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1. Introduction

Let X be a Riemannian symmetric space of non-compact type. Then X is isomorphic
to G/K, where G is a connected, real, semisimple Lie group, and K a maximal compact
subgroup. Consider further the Oshima compactification X of X [16], which is a simply
connected, closed, real-analytic manifold carrying an analytic G-action. The orbital de-
composition of X is of normal crossing type, and the open orbits are isomorphic to G/ K,
the number of them being equal to 2!, where [ denotes the rank of G//K. In this paper,
we study integral operators of the form

- / f(9)m(9)de(g), (1)
G

where 7 is the regular representation of G on the Banach space C(X) of continuous func-
tions on X, f a smooth, rapidly decreasing function on G, and dg a Haar measure on G.
These operators play an important role in representation theory, and our interest will be
directed towards the elucidation of the microlocal structure of the operators m(f). Since
the underlying group action on X is not transitive, the operators 7 (f) are not smooth,
and the orbit structure of X is reflected in the singular behavior of their Schwartz kernels.
As it turns out, the operators in question can be characterized as totally characteristic
pseudodifferential operators, a class which was first introduced in [15] in connection with
boundary problems. In fact, if XA denotes a component in X isomorphic to G/K, we
prove that the restrictions

(g, CZ(Xa) = C*(Xa)

of the operators 7(f) to the manifold with corners Xa are totally characteristic pseu-
dodifferential operators of class L, °°. A similar structure theorem was already obtained
in [18] for integral operators on prehomogeneous vector spaces, but only away from the
set of singular points of the complement of the open orbit. In the present case, we are
able to achieve a complete description of the operators 7(f) on SEA even near the corners
due to the fact that the orbital decomposition of X is of normal crossing type.

As a first application, we employ the structure theorem to examine the holomorphic
semigroup generated by a strongly elliptic operator {2 associated to the regular repre-
sentation (m, C(X)) of @, as well as its resolvent. Since both the holomorphic semigroup
and the resolvent can be characterized as operators of the form (1), they can be studied
applying our structure theorem, and relying on the theory of elliptic operators on Lie
groups [19] we obtain a description of the asymptotic behavior of the semigroup and
resolvent kernels on §~§A ~ X at infinity. In the particular case of the Laplace—Beltrami
operator on X, these questions have been studied intensively before. For the classical heat
kernel on X, precise upper and lower bounds were obtained in [1] using spherical analysis,



A. Parthasarathy, P. Ramacher / Journal of Functional Analysis 267 (2014) 919-962 921

under certain restrictions coming from the lack of control of the Trombi—Varadarajan
expansion for spherical functions along the walls. Our results are less explicit, but free
of any restrictions, and applicable to a large class of operators. A detailed description of
the resolvent of the Laplace—Beltrami operator on X and its analytic continuation was
given in [12-14].

As another consequence of the structure theorem, a regularized trace for the opera-
tors w(f) is defined, yielding a distribution on the group G which can be thought of as
the character of the representation (mr, C'(X)). In his early work on infinite dimensional
representations of semi-simple Lie groups, Harish-Chandra [9] realized that the correct
generalization of the character of a finite-dimensional representation was a distribution
on the group given by the trace of a convolution operator on representation space. This
distribution character is given by a locally integrable function which is analytic on the
set of regular elements, and satisfies character formulae analogous to the finite dimen-
sional case. Later, Atiyah and Bott [4] gave a similar description of the character of a
parabolically induced representation in their work on Lefschetz fixed point formulae for
elliptic complexes. More precisely, let H be a closed, co-compact subgroup of G, and
o a representation of H on a finite dimensional vector space V. If T(g) = (t.0)(g) is
the representation of G induced by o in the space of sections over G/H with values in
the homogeneous vector bundle G x g V, then its distribution character is given by the
distribution

@wCﬂaaanﬂﬁ,Tmz/}@ﬂm@@»

G

where dg denotes a Haar measure on G. The point to be noted is that T'(f) is a smooth
operator, and since G/ H is compact, it does have a well-defined trace. On the other hand,
assume that g € G is transversal, meaning that it acts on G/H only with simple fixed
points. In this case, a flat trace Tr’ T(g) of T(g) can be defined within the framework of
pseudodifferential operators, which is given by a sum over fixed points of g. Atiyah and
Bott then showed that, on an open set Gy C G of transversal elements,

%m:/ﬂmWT@%@,fﬂ?@ﬂ
Gr

This means that, on G, the character @ of the induced representation 7' is repre-
sented by the locally integrable function T T(g), and its computation reduced to the
evaluation of a sum over fixed points. In our case, contrasting with the classical homoge-
neous setting, the convolution operators 7(f) are not smooth due to the presence of the
lower-dimensional orbits, and therefore do not have a well-defined trace. Nevertheless,
by showing that they can be characterized as totally characteristic pseudodifferential
operators of order —oo, we are able to define a regularized trace Try e, w(f) for the oper-
ators 7(f), and in this way obtain a map
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Or : CZ(G) > f > Trpy(f) €C,

which is shown to be a distribution on . This distribution can be thought of as the
character of the representation 7. We then show that, on a certain open set G(X) of
transversal elements,

v,y 7(f /f )T 7(g)dalg), f € CX(G(X)),
G(X)

where, with the notation @,(%) = ¢~' - Z,

1
Wro)= D, e,

#eFix(X,g)

the sum being over the (simple) fixed points of g € G( ) on X. Thus, on the open
set G(X), O, is represented by the locally integrable function Tt” 7r(g), which is given
by a formula similar to the character of a parabolically induced representation. In a
subsequent work, the authors intend to interpret ©, in representation theoretic terms,
and to describe the singularities of @, in a more detailed way. Furthermore, it is natural
to ask whether similar distribution characters can be introduced on spherical varieties,
which are normal algebraic varieties with the action of a reductive algebraic group, and
a Zariski-dense orbit of a Borel subgroup, and whether corresponding character formulae
can be proved. Such characters are expected to be relevant in the context of harmonic
analysis on spherical varieties.

