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ABSTRACT

We introduce new labeling called m-bonacci graceful labeling. A graph G on n edges is m-bonacci
graceful if the vertices can be labeled with distinct integers from the set {0,1,2,...,Z, m} such
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that the derived edge labels are the first n m-bonacci numbers. We show that complete graphs,
complete bipartite graphs, gear graphs, triangular grid graphs, and wheel graphs are not m-
bonacci graceful. Almost all trees are m-bonacci graceful. We give m-bonacci graceful labeling to
cycles, friendship graphs, polygonal snake graphs, and double polygonal snake graphs.

1. Introduction

In 1964, Ringel conjectured that given a tree T with n verti-
ces, the complete graph K, can be decomposed into 2n +
1 edge-disjoint copies of T [12]. To address this problem, in
1966, Rosa introduced the concept of graceful labeling of
graphs as f-valuations [13]. Rosa showed that Ringel’s con-
jecture holds if all the trees are graceful. From this, the fam-
ous Ringel-Kotzig conjecture was formed. The conjecture
states that all trees are graceful, which is still open. Several
researchers ([1, 5], to name a few) have worked on this con-
jecture and have some partial results.

Golumb in [7], introduced the term graceful. A graceful
labeling of a graph G = (V,E) on n edges is defined as fol-
lows: G is said to be graceful if there exists a function f :
{0,1,2,..,n} — V such that the function g:E — {1,2,
...n} defined by g(e = uv) = |f(u) — f(v)| is a bijection. In
1985, Lo defined edge graceful labeling by assigning labels
to the edges of the graph G on p vertices and n edges, from
the set {1,2,3,...,n} such that the derived vertex labeling is
a Dbijection from V(G) to {0,1,2,...,p — 1} [10]. Several
researchers ([4, 14] to name a few) are working on in this
edge graceful labeling.

In [9], Koh et al. defined a tree on n+ 1 vertices to be a
Fibonacci tree if the vertices can be labeled with the first
n+1 Fibonacci numbers so that the induced edge labeling
should be the first n Fibonacci numbers, which were later
called as Super-Fibonacci labeling (See [6] for more infor-
mation). In [2], Bange et al. modified the definition of Koh
et al. by relaxing the vertex labels to the set of distinct inte-
gers from {0,1,2,..., F,}, where F, is the n-th Fibonacci
number. A new group of graphs called Fibonacci graceful
graphs was obtained from this definition. A graph on n
edges is said to be Fibonacci graceful if there exists a vertex
labeling with distinct elements from the set {0,1,2,...,F,}

such that the induced edge labels form a bijection on to the
first n Fibonacci numbers. For all other types of graceful
labeling, we refer the reader to [6].

In this paper, we extend the concept of Fibonacci graceful
to m-bonacci graceful graphs by replacing the Fibonacci
numbers with m-bonacci numbers.

The paper is arranged as follows. In Section 2, notations,
definition of m-bonacci number and definition and example
of m-bonacci graceful labeling are given. Some basic proper-
ties of m-bonacci graceful labeling is discussed in Section 3.
In Section 4, we find some special graphs which are not m-
bonacci graceful. In Section 5, m-bonacci graceful labeling
of some special classes of graphs are given. We end the
paper with a few concluding remarks.

2. Preliminaries

We refer the reader to [3] for basic concepts and definitions
of graphs. By G(p, n), we denote a simple graph on p verti-
ces and n edges. In this paper, we use the following defin-
ition for an m-bonacci number. The m-bonacci sequence
{Zum} > (2 is defined by

Zim=0, —(m—2)<i<0, Z,,=1

and for n > 2,

n—1
Zn,m = Z Zi,m

i=n—m

Each Z;,, is called an m-bonacci number. For example,
when m =5, the sequence is

{Zys},. 5 =1{0,0,0,0,1,1,2,4,8,16,31...}

In [2], Bange et al. defined a new labeling called
Fibonacci graceful labeling. We generalize the definition to
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any m. We define a new labeling called m-bonacci graceful
labeling as follows:

Definition 1. Let G(p.n) be a graph on p vertices and n
edges. G(p, n) is called m-bonacci graceful if there exists a
labeling | of its vertices with distinct integers from the set
{0,1,2,...,Z,,»} which induces an edge labeling I' defined
by I'(uv) = |l(u) — I(v)|, is a bijection onto the set {Z; ,,,
Zsmr s Znm -

When m =2, the above labeling is the Fibonacci graceful
labeling. For m =3, Figure 1 shows a 3-bonacci graceful
labeling of Cs.

