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1. INTRODUCTION

System and signal theory has a universal impact in under-
standing different kind of processes from various spheres
on Earth. Data-driven analysis of seismic data using these
theories is essential for various reasons. Under-the-ground
data not only helps in a better understanding of geology of
a planet but also the physical properties of local and sub-
shallow surfaces. Seismic data proves to be the most pow-
erful tool to study the internal structure of planets. With
this philosophy, several missions have been carried out to
deploy seismometers on other terrestrial bodies. However,
only two missions, Viking mission (1970s) and Interior
Exploration using Seismic Investigations, Geodesy, and
Heat Transport (InSight) mission (2018), were able to
deploy seismometers successfully. Viking mission installed
two seismometers on the red planet. Failed deployment
of one of the seismometer and hampered recordings by
another one during the Viking mission fail to give conclu-
sive results. Furthermore, the second seismometer did not
record any seismic event after 19 months of nearly con-
tinuous operation (Anderson et al. (1977)). It is because

the seismometer was picking up vibrations from various
operations of lander and Mars wind. These unexpected
issues hampered the necessary geological data and the
mission to uncover the crucial facts about the interior
structure and composition of Mars.

Recently, Interior Exploration using Seismic Investiga-
tions, Geodesy and Heat Transport (InSight) discovery
mission to Mars by NASA has deployed Seismic Ex-
periment for Interior Structure (SEIS) seismometer onto
the Mars surface using advanced robotic arm (Lognonné
et al. (2019)). The InSight spacecraft landed on Mars on
November 26, 2018, and since then, raw and uncalibrated
seismic data is available online for research. Data collected
for the first three months do not contain any marsquake
or meteorite impacts. Analyzing this event-free data is
necessary because, in many applications, background noise
is assumed to exhibit certain properties.

Data collected from the Viking mission has been the
interest of researchers for the past four decades. Several
models of Mars has been proposed to study the interior
structure. Okal and Anderson (1978) used the Preliminary
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Reference Earth Model (PREM) proposed by Dziewonski
and Anderson (1981) as the reference model under the
pressure conditions inside Mars to study the interior.
Several other geochemical models were proposed (Zharkov
and Trubitsyn (1978); Sanloup et al. (1999); Lognonné and
Mosser (1993)) to have a better understanding of Mars
structure. Apart from the theoretical models, there have
been attempts to estimate the compositions of martian
mantle (Plesa et al. (2015); Zheng et al. (2015); Khan
and Connolly (2008)). However, these geochemical models
generally fail to explain the geophysical data.

Despite the abundant literature to understand the interior
structure of Mars, there have been minimal efforts to study
the seismic noise. A better understanding of noise is very
crucial in order to study the composition of the planet.
Anderson et al. (1977) were among the first few researchers
to focus on the Mars seismic noise. Analysis of Mars noise
(Anderson et al. (1977); Lognonné and Mosser (1993))
shows that the seismic noise on Mars is competitively low
and the primary source is the wind and the noise levels
can be improved drastically by removing seismometers
from the lander. Phillips and Grimm (1991); Anderson
(1989) highlighted that the seismic properties are closely
related to the interior structure of the planet. Therefore it
is essential to characterize the noise systematically.

The main objective of this work is two-fold, (i) to sys-
tematically characterize the Mars seismic noise and (ii)
develop a suitable time-series component model based on
the statistical characterization of noise. Four prominent
properties of noise are considered, namely, integrating ef-
fects or trends, heteroskedasticity, linearity, and Gaussian-
ity. The first two properties correspond to specific types of
non-stationarities, while the latter two are associated with
the model structure and the distribution of driving force.
The analysis also allows us to conduct a comparative study
of the features exhibited by noise on Mars and Earth. The
main focus of this work is to analyze how these properties
vary for Mars and Earth data.

The primary findings of this work are that seismic noise
from both the planets exhibits certain same features, while
some of the properties are exclusive to Mars. Seismic
noise from Mars also exhibit heteroskedasticity, but unlike
the presence of integrating effects in Earth data, Mars
noise exhibits a polynomial trend. Moreover, data from
Mars tested positive for linearity and is found to be
driven by Gaussian white noise (like Earth data), thereby
calling for the widely used linear ARMA class of time-
series models. ARMA models can model only the linear
correlation and fail to model the variance changing nature
of data. This heteroskedastic feature of noise is modeled
using the GARCH model. Therefore, the overall model for
the Mars seismic noise is a component model that consists
of different types of models for different components of the
data, (i) a third-order polynomial, (ii) ARMA model, and
(iii) GARCH model.

