)′′),
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with associated statements about diagonalizability of A. Finally

∞
∑

n=0

Avn =

∞
∑

n=0

Avn

‖·‖
2

∩M =
(

⊕∞
n=0Avn

‖·‖
2

)

∩M = L2(N(A)′′) ∩M = N(A)′′.

�

Remark 5.16. Thm. 5.15 generalizes Cor. 2.5 of [25]. In general we cannot hope to
find unitaries as was the case in Cor. 2.5 [25]. The situation in Cor. 2.5 of [25] was
completely different, where the assumption was that, the masa is Cartan. Assuming
the masa is Cartan, forces the disintegration of the measure ηa to have at least one
atom off the diagonal in almost every fibre. Such an assumption cannot be made for a
general masa. For example consider the following situation. Let C ⊂ R be a Cartan
masa and let S ⊂ R be a singular masa, where R denotes the hyperfinite II1 factor.
Then C ⊕ S ⊂ R⊕R is a masa, where the trace on R⊕R is 1

2
τR ⊕ 1

2
τR, τR denoting

the unique, normal, faithful tracial state of R. Then C ⊕ S ⊂ (R⊕R) ∗ R ∼= L(F2)
(from [8]) is a masa for which such an assumption will fail from Prop. 5.10 [10].

We will now present the proof of Thm 5.10.

Proof of 5.10. Case (i). The necessary and sufficient condition for Cartan masas fol-
lows directly from Thm. 5.15.
Case (ii). The result for singular masas also follows from Thm. 5.15.
Case (iii). Let A  N(A)′′  M. If ηa = 0 then, by conclusion of (ii), A would
become singular. Therefore ηa 6= 0. If ηn.a = 0 then by conclusion of part (i), A would
be Cartan. Therefore ηn.a 6= 0 as well.
Conversely, if ηn.a 6= 0 and ηa 6= 0, then by Theorem 5.15, A  N(A)′′  M.
Case (iv). First assume that N(A)′′ is a factor. From Thm. 5.15 it follows that

L2(N(A)′′) ∼=
∫ ⊕

[0,1]×[0,1]

Cs,td(ηa + ∆̃∗λ)(s, t), where Cs,t = C

and A restricted to this subspace is diagonalizable, where ∆̃ : [0, 1] 7→ [0, 1] × [0, 1]

is defined by ∆̃(x) = (x, x). Therefore [ηa + ∆̃∗λ] is the left-right-measure for the
inclusion A ⊂ N(A)′′. If the closed support of ηa is strictly contained in [0, 1]× [0, 1]
then, there must be a open set U ⊂ [0, 1]× [0, 1] such that ηa(U) = 0. It follows that
the map a⊗ b 7→ aJN(A)′′b

∗JN(A)′′ , where a, b ∈ C([0, 1]) was not an injection. On the
other hand, as N(A)′′ is a factor the above map must be an injection by Prop. 2.8.
This contradiction proves that the closed support of ηa is [0, 1]× [0, 1].
Conversely assume N(A)′′ has a nontrivial center. Let p ∈ Z(N(A)′′) be a projection
which is different from 0 and 1. Then

N(A)′′ = N(A)′′p⊕N(A)′′(1− p).

So p ∈ A′ ∩N(A)′′ and hence p ∈ A. So

A = Ap⊕A(1− p).(5.4)

It follows that are exists λ-measurable sets F1, F2 ⊂ [0, 1] such that, F1 ∪ F2 = [0, 1],
F1 ∩ F2 = ∅, C(F1), C(F2) are w.o.t dense unital subalgebras of Ap and A(1 − p)
respectively and C(F1) ⊕ C(F2) is w.o.t dense in A. With respect to the Eq. (5.4)
let a = a1 ⊕ a2 and b = b1 ⊕ b2 be the decompositions of a, b ∈ C([0, 1]), where
ai, bi ∈ C(Fi) for i = 1, 2. For ζ ∈ L2(N(A)′′) one has an analogous decomposition
ζ = ζ1 ⊕ ζ2 with ζ1 = pζ and ζ2 = (1− p)ζ . The equation

〈aζb, ζ〉 = 〈(a1 ⊕ a2)(ζ1 ⊕ ζ2)(b1 ⊕ b2), (ζ1 ⊕ ζ2)〉 = 〈a1ζ1b1, ζ1〉+ 〈a2ζ2b2, ζ2〉
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shows that the left-right-measure for the inclusion A ⊂ N(A)′′ will be concentrated
on F1 × F1 ∪ F2 × F2. It follows that closed support of ηa is strictly contained in
[0, 1]× [0, 1]. This completes the proof. �

Remark 5.17. The proof of Case (iv) actually shows that if A ⊂ N is a masa whereN is
a finite type II algebra with a nontrivial center then for any choice of compact Hausdorff
space X such that C(X) is w.o.t dense, unital and norm separable subalgebra of A,
the map

n
∑

i=1

ai ⊗ bi 7→
n
∑

i=1

aiJb
∗
iJ

from C(X)⊗alg C(X) 7→ B(L2(N )) is not an injection for any choice of trace.

The following results about masas that were proved by experts in different ways are
just easy consequences of the measurable selection principle as we have described in
this section.
Corollary 5.18. If A ⊂ M is a Cartan masa then A ⊂ B is a Cartan masa for all
von Neumann subalgebra A  B  M.

Proof. By Lemma 5.7 of [10] the left-right-measure of the inclusion A ⊂ M is [ηB+ηB⊥ ]
where [ηB] is the left-right-measure of the inclusion A ⊂ B and ηB ⊥ ηB⊥ . It follows
that ηB has atomic disintegration along both axes. The result is then immediate from
Thm. 5.10 and Thm 5.15. �

Corollary 5.19. Let A ⊂ M be a masa and let Q be a finite von Neumann algebra
such that dim(Q) ≥ 2. Then NM∗Q(A) = NM(A).

Proof. In this proof we consider left-right-measures restricted to the off diagonal. First
of all it well known that A ⊂ M∗Q is a masa. Let [ηM] denote the left-right-measure
of the inclusion A ⊂ M. Write ηM = η1 + η2 where η1 ≪ λ ⊗ λ and η2 ⊥ λ ⊗ λ.
Using Prop. 5.10 and Lemma 5.7 [10] it follows that the left-right-measure [ηM∗Q] of
the inclusion A ⊂ M ∗Q is given by

ηM∗Q =
{

ηM + λ⊗ λ if η1 = 0,
η2 + λ⊗ λ if η1 6= 0.

The rest is obvious from Thm. 5.10 and Thm. 5.15. �

Corollary 5.20. Let A ⊂ M be a Cartan masa and let A ⊂ B (M be an interme-
diate subalgebra. Then there is a v ∈ GN (A) such that v ⊥ B.

Proof. By Lemma 5.7 [10], the left-right-measure of the inclusion A ⊂ M is [ηB +ηB⊥ ]
where ηB ⊥ ηB⊥ and [ηB] is the left-right-measure of the inclusion A ⊂ B. Note
ηB⊥ 6= 0. Apply Lemma 5.14. �

We prove the next theorem in the context of II1 factors. But it can be easily gen-
eralized to finite von Neumann algebras. Let Mi, i = 1, 2 be separably acting II1
factors with normal, faithful tracial states τi respectively. Let Mi act on L2(Mi, τi)
by left multiplication. Let A ⊂ M1 and B ⊂ M2 be masas. Fix compact Polish
spaces X, Y such that C(X) ⊂ A and C(Y ) ⊂ B are unital, norm separable and w.o.t
dense. Let νX and νY denote the tracial measures for A,B respectively, which will
be assumed to be complete. Let the left-right-measure of A on X × X be [σ1] and
that of B on Y × Y be [σ2]. Here we are allowing the diagonals, i.e. we are assuming

σ1|∆(X) = (∆̃X)∗νX and σ2|∆(Y ) = (∆̃Y )∗νY where ∆̃X : X 7→ X×X by ∆̃X(x) = (x, x)

and ∆̃Y : Y 7→ Y × Y by ∆̃Y (y) = (y, y).
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By Tomita’s theorem on commutants A⊗B is a masa in M1⊗M2. X × Y is com-
pact and Polish, and C(X × Y ) is unital, norm separable and w.o.t dense in A⊗B.
The standard Hilbert space and the Tomita’s involution operator for M1⊗M2 is
L2(M1, τ1) ⊗ L2(M2, τ2) and JM1

⊗ JM2
respectively. The tracial measure for A⊗B

on X×Y is clearly νX ⊗νY . With this as set up we formulate the next theorem which
appeared in [2]. The same proof actually generalizes to infinite tensor products.