Note that, not all graphs are m-bonacci graceful. Also, if
a graph G is m-bonacci graceful for some m, then it does
not necessarily imply that G is m-bonacci graceful for all m.
For example, consider the graph Cg. It was shown in [2],
that Cs is Fibonacci graceful and one can see from Figure 1
that Cs is also 3-bonacci graceful. However, Cq is not 4-
bonacci graceful. Infact we show that (see Theorem 3) Cs is
m-bonacci graceful for all m >2 and m # 4. We also give a
labeling of the Butterfly graph (see Figure 4) such that it is
Fibonacci graceful. But one can verify (see Proposition 1)

0 Z1,3 1

6 243

Figure 1. Cg with tribonacci graceful labeling.

that Butterfly graph is not m-bonacci graceful for all m > 3.
We also give an example of a tree (Figure 2) which is m-
bonacci graceful for any m >3, whereas it is not Fibonacci
graceful. The famous” Ringel-Kotzig conjecture” states that
all trees are graceful. But, the conjecture does not hold for
m-bonacci graceful labeling. Some trees are m-bonacci
graceful for some m, whereas some trees are not m-bonacci
graceful for any m. In Figure 3, one can see that T is 3-
bonacci graceful, whereas T, is not m-bonacci graceful for
any m. In fact, we show that (Proposition 2) K; ,,n > 3, is
not m-bonacci graceful for any m. If a graph G is not grace-
ful, it is not necessarily true that G is not m-bonacci graceful
for any m. For example, Figure 4 shows that the butterfly
graph is Fibonacci graceful. But in [13], Rosa showed that
any Eulerian graph with edge count congruent to 1 or
2(mod 4) is not graceful. Thus, both the butterfly graph as
well as Cg, are not graceful. We see that the butterfly graph
is Fibonacci graceful (see Figure 4) but not m-bonacci grace-
ful for all m >3 (see Proposition 1) and Cgs is m-bonacci
graceful for all m >2 and m # 4 (see Proposition 1). Hence,
we conclude the following.

Observation 1. The following are true.

o There exists a graph that is Fibonacci graceful but not m-
bonacci graceful for all m > 3

o There exists a graph that is m-bonacci graceful for all m
> 3 but not Fibonacci graceful

o There exists a graph that is graceful but not m-bonacci
graceful for any m > 2

o There exists a graph that is m-bonacci graceful for all
m > 5 but not graceful.

3. Properties of m-bonacci graceful graphs

In this section, we study some basic properties of m-bonacci
graceful graphs. From the definition, it is clear that, for a
graph to be m-bonacci graceful, one of its edges must have
the label Z, ,,, which is only possible when 0 and Z, ,, are
the labels for its incident vertices. Moreover, any vertex
adjacent to the vertex labeled with 0 must have an m-
bonacci number as its label. We first recall some well known
properties of m-bonacci numbers [8, 11].

(v
oo

0
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Figure 4. Fibonacci graceful labeling of Butterfly graph.
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Lemma 1. For m > 2, we have the following.

1. ZZk,m > Zk+1,m fOT’ all k > 1.

If the sum of m m-bonacci numbers equals another m-
bonacci number, then those m + 1 numbers must be
consecutive.

3. The first 2m+ 1 terms of the m-bonacci sequence are
Zi,m =0, —(m—Z) <i<o, Zl,m :ZZ,m: L, Zj,m =
V23<j<m+1, Zyiam=2"—1.

we deduce

Based on the observations in Lemma 1,

the following.

Corollary 1. For m > 2, such that 0 <n <m+ 1 and t> 0,
the following is true.

t+n

> iZim # 0,60 = *1

i=t+1

Proof. Let 0 < n < m+ 1 and ¢ > 0. Then, we have

t+n—1
Zt+n,m = Z Zi,m
i=t+n—m
t+n—1
> ZZ’F’“ (since t > 0,n <m+1)
i=t+1
Hence, the result. O

We first observe that similar to Fibonacci graceful graphs
[2] the labeling of an m-bonacci graceful graph need not be
unique, i.e., the graph can have several distinct labeling.

Observation 2. Let G(p, n) be an m-bonacci graceful
graph for some m > 2, with vertex labels from the set
{a1,a2,...,a,}. Then, replacing each vertex labels a; with
Zy,m — a; also gives an m-bonacci graceful labeling.

It was also observed in [2] that the cycle structure of
Fibonacci graceful graphs is dependent on Fibonacci identities.
We observe here that the result is also true for any m > 3.