The rest of the article is as follows. Section 2 reviews the
theoretical definitions of necessary statistical properties
and developing ARIMA-GARCH models. In Section 3,
we describe the systematic method for characterizing the
seismic noise followed by developing a suitable time-series
model. Analysis of three data sets collected from the

seismometer deployed at Elysium Planitia (ELYSE) site on
Mars is illustrated using the proposed method is presented
in Section 4. This Section also compares the seismic noise
features on the home and red planet. The paper ends with
a few concluding remarks in Section 5.

2. ESSENTIALS

This section lays down the theoretical foundations for the
essential aspects that are used in the development of this
work.

2.1 Definitions

For a random process y[k],

1. Wide-sense stationary process: y[k] is said to be
weakly stationary (Tangirala (2014)) if it satisfies the
following:
(i) Mean of y[k] is invariant with time.
(ii) y[k] has finite variance.
(iii) Covariance between any two pair of observations

of y[k] is only a function of time distance, known
as lag (l), and not the time.

2. Heteroskedastic process: y[k] is said to be het-
eroskedastic if the second-order properties of y[k],
variance and spectral density, varies with time.

3. Linear random process: y[k] is said to be linear if it
can be explained as the linear combinations of driving
force e[k] (Shumway and Stoffer (1982)), i.e,

y[k] =
∞∑

i=−∞

cie[k − i],

∞∑

i=−∞

|ci| < ∞ (1)

where, e[k] ∼ iid(0, σ2

e
).

4. Gaussian random process: y[k] is said to be a Gaus-
sian process if Y = {y1[k], y2[k] . . . yn[k]} for every
collection of time n and every positive integer k
have a non-singular multivariate normal distribution
(Shumway and Stoffer (1982)).

2.2 Time-series models

The purpose of any time-series model is to capture the
underlying characteristics of the process. In this work,
we have used two different class of models, (i) ARIMA
Brockwell et al. (2002) and (ii) GARCH (Engle (1982);
Bollerslev (1986)) models. The former class of models are
suitable for modelling the linear correlation in data while
the later class models the time-varying variance in mean
stationary data. Furthermore, ARIMAmodels are build on
the data while GARCH are build on the residuals obtained
from optimally estimated ARIMA model. Despite the
difference in type of data used to model these classes of
time-series models, the guidelines for developing a suitable
model is same for both the classes. The generic procedure
to develop a ARIMA model (Box et al. (2015)) is as
follows:

(a) Determine and model the non-stationarities in
data. The first step in the model development is to
model the non-stationarities in data. There exists a
variety of non-stationarities such as integrating effect,
deterministic trend, periodicity, seasonality, etc. Each
type of non-stationarity requires a specific kind of
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handling. Before estimating the model, data under
consideration should be stationary.

(b) Estimate the model of suitable order. Stationary
time-series can be modeled using (p + m) parame-
ters of the ARIMA model, values of p and m can
be identified from auto-correlation function (ACF)
and partial autocorrelation function (PACF) of data,
which are estimated from the data using estimation
algorithms such as least square, maximum likelihood
method, etc.

(c) Model assessment and validation. The quality of
the estimated model is assessed by the statistical
analysis of residuals and the error analysis of es-
timates. Residual analysis ensures the whiteness of
residuals, which is claimed if the ACF of residuals
is insignificant at all lags, while the error analysis
guarantees that the standard errors of the estimates
are small as compared to the estimated values.

If the model does not meet the assessment test as men-
tioned above, then either the model structure or the order
is refined, and the model is re-estimated until the esti-
mated model passes the quality assessment step.

