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The transition from laminar to turbulent flows in liquids remains a problem of great interest despite

decades of intensive research. Here, we report an atomistic study of this transition in a model

Yukawa liquid using molecular dynamics simulations. Starting from an thermally equilibrated

Yukawa liquid, for a given value of coupling parameter C (defined as ratio of potential energy to

kinetic energy per particle) and screening length j, a subsonic flow of magnitude U0 is superposed

and transition to an unstable regime is observed eventually leading to turbulent flow at sufficiently

high Reynolds numbers. We have performed a parametric study for a range of Reynolds number R

and found that the flow is neutrally stable for R < RcðCÞ, while a transition from laminar to

turbulent flow occurs for R > RcðCÞ, where Rc is the critical value of Reynolds number. Strong

molecular shear heating is observed in all cases studied here. It is found that the coupling

parameter C decreases because of molecular shear heating on a time scale comparable to the

instability time scale. Irrespective of the initial value of coupling parameter C, the average heating

rate is found to be sensitive to the ratio of equilibrium flow speed to the thermal speed, say, a ¼ U0

vth
,

where vth ¼
ffiffiffi

2
C

q

. Our results reported here are expected to be generic and should apply to a wide

variety of strongly coupled systems such as laboratory dusty plasma, molten salts, and charged

colloidal systems.VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934535]

I. INTRODUCTION

It is well known that micron-sized dust grains immersed

in a conventional plasma acquire a high value of charge

because of high mobility of electrons.1 These grains interact

with each other via screened Coulomb potential, also known

as the Yukawa potential. Screening is because of the back-

ground plasma and is characterized by dimensionless screen-

ing parameter j ¼ a=kD (where a is intergrain-spacing and

kD is Debye length of background plasma). These interacting

dust grains behave as a medium which can exhibit solid-

like,2–4 liquid-like,5 and gas-like1 features, depending upon

screening parameter j and the value of coupling parameter C

(C ¼ Q2
d=4pe0akBTd, wherein Qd and Td are charge and

temperature of dust grain).

The dynamics of microscopic dust grains can be visual-

ized and tracked (many a times even by unaided eye) by

optical cameras in the dusty plasma experiments.2 Molecular

dynamics comes as a powerful tool to study different proper-

ties such as phase transition, instability, transport, grain

crystallization physics, and also to visualize the dust grains

dynamics. For example, in the past, various dynamical prop-

erties of dusty plasma determination of transport coefficients,

such as shear and bulk viscosities,6 Maxwell relaxation time

(sm),
7 heat conduction, wave dispersion,8 self diffusion9 and

fluid instability like Kelvin-Helmholtz instability,10 had been

addressed using the molecular dynamics simulation.

In an earlier molecular dynamics study,11 shear heating

was identified. In past, macroscopic shear flows have been

induced by external laser-drive in Yukawa liquids.12,13 In

one of these experiments,12 a co-evolving shear heating was

observed. However, a detailed study of shear heating in mac-

roscopic flows in Yukawa liquids has not yet been

addressed.

In the present work, we consider the well known macro-

scopic flow, namely, Kolmogorov14,15 flow [see Fig. 3] as

our initial shear flow. Kolmogorov flow is a sinusoidal

periodic shear flow, which was first introduced by Russian

mathematician Andrey Kolmogorov in 1958–1959. This

particular shear flow has been addressed analytically,14

numerically,16 and experimentally15,17 to explore linear, non-

linear,18 and statistical19 properties of laminar to turbulent

transition in fluids.

Using “first principle” molecular dynamics, the early

phase and late time dynamics of this hydrodynamic flow in

strongly coupled plasma is addressed. We have also per-

formed a parametric study of stability of the flow with

Reynolds number R and found that below a critical value of

Reynolds number Rc, flow exhibits a neutral stability.

However, above R > Rc, a transition occurs from laminar to

unstable state and eventually turning into a turbulent flow.