Lemma 2. Let G(p, n) be an m-bonacci graceful graph and
let C be a cycle of length k in G(p, n). Then there exists a

sequence {51}1‘:1 with 0; = *1 for all i = 1,2, ...,k such that

k
> 6Ziym =0
i=1

where {Z-i,m}f:1 are the derived m-bonacci numbers for the
edges of C.

The following corollary is a direct observation from the
above Lemma and the fact (See Lemma 1) that if the sum of
any m m-bonacci numbers is another m-bonacci number,
then these numbers must be consecutive. The corollary gives
an edge labeling for cycles of a particular length.

Corollary 2. Let G be an m-bonacci graceful graph such that
G has a cycle C of length km — (k — 2),1 < k < 3. Then, the
edges of C must be labeled with m-bonacci numbers Z; ,, for
i<j<i4+km, and jF#i+tm for 1<t<k—1 for
some i > 1.
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Thus, from Lemma 2 and Corollary 2, we observe the fol-
lowing, which provides a condition for the edge labels for
any cycle in an m-bonacci graceful graph.

Corollary 3. Let G(p, n) be an m-bonacci graceful graph and
C be a cycle in G(p, n). If Zy,,, is the largest m-bonacci num-
ber appearing as an edge label of C, then Zx_1 m, Zik—2,m> ---»
Z_(m—1),m Should also appear as edge labels on C.

The following result gives conditions on the number of
edges in any Eulerian m-bonacci graceful graph.

Theorem 1. Let G(p, n) be an Eulerian m-bonacci graceful
graph. Then,

n=0,23,.., m—1or m (mod(m—+1))

Proof. Let G be an Eulerian m-bonacci graceful graph. Then,
G can be decomposed into edge-disjoint cycles. From Lemma
2, it is clear that the sum of all the edge labels around any
cycle is even and hence, Zy, ,, + Zo,m + - - - + Zy, m is even. But
by Lemma 1, Zy ,y + Zo,y + - -+ + Zy,m is 0odd only when n =
1(modm + 1) for m > 2. Hence, the result. O

The following result gives a partial information about the
cycles of any m-bonacci graceful graph.

Proposition 1. Any m-bonacci graceful graph can have at
most one cycle of length less than or equal to m. From this,
we get that, for m>3, the only maximal outerplanar m-
bonacci graceful graph is Cs.

Proof. Let G be an m-bonacci graceful graph and let C be a
cycle of G of length n such that n < m. Let the vertices of C
be m-bonacci gracefully labeled with labels from the set
{0} Uu{Zim : 2<i<n} (since n<m, by Lemma 1,
Zivtom —Ziim = Zi—1,m»1 <i<m). Suppose there exists
another cycle C' of length + <m in G whose vertices are
labeled such that Z; ,, with k> n is the largest edge label of
C'. Now, by Corollary 3, Zx_1,m» Zk—2,m> > Zk—(m—1),m are
also edge labels of C'. Since t<m,Zim Zi—1,m
Zk—2,m> > Zk—(m—1),m are the only edge labels and the length
of C' is m. By Lemma 2, there exists a sequence {;} with
d0; = *1 such that,

m
Z5iZk—(i—1),m =0 1
i=1

Note that, the labels are m consecutive m-bonacci numbers. By
Corollary 1, Equation (1) does not hold true. Thus, an m-
bonacci graceful graceful graph can have a maximum of only
one cycle of length less than or equal to m. Hence, the result. O

4. Forbidden graphs

In this section, we discuss some special graphs that are not
m-bonacci graceful. We start this section with the tree
graph. Except K; and K,, any tree with the number of edges
at most three cannot be m-bonacci gracefully labeled, as
there does not exist enough integers between 0 and Z, ,, to
label n+ 1 vertices.
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In [2], Bange et al. proved that any graph which has a 3-
edge connected subgraph is not Fibonacci graceful. One can
observe that the result also holds when m > 3. We omit the
proof as it is similar to the proof given by Bange et al.

Theorem 2. If G has a 3-edge connected subgraph, then G is
not m-bonacci graceful for m > 2.

The above result cannot be improved further as cycles
are 2-edge connected, and most of them are m-bonacci
graceful. The following corollary is a direct observation from
Theorem 2.

Corollary 4. The following graphs are not m-bonacci graceful
for m> 2.

Complete graph K,,n > 4

The wheel graph W,,n >3
The Generalized Petersen graph
The Fence graph

The Circular ladder graph

We now discuss the case for complete bipartite graphs.
One can easily verify that both K;; and K, are m-bonacci
graceful for all m>3. K ; is Fibonacci graceful but K, , is
not Fibonacci graceful. In the following result we show that
complete bipartite graphs K; , except for K;,; and K, , are
not m-bonacci graceful for m > 2.