A linear stationary random process can be modeled
using ARIMA(p, d,m), where an integrating type non-
stationarity is modeled by differencing operation. For a
time-series y[k], 0 ≤ k ≤ Nx−1, mathematical formulation
of ARIMA(p, d,m) is given by:
(

1−

p
∑

i=1

φiq
−i
)

(1− q−1)dy[k] =
(

1 +
m
∑

j=1

θjq
−j

)

e[k] (2)

where, p and m are the orders of AR and MA, d rep-
resents the degree of differencing needed to model the
integrating effect, q−1 is the back-shift operator and
e[k] ∼ GWN(0, σ2

e). As mentioned earlier, GARCH models
are developed on the residual series x[k] obtained from
ARIMA model. Development of GARCH(P,Q) model fol-
lows same steps where the values of P and Q are iden-
tified from the ACF and PACF of squared residuals. A
generalized-ARCH (GARCH) model of order (P,Q) is
defined as:

x[k] = σkǫ[k]

σ2

k = c0 +
P
∑

i=1

biX
2

k−i +

Q
∑

j=1

ajσ
2

k−j
(3)

where P (≥ 1) and Q(≥ 0) are the orders of ARCH and
GARCH, c0 ≥ 0 represent the constant term, bi ≥ 0, aj ≥
0 are the coefficients of estimated model. The driving force
ǫ[k] is iid(0, 1) and independent of xk−l, l ≥ 1 for all k.
In the model assessment step, squared residuals are also
tested for whiteness in addition to the GARCH residuals.
One can observe from 3 that GARCH model is essentially
an ARMA representation for σ2

k in terms of prediction
errors and the variance of prediction error.

3. PROPOSED METHOD

In this section we present the procedure of a systematic
methodology used to model the Earth’s seismic noise.
The outline of the methodology is shown in Figure. 1 As
observed from Figure. 1, the procedure is implemented in
two steps (i) on the seismic noise and (ii) on the residuals
obtained from the time-series model.

Fig. 1. Systematic Procedure to model Earth’s seismic
noise

3.1 Implementation on data

Given a dataset, test for the presence of integrating effect
and linearity are implemented directly on data followed by
the development of time-series models of suitable order.

Stationarity analysis The first step is to test the data for
first-order stationarity conducted in two steps. First step
being the visual inspection of various properties of data
followed by the statistical test to support the inferences
drawn from the visual inspection.

(i) Visual Inspection: Presence of trend or integrating
type non-stationarity is assessed by inspecting the
plots of data, autocorrelation function (ACF) and
partial-correlation functions (PACF) of noise. Slowly
decaying nature of ACF or the near-unity value
of PACF at initial lags indicate the presence of
integrating effect in data. Inferences drawn in this
step are supported by well established statistical test.

(ii) Statistical Tests: Augmented Dickey Fuller (ADF)
and Phillips-Perron (PP) tests are implemented to
support the inferences of presence of integrating effect
in seismic noise. In the presence of heteroskedasticity,
test statistics of these test decreases resulting in the
increased false rejection of null hypothesis. Because of
the poor performance of these test for heteroskedastic
data, there is a need to assess the presence of in-
tegrating effect in a different way. Another way to
statistically confirm the presence of integrating effect
is to fit an AR(1) model and analyze the estimated
coefficient. A near-unity value of AR(1) coefficient
confirms the presence of a pole at unit circle.

First-order non-stationarities are modeled before conduct-
ing the linearity test. Trend type non-stationarity is mod-
eled either by de-trending the data or by fitting a polyno-
mial of suitable order to the data while integrating type
non-stationarity is modeled by differencing the data by
suitable degree.

Linearity analysis First-order stationary data is tested
for linearity using a surrogate-based hypothesis test. In
this work, it is hypothesized that data is generated from
a linear Gaussian process undergoing a static but non-
linear transformation and the time-series is quantified
using correlation dimension (D2) as test statistics. Null
hypothesis, that the data is generated from linear Gaussian
process, is rejected in the favour of alternate if D2 of the
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original time-series differs from the ensemble of surrogates,
i.e. correlation dimension of original data is compared with
the empirical distribution of correlation dimension derived
from surrogates. If the seismic noise exhibit nonlinear
characteristic, then we restrict our model to the best
linear approximated model at the cost of sub-optimal
predictions.