We observe that for the given value of initial coupling pa-

rameter C and screening parameter j, molecular shear heat-

ing strongly reduces the magnitude of dynamic coupling

parameter and its decay-rate is mainly found to be dependent

upon the ratio of equilibrium shear velocity to thermal veloc-

ity. We find that the magnitude of coupling parameter decays

exponentially by the end of the growth phase, thus altering

the state of “background grains” dramatically.

Present paper is organized in the following manner.

In Sec. II, we describe the details of molecular dy-

namics simulation method. In Sec. III, equilibrium profilea)Electronic mail: ganesh@ipr.res.in
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of shear flow and its laminar to turbulent transition are

described. In Sec. IV, molecular shear heating effects on

coupling strength are described. Finally in Sec. V, we dis-

cuss and summarize our present work and indicate future

directions.

II. MOLECULAR DYNAMICS SIMULATION

As described in the Introduction, the interaction between

grains can be modeled as a Yukawa interaction given by the

inter-particle potential energy

U rijð Þ ¼
Q2

d

4p�0

X

N

j 6¼i

e�rij=kD

rij
; (1)

where rij ¼ jri � rjj is the distance between ith and jth dust

grain. Note that due to fast dynamics of background plasma,

we consider plasma properties to be invariant and model

only grain dynamics. The N-body problem is then numeri-

cally integrated using our parallel code.20 Time, distance,

and energy are normalized to inverse of dust plasma fre-

quency
ffiffiffi

2
p

x�1
pd ¼ x�1

0 , mean inter-gain spacing a, and aver-

age Coulomb energy of dust particle
Q2
d

4pe0a
, respectively.

Hence, all physical quantities appearing henceforth in the

paper are dimensionless. In our simulations, the size of the

system is decided by average number of dust particles �n. For

our choice of �n ¼ 1
p

and total number of particles

Nd¼ 62 500, Lx ¼ Ly ¼ L ¼ 443:12. Screening parameter j

is 0.5. In present work, we do not consider Ewald sums21

because of sufficiently large system size.

The Yukawa liquid is first thermally equilibrated by

connecting the system to a Gaussian thermostat20 at desired

C and is evolved for time t0 ¼ 300x�1
0 . For next 300x�1

0 , the

system is isolated from heat-bath and evolved micro-

canonically. In Fig. 1, the total energy as a function of time

is plotted. As can be expected, in the canonical phase (see

Fig. 1) a mean energy is attained for a constant value of

coupling parameter C and in the micro-canonical phase,

the total energy is seen to be conserved. However, when

shear flow is superimposed over thermally equilibrated

dust particles, the total energy changes from 1.147 to

1.3967 (see Fig. 1).

To calculate the “fluid” variables from particle dynam-

ics, a meshgrid of size 55� 55 is superimposed on to the sys-

tem of particles. On an average, each bin would contain

Nb ¼ Nd

55�55
’ 20 particles, which is found to be sufficient to

estimate average local quantities. We calculate average local

“fluid” velocity �UðxG; yG; t0Þ, average local vorticity

�xðxG; yG; t0Þ (�x ¼ r� �U), average local coupling parame-

ter �CðxG; yG; t0Þ, and average local temperature �TðxG; yG; t0Þ
at the grid points, where ðxG; yGÞ is the location of a center

of a particular bin. For example, average local fluid veloc-

ities along x and y directions are calculated as �Ux ¼ 1
NbPNb

i¼1 vix;
�Uy ¼ 1

Nb

PNb

i¼1 viy, where vix and viy are individual

particle velocities along x and y direction. Similarly, average

local coupling parameter of grain fluid element velocities is

calculated by the following expression:

�C xG; yG; t
0� �

¼ 2

1

Nb

X

Nb

i¼1

vix t0ð Þ � Ux

� �2 þ viy t0ð Þ � Uy

� �2
� �

:

(2)

Data shown in Fig. 2 are divided into three regions. In

the first region (a), coupling parameter �Cðt0Þ with time

ð0� 300Þx�1
0 has been plotted in canonical phase where

thermostat is on, in second region (b), the same variable is

plotted against time ð300� 600Þx�1
0 with thermostat off

condition (micro-canonical phase). In the last region (c), af-

ter superposition of shear flow U0ðxÞŷ (see Sec. III for details
of shear flow) over system of particle velocities, dynamic

coupling parameter �C is plotted for time ð600� 1600Þx�1
0 .