Proposition 2. Complete bipartite graphs, except for K
and K3 5, are not m-bonacci graceful for m > 2.

Proof. Let t,n >3. Then, K,, is 3-edge connected. By
Theorem 2, K; , is not m-bonacci graceful for m > 2.

Ki,u, n>2 is not m-bonacci graceful. At most either
Zi,m or Zy , will appear as one of the edge labels (Note
that, Zl,m = Zz)m = 1)

Now, the only case left is K, ,, n > 3. Let u, v be the
two vertices that are adjacent to other n vertices. Let I(u)
= 0. Then, all the n vertices should be labeled with m-
bonacci numbers. Since n > 3, it is impossible to give a
label to v distinct from other n+ 1 vertices such that the
graph is m-bonacci graceful. The proof is similar if a ver-
tex from the other partite set with n vertices gets 0 as ver-
tex label. 0

The following result shows that gear graphs are not m-
bonacci graceful. Gear graph is obtained by replacing each
edge in the perimeter of the wheel graph W, by a path of
length 2. We denote gear graphs by G,. G, has 2n + 1 verti-
ces. G, is shown in Figure 5. G is Fibonacci graceful but
not m-bonacci graceful Vm > 3.

Proposition 3. Gear graphs Gi,t >4 are not m-bonacci
graceful for all m> 2.

Proof. Let G; be a gear graph. Suppose G, is m-bonacci
graceful for some m > 2 and t > 4. Recall that, a gear graph
is a subdivision of wheel graph. Let v be the single universal
vertex of G, Let u; and u, be the end vertices of the edge
with Z, ,, as edge label. Note that at least one of the vertices

Figure 5. Gear graph G,.

u; and u, is of degree greater than 2. Now, we have two dif-
ferent cases.

o Case I: If either u; or u, is v, then we get three edge dis-
joint paths from u; to u,. So we get a cycle which does
not contain the edge with edge label Z,_; ,,. This is a
contradiction to Corollary 3.

e Case 2: If both uj,uy #v, then I(v) # 0. We have the

following two subcases:
m > 3: Let u; be the vertex of degree 3. Let u; be the
vertex of degree 3 such that u, is adjacent to u; and us; is
adjacent to v. Now we have two cycles: vuju,usv and the
outer perimeter cycle from u, to u,. Note that, these two
cycles have only two edges in common ie., u;u; and
upus. Also, the edge label of uyu, is Z,,, and we get a
cycle which does not contain either the edge with Z,_; ,,
as edge label or the edge with Z,_, ,, as edge label. Thus
for m> 3, in either case, it is a contradiction to
Corollary 3.

e m = 2: Without loss of generality, let v and u; are adja-
cent. Let u; be the vertex adjacent to u, and v. Let f;
denote the k-th Fibonacci number. Consider the cycle C:
vusupuyv. Since f, is an edge label of C, by Corollary 3,
fa—1 must be an edge label of one of the edges of C.
Now, by Lemma 2, we get that f, 3 and f,_4 are the
remaining edge labels (otherwise it will give contradic-
tion to Lemma 2). If the edge label of vu; is f,—;, then
by Corollary 3 and Lemma 2, the cycle of length four
different from the cycle C, which has vu; as one of its
edge, must have f, 5, f,_4,fs—5 as edge labels. This is not
possible (since f,_4 is one of the edge labels of the cycle
C : vusupuyv). The same contradiction arises for f,_; to
be the edge label of vu;. So, f,_; is the edge label of
upuz. Without loss of generality, let I(vu;) = f,—3 and
I'(vus) = fy—4, where I' is the derived edge labeling. Now
consider the cycles C; and C, which have vu; and vu; as
one of its edges, respectively. Clearly, C; and C, does not
share any edge (since we consider only G;,t > 4). To sat-
isfy Lemma 2 and Corollary 3, the only possible remain-
ing edge labels of C; are f,_,,f,—s,fu—s. This implies that,
the largest edge label in C, is f,_4. By Corollary 3, f,_s
should be an edge label of one of the edges of C,, which
is not possible.

Thus, G;,t > 4, is not m-bonacci graceful for all m > 2.



4.1. Triangular grid graph

Triangular grid graph is a graph with vertex set V =
{(i,jk):i+j+k=mn, i,jk>0} and two  vertices
(i1, j1, k1) and (iz, j2, k2) are adjacent if and only if |i; — iy| +
lj1 — j2| + |[ki — k2| = n. We denote such graphs by TG,.
The graph TG, has % vertices and w edges. Note
that, when n=0, TG,, is K; and when n=1, TG, is K;. The
graph TGj; is given in Figure 6. In the following result, we
show that TG,,n > 2, is not m-bonacci graceful Vim > 2.