The paper is organized as follows. In Section 2 we recall those parts of the structure
theory of real, semisimple Lie groups that are relevant to our purposes. We then de-
scribe the G-action on certain homogeneous spaces G/Pg(K ), where Pg(K) is a closed
subgroup of G associated naturally to a subset @ of the set of simple roots, and the
corresponding fundamental vector fields. This leads to the definition of the Oshima com-
pactification X of the symmetric space X = G/K, together with a description of the
orbital decomposition of X. Since this decomposition is of normal crossing type, it is
well-suited for our analytic purposes. A thorough and unified description of the various
compactifications of a symmetric space is given in [6]. Section 3 contains a summary
of some basic facts in the theory pseudodifferential operators needed in the sequel. In
particular, the class of totally characteristic pseudodifferential operators on a manifold
with corners is introduced. Section 4 is the central part of this paper. By analyzing the
orbit structure of the G-action on X, we are able to elucidate the microlocal structure of
the convolution operators 7(f), and characterize them as totally characteristic pseudod-

ifferential operators on the manifold with corners XA. This leads to a description of the
asymptotic behavior of their Schwartz kernels at infinity when approaching the boundary
of Xao ~ X. In Section 5, we consider the holomorphic semigroup S, generated by the
closure £2 of a strongly elliptic differential operator 2 associated to the representation 7.
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Since S; = 7 (f,), where f.(g) is a smooth and rapidly decreasing function on G, we can
apply our previous results to describe the Schwartz kernel of S;.. The treatment of the
Schwartz kernel of the resolvent (A1 + £2)~%, where a > 0, and Re \ is sufficiently large,
is similar, but subtler due to the singularity of the corresponding group kernel r, x(g)
at the identity. The regularized trace for the convolution operators 7(f) is defined in
Section 6. After studying fixed points of G-actions on homogeneous spaces in Section 7,
and introducing the transversal trace of a pseudodifferential operator in Section 8, we
finally prove that the distribution ©; is regular on the set of transversal elements G (X),
and given by the locally integrable function Tr” 7(g).

2. The Oshima compactification of a Riemannian symmetric space

Let G be a connected, real, semisimple Lie group with finite center and Lie algebra g,
and denote by (X,Y) = tr(ad X cadY') the Cartan-Killing form on g. Let 6 be a Cartan
involution of g, and let

g=top

be the Cartan decomposition of g into the eigenspaces of 6, corresponding to the eigen-
values +1 and —1, respectively, and put (X,Y )y := —(X,0Y). Note that the Cartan
decomposition is orthogonal with respect to (,)g. Consider further a maximal Abelian
subspace a of p. The dimension [ of a is called the real rank of G and the rank of
the symmetric space G/K. Then ad(a) is a commuting family of self-adjoint operators
on g. Next, one defines for each o € a*, the dual of a, the simultaneous eigenspaces
g*={X€g:[H X]|=a(H)X for all H € a} of ad(a). A functional 0 # « € a* is called
a (restricted) root of (g, a) if g* # {0}, and setting ¥ = {a € a* : « # 0, g* # {0}}, we
obtain the decomposition

gzm@ﬂ@@ga,
aeX

where m is the centralizer of a in €. Note that this decomposition is orthogonal with
respect to (-,-)p. With respect to an ordering of a*, let X = {a € X : a > 0} denote the
set of positive roots, and A = {a1,...,q} the set of simple roots. Let 0 = § 3 csv @,
and put m(a) = dimg® which is, in general, greater than 1. Define n* = @ v+ 9%,
n~ =0(n"), and write K, A, N* and N~ for the analytic subgroups of G corresponding
to & a, nT, and n~, respectively. The Iwasawa decomposition of G is then given by

G =KAN*®.

Next, let M = {k € K : Ad(k)H = H for all H € a} be the centralizer of a in K and
M* ={k € K : Ad(k)a C a} the normalizer of a in K. The quotient W = M*/M is the
Weyl group corresponding to (g, a), and acts on a as a group of linear transformations
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via the adjoint action. Alternatively, W can be characterized as follows. For each a; € A,
define a reflection in a* with respect to the Cartan-Killing form (-,-) by

Wa; t A A — 205\, a4) /i),

where (A, ) = (Hy, H,). Here H) is the unique element in a corresponding to a
given A € a*, and is determined by the non-degeneracy of the Cartan-Killing form.
One can then identify the Weyl group W with the group generated by the reflections
{wq, : a; € A}. For a subset © of A, let Wg denote the subgroup of W generated by
reflections corresponding to elements in ©, and define