Fig. 2 shows that the coupling parameter is constant before

superposition of shear profile however, as shear profile

superimposed on thermally equilibrated dust grains and the

system is evolved further the value of coupling parameter

decays. In Sec. III, we report early and late time behavior of

shear flow in strongly correlated Yukawa liquids. Noticeable

thing is that shear flow is adiabatic (non-thermostatted)

which implies that the heat transfer away from the shear

layer is minimal.

III. KOLMOGOROV FLOWAS A INITIALVALUE
PROBLEM IN YUKAWA LIQUID

We have presented in Fig. 3 the equilibrium flow profile

of shear flow having spatial periodic number n0¼ 3, where

the flow is directed towards ŷ-direction and has transverse

shear along x̂-direction. In fluid dynamics study such shear

flows have been extensively used to understand the laminar

to turbulent transition of flows.14 We superpose shear flow

FIG. 1. Total energy vs time plot for coupling parameter C0 ¼ 50, screening

parameter j ¼ 0:5, spatial period number n0 ¼ 3 in canonical ð0� 300Þx�1
0

and micro-canonical run ð300� 600Þx�1
0 . Next ð600� 1600Þx�1

0 plot is af-

ter superposition of shear flow profile over thermally equilibrated dust par-

ticles (micro-canonical run). Superposition of shear flow increases the

velocity of particles, hence the value of total energy changes from 1.147 to

1.3967 as shown above.
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over thermally equilibrated dust particles at a desired tem-

perature and allow it to evolve micro canonically up to

1000x�1
0 without heat-bath. The initial equilibrium shear

flow is ~U0ðxÞ¼U0 cosð2pLx n0xÞð1þ d cosð2p
Ly
myÞÞŷ, where

U0 ¼ 1 (the magnitude of equilibrium velocity, n0 ¼ 3 (spa-

tial period number), d ¼ 0:01 (magnitude of perturbation),

m¼ 2(perturbed mode number). Coupling parameter Cðt0Þ
at time t0 ¼ 0 is C0 ¼ Cðt0 ¼ 0Þ ¼ 50, for which the thermal

velocity vth ¼
ffiffiffiffi

2
C0

q

¼ 0:2. It is estimated that the longitudinal

sound speed of the system for C0ðt0 ¼ 0Þ ¼ 50 and j ¼ 0:5
is with in the range of 2–2.5.22 Hence, equilibrium velocity

(U0 ¼ 1) is greater than thermal speed (vth¼ 0.2) but smaller

than sound speed (Cs ¼ 2� 2:5) of the system, therefore

flow regarded as “subsonic” in nature.

Note that the entire macroscopic flow speed is along ŷ

direction initially. The transition from laminar to turbulent

flow along ŷ direction to an unstable macroscopic dynamics

state may be identified by calculating the change in per-

turbed kinetic energy along x̂ direction as defined in the fol-

lowing equation:

dEkin tð Þ
dEkin 0ð Þ

	

	

	

	

	

	

	

	

¼

ð ð

v
2
x tð Þ � v

2
x 0ð Þ


 �

dxdy
ð ð

v
2
x 0ð Þdxdy

: (3)

Note that, for convenience, we rewrite time variable t0 as
t ¼ t0 � 600x�1

0 . Henceforth, in the rest of the paper, dynam-

ics will be described with respect to t.