Proposition 4. The triangular grid graph TG, is not m-
bonacci graceful for all m > 2,n > 2.

Proof. Let m > 3. Then, by Proposition 1, TG,, n > 2, is
not m-bonacci graceful. Let m=2 and N = w denote
the number of edges in TG,. Let f; denote the k-th
Fibonacci number. To the contrary, assume that there
exists an n such that TG, is Fibonacci graceful. Then, fy
is an edge label of some edge uv in TG,. At most one ver-
tex of u and v can have degree 2. Now, we have

two cases.

o Case 1: If deg(u),deg(v) # 2, then the edge uv lies in
two different cycles. But, at most one of the two cycles
can have fy_; as one of its edge labels. This is a contra-
diction to Corollary 3.

o Case 2: If deg(u) = 2, then let w be another vertex which
is adjacent to both u and v in TG,. By Lemma 2 and
Corollary 3, fy—1 and fy_, are the other two edge labels
of the cycle uvwu. If fy_; is the edge label of vw, then
another triangle which has vw as one of its edge labels
can not have fy_, as one of its edge labels, which is a
contradiction to Corollary 3. Hence, the edge label of uw
and vw is fy_; and fy_, respectively. Now, consider the
triangle vwtv, t is another vertex of TG, adjacent to v
and w. Now, by Lemma 2 and Corollary 3, the edge
labels are fy_; and fy_4. Without loss of generality, let
fn—3 be the edge label of the edge vt. Now, the triangle
different from vtwv and uvwu which has vt as one of its
edge can not have fy_4 as one of its edge labels, which is
a contradiction to Corollary 3.

Hence, the result. O

5. m-Bonacci graceful graphs

In this section, we discuss some special graphs which are m-
bonacci graceful. We start the section with cycles. We begin
by answering for what values of n and m, C, is m-bonacci
graceful. The following theorem gives a characterization for
all cycles C, that are m-bonacci graceful. In [2], Bange et al
found the values of n for which C, is Fibonacci graceful.
The following theorem is the generalization of the result to
any m.

Theorem 3. Let m >2. The cycle C, with n vertices is m-
bonacci graceful if and only if n=0,2,3, .., m—1
or m (mod(m + 1)).
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Figure 6. Triangular grid graph TG;.

Proof. Consider a cycle C, of length n. Let n=0,2,3,
vy m—1 or m (mod(m+1)). Then, n =k(m+1) + ¢ for
some t € {0,2,3,...,m}. Let vi,v,,...,v, be the vertices of
C,. We give a labeling for C,, as follows:

0 i=1
I(V]) = Zn,m ] =2 (2)
Z(ijl) - an(jfz),m 3 S] <m+1
For 1 <i<k,
Z(Vi(m+1)) + Zn—i(m+l),m ]: 1
1Vigmey+i) = § WWitmi+1) = Zn—(im+1)-1),m j=2
IVigms1)4G-1)) = Zn—(imiD)+G-2)m 3 <j<m+1

Here 1(v2)=Zym>1(v3) > >1(Vins1) =1(Vin) = Zn—(m-1),m =
an(mfz),m >0. Again l(varZ) = an(m72),m + an(erl),m >
I(Vimy3) > ... > l(Vymi2)) > 0. Here [(viuy1) < [(Viy2) and
l(Vm+3) = Zn—(m—Z),m + Zn—(m+1),m - Zn—m,m < Zn—(m—z),m =
I(vim11). Hence, all the labels are distinct and positive inte-
gers. Proceeding in the same way, we get that all the labels
are distinct. The difference of each adjacent vertex label is
distinct m-bonacci numbers (clear from the construction of
labels). Hence, C,, is m-bonacci graceful.

Conversely, suppose C,, is m-bonacci graceful for some
m. One can easily observe that by Theorem 1, C, is not m-
bonacci graceful if n = 1(mod(m + 1)). From Equations (2)
and (3), C, is graceful for n=0,2,3, .., m—1 or
m (mod(m + 1)). Hence, the result. |

The following corollary gives the vertex label of particular
vertices of C,,.

Corollary 5. Let C, : viv2v3...v,v1 be an m-bonacci graceful
cycle for some m>2, and labeled as given in Theorem 3.
Then, I(Vini1)) is an m-bonacci number for all i > 1.