Theorem 5.21. (Chifan’s Normaliser Formula) Let A ⊂ M1 and B ⊂ M2 be masas
in separably acting II1 factors M1 and M2. Then

N(A⊗B)′′ = N(A)′′⊗N(B)′′.

Proof. Fix σ1 and σ2 from the aforesaid class of left-right-measures. The left-right-
measure of A⊗B on (X × Y )× (X × Y ) which is denoted by [β] is given by

dβ(sX, sY , tX , tY ) = dσ1(sX , tX)dσ2(sY , tY )

from Prop. 5.2 [10]. Here s is the variable running along the first coordinate (horizontal
direction) and t along the second coordinate (vertical direction). Then from Lemma
3.5 it follows that the disintegration of β along the t variable (vertical direction) is
given by

βtX×Y
= σ1tX ⊗ σ2tY , (tX , tY ) - a.e νX ⊗ νY , where tX×Y = (tX , tY ).

For fixed tX×Y = (tX , tY ) ∈ X × Y the measure βtX×Y
has an atom at the point

(sX , sY , tX , tY ) if and only if σ1tX has an atom at (sX , tX) and σ2tY has an atom at
(sY , tY ). Therefore

((X × Y )× (X × Y ))a = S2,3((X ×X)a × (Y × Y )a),

where S2,3 denotes the permutation (2, 3) on four symbols (see Prop. 3.3). Therefore,

β|((X×Y )×(X×Y ))a = σ1|(X×X)a ⊗ σ2|(Y×Y )a .

Hence denoting CsX ,sY ,tX ,tY = C, CsX ,tX = C = CsY ,tY we have

L2(N(A⊗B)′′) ∼=
∫ ⊕

((X×Y )×(X×Y ))a

CsX ,sY ,tX ,tY dβ(sX , sY , tX , tY )

∼=
∫ ⊕

(X×X)a

CsX ,tXdσ1(sX , tX)⊗
∫ ⊕

(Y×Y )a

CsY ,tY dσ2(sY , tY )

∼= L2(N(A)′′)⊗ L2(N(B)′′) from Thm. 5.15.

Since the containment N(A)′′⊗N(B)′′ ⊆ N(A⊗B)′′ is obvious we are done. �

Corollary 5.22. [35] Let A ⊂ M1 and B ⊂ M2 be singular masas in separably acting
II1 factors M1 and M2. Then A⊗B is singular in M1⊗M2.

6. Asymptotic Homomorphism and Measure Theory

The equivalence of WAHP and singularity is a nontrivial theorem [35]. In this
section we will give a direct proof of the equivalence of WAHP and singularity by
using measure theoretic tools. We will also present partial results about AHP. In
order to do so we will first have to relate certain norms to the left-right-measure. The
measure theoretic tools described in this section will be used in a future paper for
explicit calculation of left-right-measures.
Let A ⊂ M be a masa. Let λ denote the Lebesgue measure on [0, 1] so that

A ∼= L∞([0, 1], λ). Then λ is the tracial measure. Let [η] denote the left-right-measure
for A. We assume that η is a probability measure on [0, 1]× [0, 1] and η(∆([0, 1])) = 0.
Let B[0, 1] denote the collection of all bounded measurable functions on [0, 1].
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Notation: The disintegrated measures are usually written with a subscript t 7→ ηt
in the literature. But in this section we will use the superscript notation t 7→ ηt to
denote them. The (π1, λ) disintegration of measures will be indexed by the variable t
and the (π2, λ) disintegration will be indexed by the variable s.

In all the following results that uses disintegration of measures we will only state
or prove the result with respect to the (π1, λ) disintegration. Statements about the
(π2, λ) disintegration are analogous.

Lemma 6.1. Let x ∈ M be such that EA(x) = 0. Let ηx denote the measure on
[0, 1]× [0, 1] defined in Eq. (3.1). Then ηx admits (πi, λ) disintegrations [0, 1] ∋ t 7→ ηtx
and [0, 1] ∋ s 7→ ηsx, where πi, i = 1, 2 denotes the coordinate projections. Moreover,

ηtx([0, 1]× [0, 1]) = EA(xx
∗)(t), λ a.e.