Po = U Pm,,P,
weWeg

where m,, denotes a representative of w in M*, and P = M AN is a minimal parabolic
subgroup. It is then a classical result in the theory of parabolic subgroups [22] that, as
O ranges over the subsets of A, one obtains, in this way, all the parabolic subgroups of
G containing P. In particular, if ©® = (), Pg = P. Let us now introduce for © C A the
subalgebras

ao ={H €a:a(H)=0forall a € 6},
a(@)={Heca:(H X)y=0forall X €apg}.
Note that, when restricted to the +1 or the —1 eigenspace of 8, the orthogonal comple-

ment of a subspace with respect to (-,-) is the same as its orthogonal complement with
respect to (-,-)g. We further define

ns = > 8 ng = 0(ng),
aez+\(O)+
LMCIE W n(0) = 0(n*(6)),
ac(@)+
me = m+n"(0)+n (O)+a(O), me(K) = mg NE,

where (©)t = X+ N Y, .oRae;. Denoting by Ao, A(O), N5, N*(0), Me,,
and Mg (K)g, the corresponding connected analytic subgroups of G, we obtain the
decompositions A = AgA(©) and N* = NZN(6)F, the second being a semi-direct
product. Let next Mg = MMeg o, Mo(K) = MMg(K)o. One has the Twasawa decom-
positions

Mo = Mo(K)A(B)N*(0),
and the Langlands decompositions

Po = MpAoNgG = Mo(K)AN™.
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In particular, PA = Ma = G, since ma = m@a® P,y g% and an, nJAr are trivial. One
then defines

Po(K) = Mg(K)AeoNg C Po.

According to [16, Lemma 1], Pg(K) is a closed subgroup, and G is a union of the open
and dense submanifold N~A(6)Po(K) = Ng Po, and submanifolds of lower dimension.
For A = {aq,...,a;}, let next {Hy,..., H;} be the basis of a, dual to A, i.e. o (H;) = 0;;.
Fix a basis {X);: 1 <i <m(A\)} of g* for each A € XF. Clearly,

[H,—0X) ;] = —0[0H, X ;] = —ANH)(—0X,,;), HEe€a,

so that setting X_»,; = —6(X),), one obtains a basis {X_; : 1 < ¢ < m(\)} of
g~ C n~. One now has the following lemma, due to Oshima, which gives a description
of the infinitesimal action of G.

Lemma 1. Fiz an element g € G, and identify N~— x A(©) with an open dense
submanifold of the homogeneous space G/Pg(K) by the map (n,a) — gnaPo(K).
For'Y € g, let Y|q/po(K) be the fundamental vector field corresponding to the ac-
tion of the one-parameter group exp(sY), s € R, on G/Po(K). Then, at any point
p=(n,a) € N~ x A(O), we have

m(\) m(X)
(Y|G/P9(K))p = Z Z c-xi(9,m)(X-xi)p + Z Z Cx,z'(gvn)e%/\(loga) (X-xi)p
Aext i=1 re(@y+ i=1

+ Y cilg,n)(Hi)p
a; €O
with the identification T,N~ & T,(A(O)) ~ T,(N~ x A(O)) =~ Tgnars(k)G/Po(K). The
coefficient functions cy ;(g,n), c—xi(g,n), ci(g,n) are real-analytic, and are determined
by the equation

m(X)

Ad M (gn)Y = Y > (enilg.m) X + coxilg:n)X_x)
rez+ i=1

1
+ Zci(g,n)Hi mod m. (2)

=1

Proof. For a detailed proof following the original proof given in [16, Lemma 3], we refer
to [17]. O

By the identification G/K ~ N~ x A~ N~ x R, via (n,t) = n - exp(— Y\_, H; x
logt;) — gnaK one sees that
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Therefore, the action on G/K of the fundamental vector field corresponding to exp(sY),
Y € g, is given by

m(A) 1

0
Y|N*><]Rl+ = Z Z (C)\,i(ga n)tz’\ + C—)\,i(gan))X—/\,i - Zci(g,n)ti%7 (3)

Aex+ i=1 i=1

where the coefficients are given by (2), and where we wrote t* = ti‘(Hl) - 'tl’\(HZ). The
vector field (3) can be extended analytically to N~ x R! as there are no negative powers
of t.

We come now to the description of the Oshima compactification of the Riemannian
symmetric space G/K. For this, let X be the product manifold G x N~ x R!. Take
&= (g,n,t) € X, where g€ G, ne N~ t = (t1,...,t) € R, and define an action of G
on X by ¢ - (g,n,t) := (¢g,n,t), ¢ € G. For s € R, let

s/lsl, s #0,
sgn s =
0, s=0,

and put sgn# = (sgnty,...,sgnt;) € {—1,0,1}. We then define the subsets O; =
{ai € A2 t; # 0}. Similarly, let a(2) = exp(=)_,, 4, Hilog [t;]) € A(Oz). On X, define
now an equivalence relation by setting

(a) sgni =sgni’,

(b) gna(2)Pe,(K) = ¢'n'a(?’)Pe ., (K).

& &

=(g,nt)~2 = (4,n't) & {

Note that the condition sgnZ = sgn 2’ implies that £, 2’ determine the same subset ©;
of A, and consequently the same group Pg, (K), as well as the same homogeneous space
G/Po,(K), so that condition (b) makes sense. It says that gna(z),g'n’a(2’) are in the
same Pg, (K) orbit on G, corresponding to the right action by Pg,(K) on G. We now
define

X=X/~

endowing it with the quotient topology, and denote by 7 : X — X the canonical pro-
jection. The action of G on X is compatible with the equivalence relation ~, yielding a
G-action ¢’ - w(g,n,t) := 7(g’g,n,t) on X. For each g € G, one can show that the maps

9, N~ xR — ﬁg s (n,t) = (g, n,t), ﬁg =7n({g} x N~ x Rl),
are bijections. One has then the following

Theorem 1.