Proof. We prove this result by induction on i. By Theorem
3, we have the following:

l(vm+1) = Zn, m

- anm,m

- Zn—(m—l),m - Zn—(m—Z),m -

Therefore, the result is true for i =1. Assume that l(vi(m+1))
is an m-bonacci number. Let I(vij41)) = Z;m for some s.
By construction, it is easy to verify that s=n — (i(m + 1) —
1). By Theorem 3, we have,
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Figure 7. 4-bonacci graceful labelling of a caterpillar.

Figure 8. m-bonacci graceful labelling of trees with 4 edges, m > 3.

11y me1) = WWigms1) + Zo—igme1),m — Zn—(i(m+1)-1),m
= Zy(i(m+1)+1),m
— Zu—(imrD42m — " — Ln—(i(m1)+m—1)).m
= 1(Vitm+1)) + Zu—(itms1)+m).m = Zn—(i(m+1)—1),m

= ZLn—(i(m+1)+m),m

(4)
From Equation (4), [(v(i41)(m+1)) is an m-bonacci number.
By induction, the result is true for all i. 0

The next simple special class of graph is the tree. For any
m, we can give graceful labeling to K; and K,. For n=4 and
m > 3, the only tree which cannot be m-bonacci gracefully
labeled is Kj 4. Kj,,, is not m-bonacci graceful for any m > 2
(refer Proposition 2). For m >3, except Kj, 4 all trees with
five edges are m-bonacci graceful.

The following theorem provides m-bonacci graceful label-
ing for any tree with edges more than 5. We omit the proof
as it is similar to the proof given by Bange et al. Few exam-
ples are shown in the Figures 7-9.

Theorem 4. All trees T, with n > 6, where n denotes the
number of edges, except for Ky ,, are m-bonacci graceful for
all m> 2.

5.1. Friendship graph

The Friendship graph Fr! is obtained by joining # copies of
C, with a common vertex. An example of Frg is given in
Figure 10. By Proposition 1, Frf, n>1, t <m, is not m-
bonacci graceful for all m>2. In the following result, we
find values of t such that the Friendship graph Fr! is m-
bonacci graceful for all m > 2.

Theorem 5. Let m > 2. The friendship graph FrAm ) s m-
bonacci graceful for all k > 1

Proof. Let v be the common vertex with vertex label 0. We
(1) et

)in

denote by Aj, A,,...,A, the distinct cycles in Frl,i

the vertices of each A;, 1 <i<mn, be v, v’z,vg,...,v;((mﬂ

that order. We label the vertices of cycle A; in a similar way

as given in Theorem 3 with the starting label I(v)) =
Z(n—(i=1))k(m+1),m- By Corollary 5, l(v}'{(mﬂ)) is an m-bonacci
number. The derived edge labels of A; are: Zy,_(i_1))k(mt1), m>
Z(n—(i=1))k(m41)—1,m> - Z(n—(i—1))k(m+1)—m,m- Lhus, the vertex
labels and edge labels are distinct and hence the result. 0

3-bonacci graceful labeling of Frg is shown in the
Figure 10.

Another variant of Friendship graph denoted by Frf is
obtained by joining n copies of Fj with a common vertex,
where Fj is a fan on k+ 1 vertices. When k=2, Prﬁ is noth-
ing but Fr} which is Fibonacci graceful. Thus, we take k > 2.
Note that, by Proposition 1, the fan graph Fy for k>2 and
Frk are not m-bonacci graceful for all m > 3. The following
result gives a Fibonacci graceful labeling of Fr* for k > 2.

Theorem 6. The friendship graph FrX is Fibonacci graceful
foralln>1and k > 2.

Proof. Let v be the common vertex and let Ay, A;, ..., A,
denote the n copies of the fan graph Fj respectively. Let the
vertices of A; be u;;, up, ..., ujx such that u;; is adjacent with
vertex v for all 1 <j<k and u;j is adjacent with vertex
ujj+1) for all 1 <j <k — 1. Label the vertex v as 0.

For 1 <j <k, we label the vertices of A; as follows:

ug) = {fz(il)ki+2j
fati-vk—itai-1)

i odd

i even

Clearly, the vertex labels and edge labels are distinct. Thus,
F r’; is Fibonacci graceful. 0

A Fibonacci graceful labeling of Fr; is given in Figure 11.

5.2. Polygonal snake graph

A polygonal snake graph is obtained from a path P, by
replacing each edge of P, by C, i.e., for each edge in the
path P; a cycle of length # is adjoined. It is denoted by PS; ,
where t denotes the number of vertices of the path and n
denotes the number of edges of the cycle C,. Hence, PS; ,
has t(n—1)— (n—2) vertices and n(t—1) edges. An
example is shown in Figure 12.