In Fig. 4, perturbed kinetic energy along x�direction

and coupling parameter is plotted on a log-linear scale

against time t. Growth rate of perturbation is found to be

approximately equal to 5:5� 10�2. In Fig. 4, perturbed

kinetic energy along with decay of coupling parameter C are

plotted in the same figure. A noticeable thing is that the mo-

lecular shear heating reduces the value of coupling parameter

by 50% (C ’ 26 at t ¼ 220x�1
0 ) from its initial value

(C0 ¼ 50 at t¼ 0). From Fig. 4, it is evident that molecular

shear heating is very fast at initial phase of shear flow

(before t¼ 0 to t ¼ 220x�1
0 ). As observed in Ref. 11, the fol-

lowing two processes are appeared to be at work in the shear

region: (a) Decay of coupling parameter or rise in tempera-

ture which changes the local viscosity of the system and (b)

on macroscale, the free energy in flow shear is released as an

instability. Due to this free energy and also because of low

viscosity, perturbed modes start to grow. In late time regime,

inertial effects dominate over the stabilizing viscous effects.

The fluid undergoes laminar to turbulent flow transition, and

late time saturation in perturbed kinetic energy is seen. In

Fig. 5, we have presented the time evolution of vorticity

FIG. 2. Average coupling parameter �Cðt0Þ vs time plot for initial coupling

parameter C0 ¼ 50, screening parameter j ¼ 0:5 spatial period number

n0 ¼ 3 and shear velocity U0¼ 1. (a) canonical run for time ð0� 300Þx�1
0 ,

(b) micro-canonical run for time ð300� 600Þx�1
0 , wherein peak to peak

fluctuation 1.406%, (c) micro-canonical run for time ð600� 1600Þx�1
0 after

superposition of shear flow profile over thermally equilibrated particles of

the system.

FIG. 4. Perturbed kinetic energy (left y-axis) and decay of coupling parame-

ter (right y-axis) in linear-log scale for number for perturbation mode m¼ 2,

initial coupling parameter C0ðt ¼ 0Þ ¼ 50, screening parameter j ¼ 0:5,
spatial period number n0 ¼ 3; and shear velocity U0¼ 1. Calculated growth

rate from simulation is 5:5� 10�2.

FIG. 3. Kolmogorov velocity (U0 ¼ 1) profile in xy plane. White arrows

show the direction of local flow along y direction and shear along x

direction.
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structure in Yukawa liquid at initial coupling parameter

C0 ¼ 50. As described earlier, to construct these vorticity

structures, we first obtain the local velocity by “fluid”

dust particle velocities over a 55� 55 meshgrid. In vorticity

evolution plot [see Fig. 5], it is depicted that in initial time

perturbed mode m¼ 2 first grows and in late time mode-

mode interaction dominate and nonlinear patterns are

obtained. It is found that after some time, vorticity structures

are destroyed because of microscale molecular shear heating,

the details of which will be discussed in Sec. IV.

In Fig. 6, we have shown results of a parametric study

for maximum growth-rate of perturbed mode with initial

Reynolds number R ¼ U0l�n=g, where l and g are the shear-

ing length and initial shear viscosity of the flow, respec-

tively. Here, the value of shear viscosity g is calculated using

the Green-Kubo formalism.7,23 It is depicted in Fig. 6 that

for a given value of C0 and j, flow is neutrally stable below

R < Rc, where Rc is the critical value of Reynolds number

and for R > Rc flow becomes unstable and eventually turbu-

lent [see Fig. 6]. It is tempting to speculate from the result

shown in Fig. 6 that such laminar to turbulent transition

in our system could be a transcritical bifurcation.24

Interestingly, we find that higher value of coupling parameter

C decreases the critical value of Reynolds number Rc.

In Sec. IV, we study the effect of viscous heating on

shear flow.