(1) X is a simply connected, compact, real-analytic manifold without boundary.
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(2) X = Uwew ﬁmw =Uyec (NJQ. Forge @G, ﬁg is an open submanifold of X topologized
in such a way that the coordinate map @4 defined above is a real-analytic diffeomor-
phism. Furthermore, X \ (79 is the union of a finite number of submanifolds of X
whose codimensions in X are not lower than 2.

(3) The action of G on X is real-analytic. For a point & € X, the G-orbit of w(Z) is
isomorphic to the homogeneous space G/Pg, (K), and for &,2' € X the G-orbits of
m(2) and w(Z') coincide if and only if sgn & = sgn &’. Hence the orbital decomposition
0f§§ with respect to the action of G is of the form

X~ |_| 2#€(G/Po(K)) (disjoint union), (4)
OCcA

where #6 is the number of elements of © and 27#°(G/Po(K)) is the disjoint union
of 27€ copies of G/Peo(K).

Proof. See Oshima, [16, Theorem 5]. O

Observe that the theorem tells us, in particular, that there are 2/ open orbits all of
which are isomorphic to G/ K, and a unique closed orbit isomorphic to G/P. Next, define
for # = (g,n,t) the set By = {(t}...t]) € R' : sgnt; = sgnt,, 1 < i < I}. By analytic
continuation, one can restrict the vector field (3) to N~ x By, and with the identifications
G/Po, 2~ N~ x A(O;) = N~ x B; via the maps

gnaPg, < (n,a) — (n, sgntie—@rosa) - gontemllos a)),

one actually sees that this restriction coincides with the vector field in Lemma 1. The
action of the fundamental vector field on X corresponding to exp sY, Y € g, is therefore
given by the extension of (3) to N~ x R!. Note that for a simply connected nilpotent Lie
group N with Lie algebra n, the exponential exp : n — N is a diffeomorphism. So, in
our setting, we can identify N~ with R¥. Thus, for every point in §~§, there exists a local

coordinate system (ni,...,ng,t1,...,%) in a neighborhood of that point such that two
points (ni,...,nk,t1,...,4) and (n},...,n},t],...,t;) belong to the same G-orbit if,
and only if, sgnt; = sgn t;7 for j = 1,...,1. This means that the orbital decomposition

of X is of normal crossing type. In what follows, we shall identify the open G-orbit
m({& = (e,n,t) € X :sgni = (1,...,1)}) with the Riemannian symmetric space G/K,
and the orbit 7({Z € X : sgnz = (0,...,0)}) of lowest dimension with its Martin
boundary G/P.
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3. Review of pseudodifferential operators
3.1. Generalities

In this section, we shall briefly recall some basic facts about pseudodifferential op-
erators needed to formulate our main results in the sequel. For a detailed exposition,
the reader is referred to [10] and [20]. Let U be an open set in R™. A continuous linear
operator

A1 C(U) — C®(U)

is called a pseudodifferential operator of order | € R if it is of the form

Au(r) = / ¢ €0z, €)(E)dé (5)

where 4 denotes the Fourier transform of u, d§ = (27)~"d¢, and the amplitude a belongs
to the symbol class S!(U x R™) of smooth functions satisfying the estimates

(08020) (2,6)] < Capxc(1+1¢) TV 2 ek, cerr,

for any multi-indices «, 3, any compact set K C U, and suitable constants Cy g > 0.
The Schwartz kernel of A is a distribution K4 € D'(U x U) given by the oscillatory
integral

Ka(z,y) = / @0 €a(z, €)de,

and is a smooth function off the diagonal in U x U. The class of all such operators
is denoted by L'(U) and the set L=°°(U) = (,cx L'(U) consists of all operators with
smooth kernel, or smooth operators. Consider next an n-dimensional paracompact C*°
manifold X, and let {(k~,U7)} be an atlas for X. Then a linear operator

A:C(X) = C™(X) (6)

is called a pseudodifferential operator on X of order [ if for each chart diffeomorphism
tiy 1 UT = UY = £,(U"), the operator A%u = [A 5, (uo ky)] o k5! given by the diagram
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is a pseudodifferential operator on U” of order [, and its Schwartz kernel K 4 is smooth off
the diagonal. In this case we write A € L!(X). Note that, since the U™ are not necessarily
connected, we can choose them in such a way that X x X is covered by the open sets
U" x U". Therefore the condition that K 4 is smooth off the diagonal can be dropped.
The kernel of A is determined by the kernels K4+ € D'(U"xU"). If | < —dim X, they are
continuous, and given by absolutely convergent integrals. In this case, their restrictions
to the respective diagonals in U7 x U7 define continuous functions

KY(%) = K a (ky (%), 54(3)), €U,

which, for & € U™ N U™, satisfy the relations k72 (%) = |det(Kqy, © K31 | © Kiny (Z)ET (),
and therefore define a density k& € C(X, 2) on Axyx ~ X, where !2 denotes the density
bundle on X. If X is compact, this density can be integrated, yielding the trace of the
operator A,

tr A = /k = Z/ o) (7)Kax(x, )d, (7)

Y U~

where {c, } denotes a partition of unity subordinated to the atlas {(x~, U")}, and dz is
Lebesgue measure in R™.