Time-series model development and assessment After
characterizing the seismic noise, next step is to develop
a time-series model that is commensurate with the noise
properties. Model development is carried out in two steps,
(i) model estimation and (ii) model assessment. In this
work, seismic noise is modelled using ARIMA(p, d, q) mod-
els of suitable order, where values of model order is selected
based on ACF and PACF plots. The estimated model is
selected for further analysis only if it passes the residual
(whiteness) and error analysis (over-parameterization).

3.2 Implementation on residuals

Certain characteristics such as Gaussianity, presence of
conditional heteroskedasticity, etc, assumes that the data
is uncorrelated or weakly correlated. For this reason, sta-
tistical tests for such features cannot be performed on
the original datasets. Whiteness of residuals claims zero
correlation but fails to claim the independent nature of
residuals. A process can be uncorrelated but dependent
(referred to as ARCH effect) indicating the presence of het-
eroskedasticity in data. It is important to test the residuals
for normality before testing for second-order stationarity
because the linear time-series (ARIMA) models rest on the
assumption of normal distribution. Moreover, statistical
test for heteroskedasticity assumes data is generated from
a linear Gaussian process.

Gaussianity analysis For colored data normality can be
tested in two different ways:

(a) Testing directly on data: Using existing moments
based test (Thode (2002)) or statistical test such as
Shapiro-Wilk, Kolmogorov-Smirnon test, etc (Shapiro
and Wilk (1965)).

(b) Testing on residuals after modeling the correlation
structure in data.

We have adopted later approach since the former assumes
that data is uncorrelated or weakly correlated which is
not the case for seismic noise. The premise for conducting
normality test on residuals is that since the white residual
series is the forcing function for the linear model, its
Gaussianity implies that the given seismic series is also
jointly Gaussian. Normality of the residuals is claimed
using the Shapiro-Wilk test which is the most powerful
test among all the existing Normality test but is limited
by the sample size (performance degrades drastically for
sample size greater than 5000).

Second-order stationarity analysis Presence of second-
order non-stationarity is also conducted in two steps,
like first-order stationarity analysis. Heteroskedasticity in
residuals is often referred to as the ARCH effect. Presence
of ARCH effect can be guaranteed by analyzing the
ACF of squared residuals. The correlation in squared
residuals is the indication of presence of ARCH effect

Fig. 2. Location of Elysium Planitia (ELYSE) site

or heteroskedasticity in residuals. Inference drawn from
visual inspection is supported by statistical test such as
PSR and ARCH test.

Heteroskedastic model development and assessment If
the residuals tested positive for the presence of het-
eroskedasticity, then ARCH/GARCH models are used to
model the heteroskedasticity in residuals, otherwise noise
properties are reported with the estimated ARIMA model.
Quality of the ARCH/GARCH model is assessed in the
similar manner as for ARIMA model. In addition to white-
ness of residuals, squared residuals are also analyzed to
ensure unpredictability in the ARCH/GARCH residuals.

4. RESULTS AND DISCUSSIONS

The systematic noise modeling methodology is illustrated
with the help of real-time Mars seismic noise downloaded
from seismometers installed at Elysium Planitia (ELYSE)
site on Mars. The data is freely available for research
purpose on Incorporated Research Institutions of Seis-
mology (IRIS). These seismometers installed during the
InSight discovery mission to Mars by NASA. Details of
the datasets are summarized in table 1, and the location
of the seismometer is shown in Fig. 2. In this work,
both the datasets are event-free, i.e., there is no seismic
activity in the downloaded datasets. In order to develop
time-series models, statistical characterization for both the
datasets is carried out using well-established statistical
tests for features such as first-order stationarity, linearity,
heteroskedasticity, and Gaussianity. We also study the
variation in these statistical properties with time.