IV. MOLECULAR HEATING DUE TO SHEAR FLOW

It is found that, whenever there is a shear in macroscopic

velocity profiles, viscous shear heating occurs at the micro-

scale. For some fluids, it is not necessary for shear heating to

increase the temperature at the shear layer, because heat con-

duction can be so rapid at the location of the velocity shear

where the heat is formed that as soon as heat is generated, it

is carried away. Conventionally, the effect of viscous shear

heating and thermal conduction is measured by a dimension-

less parameter, known as Brinkman number25,26 Br �
gðDVÞ2=kDT (where g and k are shear viscosity and thermal

conductivity and DV and DT are difference in flow velocity

and temperature, respectively).26 Mostly, Br which is the

ratio of viscous heating to thermal conduction is smaller than

the unity. The higher is the value of Br, the lesser will be the

heat conduction, and hence, larger the temperature rise

near the shear layer. For example, for Taylor-Couette flow in

Newtonian and visco-elastic fluids trapped between concen-

tric and rotating cylinders, value of Br is found to be

0.0035927 and for conventional water flow in a channel28 its

value is approximately in the range of ð1� 17Þ � 10�8.

Recently in dusty plasma experiments, using laser driven

shear flow study, high temperature peaks are reported13 in the

regions of velocity shear in two-dimensional layer. These

high temperature peaks are due to shear heating, which

occurs due to collisional scattering at the region of shear loca-

tion. In such dusty plasma experiments, value of Br is esti-

mated to be 0.5.13 We have calculated Brinkman number

from our numerical simulation and found that Br¼ 0.9445 for

our system parameters at the grid location xG � 110 and time

t¼ 0 for C0 ¼ 50; j ¼ 0:5; gðt ¼ 0Þ ¼ 0:2 (Ref. 7) and

kðC0 ¼ 50; j ¼ 0:5Þ ¼ 0:4235,29,30 the value of DT and DV

are 0.02 and 0.2 from Figs. 7 and 8.

In the shear layers, frequency of collisions between dust

grains can be expected to be high. These collisions increase

the random thermal velocity of particles. Temperature of

dust grains depends upon the random thermal velocity which

is directly related to kinetic energy. Moreover, viscous dissi-

pation effects become important when either the viscosity is

larger or when the fluids have a low thermal conductivity,

which increases the temperature gradients. One can clearly

see the viscous shear heating at shear locations in Fig. 7, in

which space dependent temperature profile has been plotted

at various times. In these temperature profiles because of

spatial period number 3, six maxima (at the location of inter-

face between two consecutive anti parallel flow) show the

shear heating locations. As time increases, magnitude of

temperature increases and at time t ¼ 1000x�1
0 , temperature

FIG. 5. Fluid vorticity (x ¼ r� ~U) contour plots. The grain velocity in the

bins is fluidized through a 55� 55 grid to construct vorticity. The side color

bar shows the magnitude of vorticity and blue and red strips show the oppo-

site sign vorticity, respectively. Perturbation mode m¼ 2, initial coupling

parameter C0 ¼ 50, screening parameter j ¼ 0:5 equilibrium spatial period

number is n0 ¼ 3, initial Reynolds number R¼ 235.149, and shear velocity

U0¼ 1. Vorticity plots generated from microscopic velocity show

Kolmogorov instability in molecular dynamics; the micro scale heating

quickly destroys the vorticity structures.

FIG. 6. Growth-rate vs initial Reynolds number R plot showing transcritical

kind of bifurcation.
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starts to saturate. In Fig. 8, space dependent “fluidizing”

velocity profile has been plotted at y¼ 0 axis. Again a clear

signal of molecular shear heating is visible, which shows

that because of shear heating vorticity structures are

destroyed. In Fig. 9, we have plotted average C which is

inverse of temperature as a function of time. The thermal

speed for C0 ¼ 50; 100; and 150 are 0.2, 0.14142, and

0.11547, respectively, and are much smaller than equilibrium

velocity speed U0 ¼ 1 (therefore, the shear heating phenomena

occur and result in the decay in C value). We find that decay-

rate is dependent on equilibrium flow velocity. To better

understand the interplay between heat conduction and viscous

heating, we define a parameter a which is a ratio of equilib-

rium speed of shear flow to the thermal speed a ¼ U0=vth.
We divide our observations into three categories:

(a) [a¼ 0.5 or ðU0 < vthÞ]: For this case, the thermal speed

is greater than the equilibrium velocity speed. In Fig.