3.2. Totally characteristic pseudodifferential operators

We introduce now a special class of pseudodifferential operators associated in a natural
way to a C* manifold X with boundary 0X. Our main reference will be [15] in this case.
Let C*(X) be the space of functions on X which are C> up to the boundary, and C*°(X)
the subspace of functions vanishing to all orders on 0X, and define corresponding spaces
of distributions over X by

D'(X) = (CX(X,2), DX) = (CX(X.02)"

Consider the translated partial Fourier transform of a symbol a(z, ) € S{R™ x R™),

Ma(z,&';t) :/ei(lft)gla(x,fl,ﬁl)dfl,

where we wrote £ = (£1,&'). Ma(z,&';t) is C* away from t = 1, and one says that a(z, &)
is lacunary if it satisfies the condition

Ma(z,&'5t) =0 fort <O0. (8)

The subspace of lacunary symbols will be denoted by S, (R™ x R"). Let Z = R+ x R"~!
be the standard manifold with boundary with the natural coordinates x = (z1,2’). In
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order to define on Z operators of the form (5), where now a(x,§) = a(z1,2',21&,&’) is
a more general amplitude and a(z, ) is lacunary, one considers the formal adjoint A* of
A and shows that it defines a separately continuous form

W(Z xR™) x CX(Z) — C®(2),
see [15, Propositions 3.6 and 3.9]. For a € Si°(Z x R™), one then defines the operator
A:E"(Z) =D (2), (9)

written formally as (5), as the adjoint of A*. The space L} (Z) of totally characteristic
pseudodifferential operators on Z of order | consists of those continuous linear maps (9)
such that for any u,v € C*(Z), vAu is of the form (5) with a(x,§) = a(x1,2',21&1,&’)
and a(z, &) € S!, (Z x R™). Similarly, a continuous linear map (6) on a smooth manifold
X with boundary 0X is said to be an element of the space L] (X) of totally characteristic
pseudodifferential operators on X of order 1, if for a given atlas {(x~, [}7)} the operators
AV = [Alfn (uoky)] okt are elements of LL(Z), where the U are coordinate patches
isomorphic to subsets in Z.

In an analogous way, it is possible to introduce the concept of a totally characteristic
pseudodifferential operator on a manifold with corners. As the standard manifold with

corners, consider
R™F = [0,00)* x R"™*  0<k<n,

with coordinates * = (x1,...,zx,2’). Under a totally characteristic pseudodifferential
operator on R™F of order | we shall understand a continuous linear operator which is
locally given by an oscillatory integral (5) with a(z,&) = a(z, 21&1, . .., 2k, &), where
now a(z,€) is a symbol of order ! that satisfies the lacunary condition for each of the
coordinates x1,...,xg, i.e.

/ez’(lft)&ja(m,g)dgj =0 fort<0and1<j<k

In this case, we write a(x, &) € St (R™* x R™). A continuous linear map (6) on a smooth
manifold X with corners is then said to be an element of the space L.(X) of totally

characteristic pseudodifferential operators on X of order 1, if for a given atlas {(x,, [7"’)}
-1
5

operators on R™* of order I, where the U are coordinate patches isomorphic to subsets

the operators A"u = [Alm (uo ky)] ok are totally characteristic pseudodifferential
in R™*. For a treatment within the calculus of b-pseudodifferential operators, we refer
the reader to [11]. To formulate the results proved in this paper, it suffices to work with
the concept of totally characteristic pseudodifferential operators.
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4. Integral operators

Let X be the Oshima compactification of a Riemannian symmetric space X = G/K of
non-compact type. As was already explained, G acts analytically on X, and the orbital
decomposition is of normal crossing type. Consider the Banach space C(X) of continuous,
complex valued functions on §~§, equipped with the supremum norm, and let (, C(X))
be the corresponding continuous left-regular representation of G given by

(@) = (g7 7), ¢ e CX).

The representation of the universal enveloping algebra i of the complexification g¢ of g
on the space of differentiable vectors C(?NQ)DO will be denoted by dm. We will also consider
the regular representation of G on C*° (X) which, equipped with the topology of uniform
convergence, becomes a Fréchet space. This representation will be denoted by 7 as well.
Let (L, C*(@G)) be the left regular representation of G. With respect to the left-invariant
metric on G given by (, )¢, we define d(g, h) as the distance between two points g, h € G,
and set |g| = d(g, e), where e is the identity element of G. A function f on G is said to
be of at most of exponential growth, if there exists a £ > 0 such that |f(g)| < Ce*l9! for
some constant C' > 0. As before, denote a Haar measure on G by dg. Consider next the
Casselman—Wallach space S(G) of rapidly decreasing functions on G introduced first in
[21,7] in a slightly different way.

Definition 1. The space of rapidly decreasing functions on G, denoted by S(G), is given
by all functions f € C*°(G) satisfying the following conditions:

(i) For every x > 0, and X € 4, there exists a constant C' > 0 such that

|[dL(X)f(g)] < Ce™"19l;

(ii) For every s > 0, and X € 4, one has dL(X)f € LY(G, e"l9ldg).

Remark 1.

(1) Note that condition (ii) in the previous definition is already implied by condition (i).
Furthermore, if f € S(GQ), dR(X) [ satisfies conditions (i) and (ii) of the definition
as well.