Table 1. Specifications of data

Data
Network

code

Station

code

location

code

Channel

code
Date

start

time

end

time
sps

1. XB ELYSE 67 SHU Jan 02,2019 00:00 01:00 20

2. XB ELYSE 67 SHU Jan 09,2019 22:50 23:50 20

3. XB ELYSE 67 SHU Jan 09,2019 11:50 12:50 20

4. IU ANMO 00 BHZ Feb 27,2010 17:30 18:30 20

Application to dataset 1
Downloaded dataset 1 is shown in Fig. 3 along with

the ACF and PACF of data. Visual inspection of data
indicates the presence of trend-type non-stationarity while
the slowly decaying ACF also indicates the presence of
integrating effect. These qualitative inferences are tested
statistically using ADF, PP, and KPSS tests. As observed
from table 2, ADF and PP tests fail to support the claim
of the presence of integrating effect in data while the
KPSS test confirms the presence of a trend. Trend-type
non-stationarity in data is modeled using a third-order
polynomial. A red color line represents the estimated trend
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in Fig. 3(a). First-order stationary data, along with its
ACF and PACF, is shown in Fig. 4. ACF and PACF of
processed data fail to indicate the presence of first-order
non-stationarity in data. Statistical tests (table 2) also
verify the claims drawn by visual inspection for processed
data. First-order stationary data is tested for linearity
using the surrogate-based approach. Table 2 shows that
the test fails to reject the null hypothesis of linearity.
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Fig. 3. Mars seismic (a) noise with third-order polynomial
trend, (b) ACF, and (c) PACF of data

After ensuring the linearity and first-order stationarity of
data, the next step is to develop an ARIMA model of
suitable order. We use the Akaike Information Criterion
(AIC) as the model selection criterion and estimate a range
of models for varying AR and MA orders. Goodness of the
estimated model is assessed by residual analysis (residuals
exhibit no correlation, correlated residuals is the indication
of under-fitting) and significance of estimated parameters
(insignificant parameters indicate over-fitting). Our anal-
ysis reveals that ARIMA(6, 0, 10) is a more suitable model
for the Mars seismic data. Estimated model for dataset 1
(y[k]) is given by 4.

Dy[k] = Pk +Ne[k] (4)

Pk = −110.3k3 + 992.3k2 − 95.54k − 1.492

D = 1− 0.63
(±.02)

q−1 + 0.36
(±.01)

q−2
− 0.83

(±.01)
q−3 + 0.04

(±.01)
q−4

− 0.58
(±.01)

q−5

+ 0.64
(±.02)

q−6

N = 1 + 0.93
(±.02)

q−1
− 0.72

(±.01)
q−2

− 0.68
(±.02)

q−3
− 0.84

(±.01)
q−4

− 0.87
(±.03)

q−5

+ 0.49
(±.04)

q−6 + 0.76
(±.02)

q−7 + 0.33
(±.01)

q−8
− 0.05

(±.01)
q−9

− 0.15
(±.01)

q−10

where, σ2
e

= 326. The ACF of residuals (Fig. 5(a))
obtained from ARMA(6, 10) model reflects the white noise
characteristics which is also indicated by the Box-Ljung
test (Fig. 5(b)).

ARMA residuals are tested for Gaussianity and het-
eroskedasticity using SW and PSR or ARCH test, re-
spectively. As observed from table 2, SW test fails to
reject the null hypothesis that the residuals are generated
from a Gaussian process. The test for heteroskedasticity
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Fig. 5. (a) Residual ACF and (b) Box-Ljung statistics for
ARMA(6,10) model

Table 2. Summary of statistical test for Mars
seismic noise

Test H0 p-value
Observed

value

Lower

critical

value

Upper

critical

value

Nature

of test
Outcome

Test on data

ADF
Unit root

is present
0.001 -131.49 -1.94 - LT

RNH no

unit root

PP
Integrating

effects
0.001 -131.49 -1.94 - LT

RNH no

integrating effect

KPSS
Trend

stationary
0.53 0.32 - 0.14 RT

Cannot RNH

only trend

PSR

T

I+R

T+I+R

Series is

homoskedastic

0

0

0

3692.07

4843.09

8535.17

-

23.68

4009.73

4023.99

RT
RNH

Heteroskedastic

Linearity
Series is

linear
- 4.91 4.81 5.02 TT

Cannot RNH

linear

Test on processed data

ADF
Unit root

is present
0.001 -131.49 -1.94 - LT

RNH no

unit root

PP
Integrating

effects
0.001 -131.49 -1.94 - LT

RNH no

integrating effect

KPSS
Trend

stationary
0.53 0.32 - 0.14 RT RNH no trend

PSR

T

I+R

T+I+R

Series is

homoskedastic

0

0

0

3684.23

4853.83

8538.1

-

23.68

4009.73

4023.99

RT
RNH

Heteroskedastic

Test on Residuals

Shapiro-Wilk
Normal

distribution
0.51 0.982 - - -

Cannot RNH

Normal distribution
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3677.19

4849.29
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Fig. 6. (a) ARMA squared residuals ACF, (b) ACF of
GARCH residuals and (c) GARCH squared residuals