Proof. From Lemma 5.7 of [10] it follows that there is a measure η0 such that (i)
η0 ⊥ ηx, (ii) [ηx + η0] is the left-right-measure for A. Therefore [(πi)∗(η0 + ηx)] = [λ]
by Lemma 2.10 and hence (πi)∗(ηx) ≪ λ for i = 1, 2. Consequently from Thm. 3.2,
ηx admits (πi, λ) disintegrations for i = 1, 2.
Note that ηx([0, 1] × [0, 1]) = τ(xx∗) = τ(EA(xx

∗)). From (ii) of Defn. 3.1 it follows
that [0, 1] ∋ t 7→ ηtx([0, 1]× [0, 1]) is measurable. Let E ⊆ [0, 1] be any Borel set. Then
there exists a sequence of functions fn ∈ C[0, 1] such that 0 ≤ fn ≤ 1 and fn → χE

pointwise. By dominated convergence theorem we have ηx(fn ⊗ 1) → ηx(χE ⊗ 1). On
the other hand,

ηx(fn ⊗ 1) = 〈fnx, x〉 = τ(fnxx
∗) = τ(fnEA(xx

∗)) =

∫ 1

0

fn(t)EA(xx
∗)(t)dλ(t)

→
∫ 1

0

χE(t)EA(xx
∗)(t)dλ(t), as n→ ∞,

=

∫

E

EA(xx
∗)(t)dλ(t).

From Defn. 3.1 again we have

ηx(χE ⊗ 1) =

∫ 1

0

ηtx(χE ⊗ 1)dλ(t) =

∫

E

ηtx([0, 1]× [0, 1])dλ(t).

Therefore for all Borel sets E ⊆ [0, 1] we have
∫

E

ηtx([0, 1]× [0, 1])dλ(t) =

∫

E

EA(xx
∗)(t)dλ(t).

Thus, ηtx([0, 1]× [0, 1]) = EA(xx
∗)(t) for λ almost all t. �

Lemma 6.2. Let x ∈ M be such that EA(x) = 0. Let f ∈ B[0, 1]. Then the functions
[0, 1] ∋ t 7→ ηtx(1⊗ f), [0, 1] ∋ s 7→ ηsx(f ⊗ 1) are in L∞([0, 1], λ).

Proof. We will only prove for the (π1, λ) disintegration. From Lemma 6.1 we know
that ηx admits a (π1, λ) disintegration. From Defn. 3.1 we also know that [0, 1] ∋ t 7→
ηtx(1⊗ f) is measurable. Now of 0 ≤ t ≤ 1

∣

∣ηtx(1⊗ f)
∣

∣ ≤ ‖f‖ ηtx([0, 1]× [0, 1]).

Now use Lemma 6.1. �
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Lemma 6.3. Let x ∈ M be such that EA(x) = 0. Let b, w ∈ B[0, 1]. Then

‖EA(bxwx
∗)‖22 =

∫ 1

0

|b(t)|2
∣

∣ηtx(1⊗ w)
∣

∣

2
dλ(t).

Proof. We have noted before that ηx admits (πi, λ) disintegrations for i = 1, 2. Sec-
ondly, as b, w ∈ B[0, 1], so [0, 1] ∋ t 7→ b(t)ηtx(1⊗ w) is in L∞([0, 1], λ) from Lemma
6.2. Now

‖EA(bxwx
∗)‖22 = sup

a∈C[0,1]

‖a‖
2
≤1

|〈a,EA(bxwx
∗)〉|2

= sup
a∈C[0,1]

‖a‖
2
≤1

|τ(aEA(bxwx
∗))|2

= sup
a∈C[0,1]

‖a‖
2
≤1

|τ(EA(abxwx
∗))|2

= sup
a∈C[0,1]

‖a‖
2
≤1

|τ(abxwx∗)|2

= sup
a∈C[0,1]

‖a‖
2
≤1

∣

∣

∣

∣

∫

[0,1]×[0,1]

a(t)b(t)w(s)dηx(t, s)

∣

∣

∣

∣

2

(from Eq. (3.1))

= sup
a∈C[0,1]

‖a‖
2
≤1

∣

∣

∣

∣

∫ 1

0

a(t)b(t)ηtx(1⊗ w)dλ(t)

∣

∣

∣

∣

2

(from Defn. 3.1)

=

∫ 1

0

|b(t)|2
∣

∣ηtx(1⊗ w)
∣

∣

2
dλ(t) (from Lemma 6.2).