(2) In our context, the consideration of the space S(G) was motivated by the study of
strongly elliptic operators and the decay properties of the semigroups generated by

them, see Section 5.

For later purposes, let us recall the following integration formulae.



932 A. Parthasarathy, P. Ramacher / Journal of Functional Analysis 267 (2014) 919-962

Proposition 1. Let f1 € S(G), and assume that fa € C®(G), together with all its
derivatives, is at most of exponential growth. Let Xi,..., Xy be a basis of g, and for
X7 =X X] write X7 = X]7 . X[, where vy is an arbitrary multi-index. Then

/ £1(9)dL(X7) falg)de(g) = (1)1 / dL(X7) £1(9) fo(9)dc9).
G G

Proof. See [18, Proposition 1]. O

Next, we associate to every f € S(G) and ¢ € C(X) the element Jo F9)m(g)pdalg) €
C(X). It is defined as a Bochner integral, and the continuous linear operator on C(X)
obtained this way is denoted by (1). Its restriction to C°°(X) induces a continuous linear

operator
7(f) : C®(X) — C=(X) c D'(X),

with Schwartz kernel given by the distribution section K; € D’ (§§ x X,1K 2¢). The
properties of the Schwartz kernel K¢ will depend on the analytic properties of f, as well
as the orbit structure of the underlying G-action, and our main effort will be directed
towards the elucidation of the structure of Ky. For this, let us consider the orbital
decomposition (4) of X, and remark that the restriction of 7(f)¢ to any of the connected
components isomorphic to G/Pg(K) depends only on the restriction of ¢ € C(X) to that
component, so that we obtain the continuous linear operators

)z, : OF(Xe) - C(Xo),

where Xg denotes a component in X isomorphic to G/Pg(K). Let us now assume
that ©® = A, so that Po(K) = K. Since G acts transitively on Xa one deduces that
(g, € L7(Xa), cp. [18, Section 4]. The main goal of this section is to prove

that the restrictions of the operators m(f) to the manifolds with corners Xa are totally
characteristic pseudodifferential operators of class L, >

Let {(ﬁmw,wat)}wew be the finite atlas on the Oshima compactification X defined
earlier. For each point & € §~§, choose open neighborhoods Wj C W; of & contained in a
chart ﬁmw (z)- Since X is compact, we can find a finite subcover of the cover {Wi}i %>
and in this way obtain a finite atlas {(Ww @3 ") }yer of X, where for simplicity we wrote

Wv = Wiv, Py = Pm,(a,) Further, let {ay}yer be a partition of unity subordinate

to this atlas, and let {a, },er be another set of functions satisfying a., € C°(W) and

a5, = 1. Consider now the localization of 7(f) with respect to the atlas above given
Y

by

A’}u = [W(f)WT/AY (u 0 @;1)] 0wy, u€CT(Wy), Wy = 80;1(%7) C RM
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Writing ¢f = <p;1 og oy, and z = (z1,...,251) = (n,t) € W, we obtain

Au(z) = / F@)[(wo e1)a] (g7 - or(@))dalg) = / (@) (. g) (w0 09) (2)da(g),

G G

-1

where we put cy(z,g) = ay(97" - ¢(2)). Next, define the functions

PN

f»y(l',g) = /eiwz(w).607(xvg)f(g)dgﬂ a’]z(xag) = eiim.gf"/(‘x7§)'
G

Differentiating under the integral we see that f,(z,€), aj(z,€) € C(W, x RFH). We
now have the following

Lemma 2. For & = ¢,(n,t) € Ww let V., 3 denote the set of g € G such that g- % € Wv-
Then we have the power series expansion

tj(g . i') = Z C‘i’ﬁ(g)na(i)tﬂ(i‘), Jj=1,.. '7l7 (10)
5(:7??0

where the coefficients cg”g(g) depend real-analytically on g € V4 3, and o, 8 are multi-
indices.

Proof. By Theorem 1, a G-orbit in X is locally determined by the signature of any of
its elements. In particular, for £ € W, and g € V, ; as above, we have sgnt;(¢g- %) =
sgnt;(z) for all j = 1,...,1. Hence, t;(g-Z) = 0 if and only if ¢;(Z) = 0. Now, due to

the analyticity of the coordinates (¢, W), there is a power series expansion

ti(g-3) =Y c Son* @’ (1), €W, geVia,

a,B
for every j =1,...,1, which can be rewritten as
ti(g-8) =Y g @@+ Y, slg)n® (@)1 (@) (11)
a,f a,f3
B; #0 B;=0

Suppose t;(Z) = 0. Then the first summand of the last equation must vanish, as in each
term of the summation a non-zero power of ¢;(Z) occurs. Also, t;(g - &) = 0. Therefore
(11) implies that the second summand must vanish, too. But the latter is independent
of t;. So we conclude

Il
o

> slgm @ @)
5%

for all £ € va g € V, 3, and the assertion follows. O
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From Lemma 2 we deduce that

tj(g'i') Ztgj(f)Xj(gj)» TeW,, geVys,
where x;(g, &) is a function that is real-analytic in g and in Z, and ¢; > 1 is the lowest

power of ¢; that occurs in the expansion (10). Furthermore, since ¢;(g - Z) = t;(&) for
g=-e,one has g =--- = q = 1. A computation now shows that

1=x;(97"9-%) x;(9,%), VEeW,, g€ V,a,
where g~ € V, gz. This implies
Xj(ga‘i) 7{ Oa VI € W'yv g€ V’y,ia (12)

since x;(g™',g - %) is a finite complex number. Thus, for & = ¢, (z) € W, z = (n,t),
g~' €V, z, we have

cpg(:zr) = (m (g*1 . :E), R 7Y (g*1 . :i),tl(a?)xl (gfl,:E), o t(@)x, (gfl, i))

Note that similar formulae hold for # € ﬁmw and g sufficiently close to the identity. The
following lemma describes the G-action on X as far as the t-coordinates are concerned.