follows test for normality. ACF of squared residuals (Fig.
6) indicates the presence of conditional heteroskedasticity
in residuals which is statistically supported by both PSR
and ARCH test (table 2). Conditional heteroskedasticity
in residuals is modeled using GARCH models of suit-
able order. Assessment of a range of GARCH models
suggests that GARCH(0,1) is the optimal model. Esti-
mated GARCH(0, 1) model for the ARMA(6, 10) residuals
is given by:

e[k] = σkz[k], z[k] ∼ N(0, 1)
σ2
k

= 24 + 0.1
(±.03)

e[k − 1]2 (5)

The GARCH residuals exhibit white noise characteris-
tics. ACF of GARCH residuals and squared residuals are
shown in Fig. 6. Our analysis shows that trend stationary
seismic noise on MARS can be modeled as the combina-
tion of third-order polynomial trend and ARMA(6, 10)-
GARCH(0, 1) model.
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Table 3. Summary of noise analysis for red and
home planet

Data Dataset 1 Dataset 2 Dataset 3
Dataset 4

(Earth data)

ADF &PP No unit root No unit root No unit root
Unit root
of order 2

KPSS Trend stationary Trend stationary Trend stationary No

Linearity Yes Yes Yes
No

Depends on location

Gaussianity Yes Yes Yes Yes

PSR & ARCH Heteroskedastic Heteroskedastic Heteroskedastic Heteroskedastic

Trend model 3 order polynomial 3 order polynomial 3 order polynomial No

Model ARMA(6,10)-GARCH(0,1) ARMA(6,10)-GARCH(0,1) ARMA(6,10)-GARCH(0,1)
ARIMA(5,2,3) - GARCH(1,1)

order varies the location

Application to dataset 2 and 3
A similar procedure is applied to dataset 2 and 3. It is
observed that the noise properties for these datasets are
similar as for the dataset 1 (due to page limitation we have
only summarized the results without the details in table
3). Thus, the seismic noise can be explained using the same
model structure (a polynomial trend with ARMA(6, 10)-
GARCH(0, 1) model) as for dataset 1. However, the esti-
mated parameters are different for all the datasets. Vari-
ation in estimated parameters is expected as the primary
source of noise are likely to vary in 24-hour period.

We had carried out a similar analysis for Earth’s seismic
noise. Interestingly, our analysis from Earth and Mars data
reveals that noise from both the planets exhibit certain
similar features such as linearity, heteroskedasticity, and
Gaussianity while a few of the features observed in Earth’s
data are missing in Mars data such as the presence of
integrating effects. Surprisingly, all the datasets from Mars
exhibit polynomial trend, which is a unique characteristic
of Mars data and is absent in Earth’s data (we have
analyzed approximately 400 datasets from our planet).
Based on the analysis carried out in this work, we speculate
that both the planets have similar interior structure (crust,
mantle, and core) as the datasets exhibit similar statistical
properties, but the types of rocks that form the planet
is perhaps different. It can be the rocks or the depth of
various layers that are resulting in the different properties
for these planets. It can also be speculated that the
trend or integrating type non-stationarities are due to the
instrumentation and has nothing to do with the surface of
the planets.

5. CONCLUSION

The primary purpose of this work was to establish a link
between the interior structure of Earth and Mars based
on the data-driven analysis of seismic noise. Therefore, we
investigated the seismic data from the red planet (Mars)
using the systematic methodology proposed to analyze
seismic noise from Earth. The significant discoveries of this
work are two-fold, (i) Mars noise exhibits exciting features
such as polynomial trend, linearity, heteroskedasticity, and
Gaussianity. The noise can be modeled using a trend with
ARMA-GARCH class of models (ii) noise from both the
red planet and our home planet exhibits certain similar
features while some of the characteristics are unique to
both the planets. These features reflect the underlying
similarity in the structure of both the planets. However,
how these properties can be associated with the study of
the interior structure of planets is still a question which
needs the understanding of the underlying mechanism of
seismic noise generation.
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