�

The following facts are well known, we just record them for completeness. For details
we refer the reader to [16]. Recall that a subset S ⊆ Z is said to be of full density if

lim
n

#(S ∩ [−n, n])
2n+ 1

= 1.

Definition 6.4. A measure µ on [0, 1] is called mixing (or sometimes Rajchman) if

its Fourier coefficients µ̂n =
∫ 1

0
e2πintdµ(t) converge to 0 as |n| → ∞.

By the Riemann-Lebesgue lemma any absolutely continuous measure is mixing.
However there are many mixing singular measures as well. Atomic measures can
never be mixing. The next proposition justifies why non-atomic measures are called
weak (or weakly) mixing measures.

Proposition 6.5. (Wiener) A measure µ on [0, 1] is non-atomic (diffuse) if and only
if for a set S ⊆ Z of full density

lim
n∈S,|n|→∞

µ̂n = 0.

From Prop. 2.5 and Prop. 2.19 of [16], mixing and weakly mixing are just not
properties of measures, they are in fact properties of equivalence class of measures.
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We need the following fact from the calculus course. A bounded sequence of complex
numbers {an}n∈Z converges to 0 strongly in the sense of Cesàro i.e.

lim
N→∞

1

2N + 1

N
∑

n=−N

|an| = 0(6.1)

if and only if there is a set S ⊆ Z of full density such that

lim
n∈S,|n|→∞

|an| = 0.(6.2)

Let x, y ∈ M be such that EA(x) = EA(y) = 0. Let a ∈ A. Then the following
polarization identity holds:

4 EA(xay
∗) = EA((x+ y)a(x+ y)∗)− EA((x− y)a(x− y)∗)(6.3)
+ i EA((x+ iy)a(x+ iy)∗)− i EA((x− iy)a(x− iy)∗).

Thus WAHP for a masa is equivalent to the following. For each finite set {xi}ni=1 ⊂ M
with EA(xi) = 0 for all 1 ≤ i ≤ n and ǫ > 0, there exists an unitary u ∈ A such that

‖EA(xiux
∗
i )‖2 ≤ ǫ for all 1 ≤ i ≤ n.

We will only prove the harder part of the equivalence of singularity and WAHP.

Theorem 6.6. Let A ⊂ M be a masa such that L2(A)
⊥ ∈ Cn.a(A). Then A has

WAHP.

Proof. Suppose to the contrary A does not have WAHP. Then there is a ǫ > 0 and
operators 0 6= xi ∈ M, 1 ≤ i ≤ n with EA(xi) = 0 for all i, such that

inf
u∈U(A)

n
∑

i=1

‖EA(xiux
∗
i )‖22 ≥ ǫ,

where U(A) denotes the unitary group of A. Note that for all 1 ≤ i ≤ n, AxiA
‖·‖

2 ∈
Cn.a(A) by Lemma 5.7 of [10] and Thm. 5.10. Equivalently, if t 7→ ηtxi

and s 7→ ηsxi

denote the (π1, λ) and (π2, λ) disintegrations respectively of ηxi
, then for λ almost all

t, the measure ηtxi
is completely non-atomic and similar statements hold for ηsxi

.
Let v ∈ A be the Haar unitary corresponding to the function t 7→ e2πit. Then v
generates A. Now from Lemma 6.3 we have

n
∑

i=1

∥

∥EA(xiv
kx∗i )

∥

∥

2

2
=

∫ 1

0

n
∑

i=1

∣

∣ηtxi
(1⊗ vk)

∣

∣

2
dλ(t) ≥ ǫ for all k ∈ Z.(6.4)

Throwing off a λ-null set F we assume that for t ∈ F c the measures ηtxi
are completely

non-atomic, finite, concentrated on {t}× [0, 1] and ηtxi
([0, 1]× [0, 1]) = EA(xix

∗
i )(t) for

all 1 ≤ i ≤ n (see Lemma 6.1). Let

ak(t) =

n
∑

i=1

∣

∣ηtxi
(1⊗ vk)

∣

∣

2
, k ∈ Z, t ∈ [0, 1].

Then ak is measurable for all k ∈ Z. For k ∈ Z and t ∈ F c we have

ak(t) =

n
∑

i=1

∣

∣

∣

∣

∫

[0,1]×[0,1]

e2πiksdηtxi
(t′, s)

∣

∣

∣

∣

2

≤
n
∑

i=1

(

ηtxi
([0, 1]× [0, 1])

)2
.
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Then by Lemma 6.1, ak(t) ≤
∑n

i=1 |EA(xix
∗
i )(t)|2 <∞, for all t ∈ F c and for all k ∈ Z.