Lemma 3. Let X_»; and H; be the basis elements for n~ and a introduced in Section 2,
weW, and & € Up,,. Then, for small s € R,

Xj (eSHi’ (f}) — e_Cij(mw)s,

where the ¢;;(my,) are the matriz coefficients of the adjoint representation of M* on a,
and are given by Ad(m ) H; = 22:1 ¢ij(mw)H;. Furthermore, when & = (e, n,t),

X, (eSX*“,JE) =1.

Proof. Let Y € g. From the proof of Lemma 1 it follows that the action of the one-
parameter group exp(sY’) on the homogeneous space G/Pg(K) is given by

exp(sY)gnaPg(K) = gnexp N; (s)a eXp(Al(s) + Ag(s))P@(K), (13)

where N3 (s) € n7, A1(s) € a,Az(s) € a(©). Denote the derivatives of N3 (s), Ai(s),
and As(s) at s = 0 by N5, A1, and A, respectively. The analyticity of the G-action
implies that N5 (s), A1(s), Aa2(s) are real-analytic functions in s. Furthermore, from
(13) it is clear that N5 (0) = 0, A1(0) + A3(0) = 0, so that for small s we have
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2

Ai(s) + Aa(s) = (A1 + Ag)s + 375 —— (A1(s) + As(s))| s> +---,
s=0
1 & ,
Ny (s) =Ny 8+2d2N (S>s:08 4.

Next, fix m,, € M* and let @ = A. The action of the one-parameter group corresponding
to H; at & = 7(my,n,t) € Up, N XA is given by

exp(sH;)mynaK = my, (m;l eXp(sHi)mw)naK = My exp(s Ad(m;l)Hi)naK.

As my, lies in M*, exp(s Ad(my')H;) lies in A. Since A normalizes N~, we conclude
that exp(s Ad(m ') H;)nexp(—s Ad(m,,')H;) belongs to N~. Writing

n~t exp(s Ad(m;l)Hi)neXp(—s Ad(m;l)Hi) =exp Ny (s)
we get
exp(sH;)mynaK = mynexp Ny (s)aexp(s Ad(m,")H;) K.

In the notation of (13) we therefore obtain A;(s)+ As(s) = s Ad(m ') H;, and by writing
Ad(my ) H; = 23:1 ¢ij(my)H; we arrive at

1
aexp(Al(s) + Ag(s)) = exp ( Z(cij(mw)s —log tj)Hj>.

j=1

In terms of the coordinates this shows that ¢; (exp(sH ) - &) = t;(F)e (M) for § €
Um N XA, and by analyticity we obtain that x,(e® Hi ) = e~¢i(mw)s for arbitrary
T € Um“, On the other hand, let Y = X_,;, and & = ¢c(n,t) € U, N Xa. Then the
action corresponding to X_, ; at  is given by

exp(sX_y;)naK = nexp N5 (s)aK,

where we wrote exp N3 (s) = s Ad(n™!)exp X_, ;. In terms of the coordinates this im-
plies that ¢;(exp(sX_x,) - ¥) = t;(Z) showing that x; (e sX-xi 7) =1 for ¥ € U, NXa,
and, by analyticity, for general & € U67 finishing the proof of the lemma. 0O

Let now z = (n,t) € W, and let T, be the diagonal (I x [)-matrix with entries
Tht1, - -+, Tkt Introduce the auxiliary symbol

T3, €) = a) (1, (1 © Ty 1)g) = ¢ remmilin )€ / 62 (97 es (2, 9) £ (9)da(o)

_ /eim(g,m){%(x’ D f(9)dag), (14)

G
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where we put

7 (0.2) = [(1e 0 ;) (¢4 (2) - )]
= (z1(97" - 2) —21(2),...,2x(g
ox(ghE) —1),

-1

8

: j) - l'k( )7X1 (g_lvj) - ]-7
as well as
11,;%(9) — ' @1(g:2), 2k (9-%),x1(9,2)5- X1 (95%)) €

Clearly, a}(z,€) € C®(W, x R**1). Our next goal is to show that aj(x,€) is a lacunary
symbol. To do so, we need the following

Proposition 2. Let (L,C™(G)) be the left reqular representation of G. Let X_» ;, H; be
the basis elements of n~ and a introduced in Section 2, and (W, ¢~) an arbitrary chart.
With x = (n,t) € Wy, & = ¢, (x) € W, g € V; ;z one has
dL(Xf,\J)l/Jg,x(g)
: =iy (9) (2, 9)§, (15)
dL(H)¥¢ ,(9)

with

e g) = (F1 F2> B (dL(X)\,i)nj,i(g) | dL(XA,i)Xj(gaff)> 1)

Is Ii)  \ dL(Hnja(g) | dL(H:)x;(g.%)

belonging to GL(I + k,R), where n; z(g9) =n;(g- ).