Theorem 7. The Polygonal snake graph PS, .11 is m-bonacci
graceful for all t > 1 and m > 2.

Proof. Let PS; .1 denote the polygonal snake graph with
tm — (m — 1) vertices and N = (m + 1)(t — 1) edges and let
Ay, A, ..., Ay be the cycles of PS; 41 in that order. Denote
the vertices of A; by u;, uip, ..., Ujimyyy for all 1 <i <t —1.
Note that, uj(nq1) = tgipr) for all 1 <i<t—2. We label
the vertices of A; as follows:

l(un) =0, lu1z) = Zn,m»
l(ulj) = l(ul(];l)) — ZNf(jfZ),m’?) S] <m+1.

Here, [(u1;) > l(u13) > ... > l(uy(my1)). Thus, the vertex
labels of A; are all distinct. Now, we have the following:
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GRAT GR09 GROE HR02

Figure 9. 5-bonacci graceful labeling of a non-caterpillar.

45152016
ta1 ORO50096 ta

8646062
tar
tag 25

30122
Figure 10. Tribonacci graceful labeling of Fry.

I(u1(mi1) = Wt1m) = ZN—(m-1),m

N-1
:ZN,m_ Z

i=N—(m—1

Zi, m
)

- Zme,m

(5)

Thus, the derived edge labels are Zy, m, ZN_1,m> - > ZN—m,m-
We have uj; = u(i_1y(m+1),2 <i < t—1. We now label the

vertices of A;,2 < i <t — 1 inductively as follows:
l(Miz) = l(uil) - ZN—(i—l)m—l,m
Wuij) = lwii-1)) + ZN—(i-1ym—(G-1)m> 3<j<m+1
Clearly, for a given A, 2 <i<t—1,
Wsiimyr)) > Wthim) > Wthigm—1y) > - > ui)
and for 2 <j < m+ 1, we have the following:
Wwij) = Wutigj-1) + Zn—(i-1ym—(G-1).m
= lui) = Zn—(i—1ym—1,m + M

where,

(6)

7)

1H56 1313 1208

Tae f1o
f34 f12
faz f14
Jao f16
f28 J1s

fio fa1 fas fas Sar

Figure 11. Fibonacci graceful labeling of Fr;.

2664

384

301
Figure 12. 4-bonacci graceful labeling of PS4 5.

M, =

(i=1)m—2
Zu,m

N— —
a=N—(i—1)m—(j—1)

Since M, adds at most m - 1 consecutive m-bonacci

numbers, from Equation (7), we have
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Thus, all vertices of the polygon A; for 2 <i <t —1, have
distinct labels. We now show that for any two Ap and Ap
2 <p,q <t—1, such that p # g the vertex labels of A, and
A, are all distinct. We first prove the following claim.

Claim: For i>2, have
and I(u(i1y2) > Uthim)

From Equation (7), we get that I(u;1) > (ujms1)) Vi > 2.
Since Ujimi1) = Ugit1y, Wwe have (uipni1)) > (1) (mi))-
The only thing left to prove is I(u(iy1)2) > (t4im). We have

that,

we l(ui(m+l ) > l( (i+1 (m+1))

Wugiyry2) = ugis1n) — ZN—im—1,m (vertex labeling of A; )
= I(u i(m+1) ) = ZN—im-1,m (since Uiim+1) = M(i+1)2)
l(ull) N (i-1)m—1,m

N—(i—1)m—2
+ Z Zam — ZN—im—1,m (From Eq. 7)
a=N—im
(8)
Also we have,
N—(i—1)m—2

Wttim) = Wtt1) = Zn—(i—1ym-t,m + > Zam (9)

a=N—(i—1)m—(m—1)

From Equations (8) and (9), we get [(u(it1)2) — l(thim) =

ZN—imym — ZN—im—1,m > 0 since N —im > 2. Hence,

lu(iy1)2) > luim) and the claim holds.

By claim and Equation (6), it is clear that the vertex
labels of A,, As, ..., A,_; are all distinct. We now show that
the vertex labels of A; and A; for 2 <i <t — 1 are distinct.
In A, we have,

l(ulz) > l(M13) > > l(ul(m+1)) = l(u21) (10)

We have from Equation (6), I(u21) > l(uzj),2 <j<m+ 1.
Hence, by the above claim and Equation (10), the vertex
labels of PS; 41 are all distinct from each other. By

Figure 13. D(PS43).