Define

sN(t) =
1

2N + 1

N
∑

k=−N

ak(t), N ∈ N.

Then sN is measurable for all N ∈ N. Since ηtxi
is completely non-atomic for all

1 ≤ i ≤ n and t ∈ F c so

sN(t) → 0 as N → ∞ for all t ∈ F c from Eq. (6.1), (6.2) and Prop 6.5.

Again since sN(t) ≤
∑n

i=1 |EA(xix
∗
i )(t)|2 for t ∈ F c (from Lemma 6.1), so by dominated

convergence theorem
∫ 1

0

sN(t)dλ(t) → 0 as N → ∞.

Therefore,
∫ 1

0

sN (t)dλ(t) =
1

2N + 1

N
∑

k=−N

∫ 1

0

n
∑

i=1

∣

∣ηtxi
(1⊗ vk)

∣

∣

2
dλ(t)

=
1

2N + 1

N
∑

k=−N

(

n
∑

i=1

∥

∥EA(xiv
kx∗i )

∥

∥

2

2

)

→ 0 as N → ∞.

Consequently from Eq. (6.2) there is a set S ⊆ Z of full density such that

lim
k∈S,|k|→∞

n
∑

i=1

∥

∥EA(xiv
kx∗i )

∥

∥

2

2
= 0.

This is a contradiction to Eq. (6.4). So A must have WAHP. �

The proof of Thm. 6.6 yields the following result.

Theorem 6.7. Let A ⊂ M be a singular masa. Then given any finite set {xi}ni=1 ⊂ M
with EA(xi) = 0 for all i,

1

2N + 1

N
∑

k=−N

(

n
∑

i=1

∥

∥EA(xiv
kx∗i )

∥

∥

2

2

)

→ 0 as N → ∞.(6.5)

where v is a Haar unitary generator of A.

Remark 6.8. Thus the unitary in the definition of WAHP (Defn. ??) can always be
chosen to be vk where k is a large integer and v is a Haar unitary generator of the
masa. This strengthens the definition of WAHP. Note that Eq. (6.5) is very closely
related to definition of weakly mixing actions of abelian groups on finite von Neumann
algebras.

The measures ηtx, η
t are concentrated on {t}×[0, 1] for λ almost all t. We will denote

by η̃tx, η̃
t the restriction of the measures ηtx and ηt respectively on {t} × [0, 1]. Thus

η̃tx, η̃
t can be regarded as measures on [0, 1].

Theorem 6.9. Let A ⊂ M be a masa. Let [η] denote the left-right-measure for A. If
for λ almost all t the measures η̃t are mixing, then A has AHP with respect to a Haar
unitary generator of A.
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Proof. From Prop. 2.5 of [16] it follows that for λ almost all t, any measure in the
equivalence class [η̃t] is mixing. In view of Eq. (6.3), it is enough to show that for all
x ∈ M with EA(x) = 0,

‖EA(xv
nx∗)‖2 → 0 as |n| → ∞,

where v ∈ A is a Haar unitary generator of A. Let v ∈ A correspond to the function
s 7→ e2πis. By Lemma 6.3

‖EA(xv
nx∗)‖22 =

∫ 1

0

∣

∣ηtx(1⊗ vn)
∣

∣

2
dλ(t).

From Lemma 5.7 [10] we know that ηx ≪ η and hence for λ almost all t, ηtx ≪ ηt from
Lemma 3.6. So η̃tx ≪ η̃t for λ almost all t. Thus η̃tx is mixing measure from Prop.
2.5 of [16] for λ almost all t. Also from Lemma 6.1, the measures ηtx are finite for λ
almost all t. Use Lemma 6.1 and apply dominated convergence theorem to finish the
proof. �

Appendix A. Structure of measurable functions

Making a measurable selection as we attempted in Lemma 5.12 is not enough.
One likes to make a measurable selection so that the graph of the selection is an
automorphism graph of the masa, the automorphism being implemented by an unitary
in the factor. But this is a very delicate issue. We are not aware of such selection
theorems. We can overcome this obstacle though. Structure theorems of continuous
and measurable functions are what comes into play.