10, shear heating is very small for a ¼ 0:5 for various

values of coupling parameter. One can say, that for

larger value of thermal speed, the coupling parameter

will be constant with very small fluctuations through-

out the simulation.

(b) [a¼ 2.0 or ðU0 > vthÞ]: In this case, it is found that the

decay rate of higher C0 ¼ 100; 150 is quite close, how-

ever, a slight smaller for C0 ¼ 50.

(c) [a¼ 6.0 or ðU0 � vthÞ]: For this case, the thermal

speed is much smaller than the equilibrium velocity

speed, results in the faster decay for high C0 ¼ 100;
150. For C0 ¼ 100; 150, decay-rate is close to each

other while for C0 ¼ 50 it is slower compared to the

higher C0.

FIG. 8. vyðxGÞ ¼ hvðxG; 0; tÞi, temporal evolution of velocity profile as a

function of x for different time for C0 ¼ 50, equilibrium velocity magnitude

U0 ¼ 1, screening parameter j ¼ 0:5.

FIG. 9. Spatial average coupling parameter C vs time plot for different value

of initial C0 for equilibrium velocity magnitude U0 ¼ 1, screening parameter

j ¼ 0:5 at y¼ 0 axis.

FIG. 10. Spatially averaged coupling parameter CðtÞ as a function of time

for three different values of initial C0, namely, C0 ¼ 50ð�Þ; 100ð(Þ
and 150ð�Þ. Colors correspond to the cases a ¼ 0:5ðredÞ; 2ðgreenÞ; and 6
ðblueÞ.

FIG. 7. �TðxGÞ ¼ h �TðxG; 0; tÞi, temporal evolution of temperature profile as a

function of x for different time for C0 ¼ 50, equilibrium velocity magnitude

U0 ¼ 1, screening parameter j ¼ 0:5.
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In Fig. 11, we have fitted the decay-rate data with an

exponentially fit a½1þ b expð�btÞ�, where a¼ 0.2, b¼ 4.0, b

are intercept, coefficient of exponential part and decay-rate,

respectively. b describes how rapidly the coupling parameter

decreases as the time increases. The decay rate b of coupling

parameter is approximately 3:4� 10�3 qualitatively. To see

the dependency of decay rate on equilibrium velocity to ther-

mal velocity ratio (a ¼ U0=vth), we have plotted decay rate

vs a in Fig. 12 for coupling parameter C0 ¼ 50. It is clear

that the decay rate of particular coupling parameter monot-

onically increases with a value.

V. CONCLUSIONS

In the present work, we have investigated laminar to tur-

bulent transition of Kolmogorov flow in strongly coupled

Yukawa liquid using “first principle” based molecular

dynamics simulation. Parametric study for range of

Reynolds number R has been performed and reveals that the

Yukawa liquid in neutral stable state for R < Rc and unstable

for R > Rc, where Rc is a transition point from where laminar

to turbulent transition occurs. The nature of the growth of

perturbed mode against Reynolds number exhibits transcriti-

cal like bifurcation. We have presented the effect of molecu-

lar shear heating on the stability of shear flow in Yukawa

liquid. In the early phase, we find that the coupling parame-

ter decays exponentially. At the late times, coherent vortices

are destroyed because of molecular shear heating. The

description of viscous heating is characterized by space de-

pendent temperature profile at a given coupling parameter

(C0 ¼ 50) of x at y¼ 0 for different times. These space de-

pendent temperature profiles reveal the rise in temperature at

shear location. It is also seen that the decay-rate of C with

time depends upon the ratio of equilibrium shear velocity to

thermal velocity. The influence of suppressed molecular

shear heating on shear flow to represent the fluid properties

without heat dissipation in strongly coupled dusty plasma

will be presented in future communication.
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