121415 t20 55403 17808  ti3

calculation, we get that I(u;(i1)) — (i) = Zn_itm+1),m- BY
construction, other edge labels are distinct m-bonacci num-
bers. Hence, PS; ,+1 is m-bonacci graceful. O

A 4-bonacci labeling of PS, 5 is given in Figure 12.

5.3. Double polygonal snake graph

The double polygonal snake graph denoted by D(PS;,) is
obtained from the path with edges e;, e, ...e;—; by adjoining
two different cycles of length n to each e; as the common
edge forall 1 <i<t—1.

Note that, D(PS; ,) has (+ —1)(2n — 3) + 1 vertices and
(t—1)(2n — 1) edges. An example of such a graph is given
in Figure 13.

Theorem 8. The double polygonal snake graph D(PS; 1) is
m-bonacci graceful for all m > 2.

Proof. The graph D(PS; ;,11) has (t —1)(2m — 1) + 1 verti-
ces and N = (t—1)(2m + 1) edges. Let A; and B; denote
the two different cycles associated with edge e; of the path
P, 1 <i<t—1. Let u; and w;; denote the vertices of cycles
A; and B; respectively, 1 <j < m+ 1. For each i such that
1 <i<t—1, we have uji = Wip, Ujimi1) = Wigms1)- We label
the vertices of A; as follows:

l(uu) = O, l(ulz)
I(Lll]) = l(ul(j,l))

Clearly the vertex labels are distinct as [(uyp) > I(u13) >
- > Wu1m) > l(thy(mr1))- Also, we have the following:

= ZN,ms

. (11)
—ZN,U,2),m, 3 S_] S m—+1

- ZNf(mfl),m

N—1
Z Zi,m
=N—(m

,1)

l(“l(erl)) = l(ulm))

=Znm — (12)

- Zme,m

From Equations (11) and (12), the derived edge labels of the
edges of Ay are Zn, > ZN—1,m> --» ZN—m,m- We now label the
vertices of B, as follows:

I(wim Ity (m IN-m-1m
(Wim) = l(u1(m+1)) — ZN-m—1 | 13)
l(wyj) = L(wy (1)) — INami(-1)m 2<j<m—1

18735 19215 te 19228

GaE

19469 to

3136 tia
Figure 14. 3-bonacci labeling of D(PS4,4).

8904

dJ

19388 19238 t2 19237



We have, [(uy(mi1)) > Uwim) > I Wigm—r)) > -+ > l(wiz) >
I(w11) = I(u11). Hence, the label of vertices of A; and B are
distinct. By the definition of I(wy;), we have the following:

I(wi2) = l(w13) — Zn-2m+1,m
N-m—1
- Zme,m - Z Zi,m (14)
i=N—2m+1
- ZN*Zm,m

From Equations (13) and (14), the derived edge labels of B,
are ZnN—m.m> ZN—m—1,m> -+ ZN—2m,m» Wwhere Zy_,, ., is the
edge label of the edge e; = uyiu(pi1)-
We now label the vertices of A; and B;, i > 2 as follows:
l(uiz) = l(llﬂ)
uy) =
I(Wim

)=
I(wy) =

- ZN—(i—l)(2m+1)

Wui-2)) + Zn—(i-)emi1)—(-2.m 3 <j<m+1

l(ul m+1) ) + ZN—(i—l)(2m+1)—(m+(m—2)),m

u o3 <j<m
(15)

From Equation (15), we have, [(up) <l(up)<---<

Wttim) < Wthigms1)) < LWim) < (Wigm—1)) < --- <I(wiz). The

edge label of u;iuj(p1) is

Ui(j1+1)) + ZN—(i-1)2m+1)—(m+(-1

i) = Wttimr1)) = Wug-1ym) + ZN—(i-2)@mt1)—(m-1),m
- [l(uim) + ZN—(i-1)@m+1)—(m-1),m]
= ZN_m—(i-1)@2m+1),m
(16)
Similarly, we get that (u;) — ((wi) = Zn_am—(i—1)2m+1),m

Thus, the derived edge labels are distinct m-bonacci num-
bers. The proof that the vertex labels are distinct is as same
as that of Theorem 7. Hence, the result. 0

A 3-bonacci graceful labeling of D(PSy4) is given in
Figure 14.

6. Conclusion

We defined new graceful labeling called m-bonacci graceful
labeling and gave labeling for some special class of graphs.
We also found some particular classes of graphs that are not
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m-bonacci graceful. It will be interesting to look into the m-
bonacci graceful labeling of G * H, where G and H may or
may not be m-bonacci graceful and * is a graph operation.
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