Definition A.1. Let f : [0, 1] 7→ R be a function and E be a subset of [0,1]. Then f
is said to satisfy condition (N) or null condition of Lusin relative to E if f(A) is a set
of measure 0 whenever A ⊂ E is a set of measure 0.

The definition implicitly assumes that there are two measures on [0, 1] and R. For
our purpose these measures will always be the Lebesgue measure, which we will denote
by λ.

Proposition A.2. (Tietze’s Extension Type) Let E ( [0, 1] be closed and let f :
E 7→ [0, 1] be a continuous function that satisfy the property that for a measurable set
A ⊂ E, λ(A) = 0 if and only if λ(f(A)) = 0. Then there exists a continuous function
F : [0, 1] 7→ [0, 1] such that
(i) F|E = f ,
(ii) F satisfies the property that for a measurable set A ⊂ [0, 1], λ(A) = 0 if and only
if λ(F (A)) = 0.

Proof. Since E is closed it is a compact subset of [0, 1]. Therefore E has greatest and
least members m and M respectively. If m 6= 0 or M 6= 1 then extend f to a function
h on E1 = E ∪ {0} ∪ {1} by assigning the values f(m) and f(M) at the points 0 and
1 respectively. The function h is continuous on E1 and satisfies the same condition as
f relative to E1. So without loss of generality we can assume 0, 1 ∈ E.
The complement of E is a open set in [0, 1] and Ec ⊂ (0, 1). Then Ec can be written

as a countable disjoint union of intervals
∞∪
i=1

(ai, bi). Then note that ai, bi ∈ E for all i.
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So we only have to define an extension on (ai, bi). Define

F (x) =



































































f(x) if x ∈ E,
λf(ai) + (1− λ)f(bi) if x = λai + (1− λ)bi ∈ (ai, bi),

0 < λ < 1 and f(ai) 6= f(bi),
2(1−f(ai))

bi−ai
(x− ai) + f(ai) if ai < x ≤ ai+bi

2
and

f(ai) = f(bi) < 1,
2(1−f(bi))

ai−bi
(x− bi) + f(bi) if ai+bi

2
≤ x < bi and

f(ai) = f(bi) < 1,
2(x−ai)
ai−bi

+ 1 if ai < x ≤ ai+bi
2

and
f(ai) = f(bi) = 1,

2(x−bi)
bi−ai

+ 1 if ai+bi
2

≤ x < bi and
f(ai) = f(bi) = 1.

The function F is now continuous, as it is a linear interpolation obtained from f and
the construction satisfy the required conditions. �

Theorem A.3. (Foran, [13]) A necessary and sufficient condition for a continuous
function F : [0, 1] 7→ [0, 1] to satisfy condition (N) relative to [0, 1] is that there exists a
sequence of measurable sets En ⊆ [0, 1], n = 0, 1, · · · , such that the following properties
are true:

(i) [0, 1] =
∞∪
n=0

En,

(ii) λ(F (En)) ≤ nλ(En) for all n ≥ 0,
(iii) for each n > 0, F is one to one on En.

Proposition A.4. Let F : [0, 1] 7→ [0, 1] be a measurable function such that for any
measurable set A ⊂ [0, 1], λ(A) = 0 if and only if λ(F (A)) = 0. Then there exists a
measurable set E ⊆ [0, 1] such that λ(E) > 0 and F is one to one on E.
Moreover, if Y0 ⊆ [0, 1] is such that λ(Y0) > 0, then there exists Y1 ⊆ Y0 with λ(Y1) > 0
such that F is one to one on Y1.

Proof. Let ǫ > 0. By Lusin’s theorem, choose a closed set H ⊂ [0, 1] such that
λ([0, 1] \H) < ǫ and F|H is continuous relative to H . Clearly, F|H satisfy the property
that A ⊂ H , λ(A) = 0 if and only if λ(F|H(A)) = 0. By Prop. A.2, extend F to a

continuous function F̃ : [0, 1] 7→ [0, 1] such that F̃ has the property that for A ⊂ [0, 1],
λ(A) = 0 if and only if λ(F̃ (A)) = 0.

Now by Thm. A.3, choose measurable subsets En ⊆ [0, 1] such that [0, 1] =
∞∪
n=0

En,

λ(F̃ (En)) ≤ nλ(En) for all n = 0, 1, · · · , and for each n > 0, F̃ is one to one on En.

Since λ(F̃ (E0)) = 0 so λ(E0) = 0. If λ(En ∩ H) = 0 for all n > 0 then λ(H) = 0,
which is not the case. Therefore there is a n0 > 0 such that λ(En0

∩ H) > 0. But
F̃|En0

∩H = F|En0
∩H and clearly F is one to one on En0

∩H . Rename E = En0
∩H .

Suppose λ(Y0) > 0. By choosing ǫ > 0 small enough one can make sure that the
closed set H in the first part of the proof satisfies λ(Y0 ∩H) > 0. The same argument
as the first part applies, and there exists a n0 > 0 such that F is one to one on
Y1 = Y0 ∩H ∩ En0

and λ(Y1) > 0. �
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in free group factors and the hyperfinite factor. J. Funct. Anal., 240(2):373–398, 2006.
[11] Jacob Feldman and Calvin C. Moore. Ergodic equivalence relations, cohomology, and von Neu-

mann algebras. I. Trans. Amer. Math. Soc., 234(2):289–324, 1977.
[12] Jacob Feldman and Calvin C. Moore. Ergodic equivalence relations, cohomology, and von Neu-

mann algebras. II. Trans. Amer. Math. Soc., 234(2):325–359, 1977.
[13] James Foran. The structure of continuous functions which satisfy Lusin’s condition (N). In

Classical real analysis (Madison, Wis., 1982), volume 42 of Contemp. Math., pages 55–60. Amer.
Math. Soc., Providence, RI, 1985.

[14] Greg Hjorth. Classification and orbit equivalence relations, volume 75 of Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI, 2000.

[15] Richard V. Kadison and John R. Ringrose. Fundamentals of the theory of operator algebras. Vol.
II, volume 16 of Graduate Studies in Mathematics. American Mathematical Society, Providence,
RI, 1997. Advanced theory, Corrected reprint of the 1986 original.

[16] Anatole Katok and Jean-Paul Thouvenot. Spectral properties and combinatorial constructions
in ergodic theory. In Handbook of dynamical systems. Vol. 1B, pages 649–743. Elsevier B. V.,
Amsterdam, 2006.

[17] Wolfgang Krieger. On ergodic flows and the isomorphism of factors. Math. Ann., 223(1):19–70,
1976.

[18] Kunal K. Mukherjee. Masas and Bimodule Decomposition of II1 factors. Ph.D thesis, Texas
A&M University, 2009.

[19] Sergey Neshveyev and Erling Størmer. Ergodic theory and maximal abelian subalgebras of the
hyperfinite factor. J. Funct. Anal., 195(2):239–261, 2002.

[20] Ole A. Nielsen. Direct integral theory, volume 61 of Lecture Notes in Pure and Applied Mathe-
matics. Marcel Dekker Inc., New York, 1980.

[21] John C. Oxtoby.Measure and category. A survey of the analogies between topological and measure
spaces. Springer-Verlag, New York, 1971. Graduate Texts in Mathematics, Vol. 2.

[22] Narutaka Ozawa and Sorin Popa. On a class of II1 factors with at most one cartan subalgebra.
preprint, 2007.

[23] Judith Packer. On the normalizer of certain subalgebras of group-measure factors. Bull. Amer.
Math. Soc. (N.S.), 7(2):397–400, 1982.

[24] Sorin Popa. Singular maximal abelian ∗-subalgebras in continuous von Neumann algebras. J.
Funct. Anal., 50(2):151–166, 1983.

[25] Sorin Popa. Notes on Cartan subalgebras in type II1 factors. Math. Scand., 57(1):171–188, 1985.
[26] Sorin Popa. On a class of type II1 factors with Betti numbers invariants. Ann. of Math. (2),

163(3):809–899, 2006.
[27] Sorin Popa and Dimitri Shlyakhtenko. Cartan subalgebras and bimodule decompositions of II1

factors. Math. Scand., 92(1):93–102, 2003.
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factors. Illinois J. Math., 49(2):325–343 (electronic), 2005.

[34] Allan M. Sinclair and Roger R. Smith. Finite von Neumann algebras and masas, volume 351
of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
2008.

[35] Allan M. Sinclair, Roger R. Smith, Stuart A. White, and Alan Wiggins. Strong singularity of
singular masas in II1 factors. Illinois J. Math., 51(4):1077–1084, 2007.

[36] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability
theory. III. The absence of Cartan subalgebras. Geom. Funct. Anal., 6(1):172–199, 1996.
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