Proof. Fix a chart (W, go;l), and let x, &, g be as above. For X € g, one computes that

d . _ e—5X g
AL(X)9] ,(g) = e/ el Den o€

s=0

k l
=i (9) lzgidL(Xm,i(g) + D & AL(X)x;(9,7) |,
i=1 j=1

showing the first equality. To see the invertibility of the matrix I'(x, g), note that for
small s

—sX

xi (€% g, %) = x;(9,3)x; (e 7%, g - ).

Lemma 3 then yields

- A e s ~
dL(HZ)XJ(g,x) = X](gvx)g(e ia w—y) )|S=0 = Xj(gvx)cij(mw.y)’
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This means that I'y is the product of the matrix (c;j(mu.))i,; with the diagonal matrix
whose j-th diagonal entry is x;(g, ). Since (cij(muy,))i,; is just the matrix realization
of Ad(m;i) relative to the basis {Hi,..., H;} of a, it is invertible. On the other hand,
by (12), x;(g,Z) is non-zero for all j € {1,...,l} and arbitrary g and Z. Therefore Iy,
being the product of two invertible matrices, is invertible. Next, let us show that the
matrix 7 is non-singular. Its (5)th entry reads

7SX_)\J'

dL(X _xi)njz(9) = ——njz(e '9)‘520 = (=X_, i2)gz(ny).

For © C A, ¢ € R, we define the k-dimensional submanifolds
Lo(g) ={&=p,(n,q) €W, : ¢ #0 & a; € O}

As g varies over GG in Lemma 1, one deduces that N~ x A(©) acts locally transitively
on Xe. In addition, Ty.;L0(g) is equal to the span of the vector fields {X_,\J\X}v
which means that N~ acts locally transitively on £o(g) for arbitrary ©. Since the
latter is parametrized by the coordinates (ni,...,nx), one concludes that the ma-
trix ((X_)\7i‘§~g)g.§;(nj))ij has full rank. Thus, I7 is non-singular. On the other hand,

if z=m(e,n,t) € U,, Lemma 3 implies

d . -
dL(Xf)\,i)Xj(gvi') = Xj(ga‘%)_ (Xj (6_8X7A’lvg : x))\szo = Oa

ds
showing that I is identically zero, while I'y is a non-singular diagonal matrix in this case.
Geometrically, this amounts to the fact that the fundamental vector field corresponding
to H; is transversal to the hypersurface defined by t; = ¢ € R\ {0}, while the vector fields
corresponding to the Lie algebra elements X_ ,, H;, i # j, are tangential. We therefore
conclude that I'(x,g) is non-singular if Z € 176, which is dense in X. For symmetry
and the

wey )

reasons, the same must hold if # lies in one of the remaining charts ﬁm
assertion of the proposition follows. O

We can now state the main result of this paper. In what follows, {(,W.Y, vy D} er will

always denote the finite atlas of X constructed above.
Theorem 2. Let X be the Oshima compactification of a Riemannian symmetric space

X = G/K of non-compact type, and f € S(G) a rapidly decaying function on G. Then
the operators ww(f) are locally of the form

AJu(z) = /eiw'ﬁa}(x,g)a(g)dg, u € C(W,), (17)

where a’}((ﬂ,f) = a}(‘r7£17 cee 7£kaxk+1§k+1a s a£k+lxk+l); and Zz}(x,f) € SEIOO(W’Y X
R’g‘”) is given by (14). In particular, the kernel of the operator A’} is determined by its
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restrictions to W» x W, where W = {x = (n,t) € W, : t1---t; # 0}, and given by the
oscillatory integral

K (z,y) = / TV a (x, €)dE. (18)
As a consequence, we obtain the following

Corollary 1. Let XA be an open G-orbit in X isomorphic to G/K. Then the continuous
linear operators

n(f) s O (Xa) = C%(Xa),

are totally characteristic pseudodifferential operators of class L, ° on the manifold with

corner Xa.

Proof of Theorem 2. Our considerations closely follow, by adapting to our setting, the
reasoning of the proof of Theorem 4 in [18]. Let I'(z, g) be the matrix defined in (16),
and consider its extension as an endomorphism in C! [R’g“] to the symmetric algebra

S(CI[R§+Z]) ~ C[R?*l]. By Proposition 2, I'(z,g) is invertible for & € ’I/I\Zy, g € Vyz.
Therefore, its extension to SV ((Cl[R]gH]) is also an automorphism for any N € N. Re-
garding the polynomials &1, ...,&,4; as a basis in Cl[R’gH], let us denote the image of
the basis vector £; under the endomorphism I'(x, g) by I'§;, so that by (15)

g =—ip’e (9)dL(X_x ;)¢ (9), 1<j<k,
Ié; =—iple (9)dL(H;)b (9), k+1<j<k+l

Every polynomial §;, ®---®¢&;y =&j, ...y can then be written as a linear combination

= ZAg(w,g)FEﬁl SRRAINE (19)

where the Aj(z,g) are real-analytic functions given in terms of the matrix coefficients
of I'(z, g). We need now the following

Lemma 4. For arbitrary indices 5, ..., Br, one has

i (9) s, - Tép, = dL(Xp, - Xp, )V ,(9)

+ Z Z d WI?,i: xag)dL(Xou o 'Xas)'(/)g,m(g)’ (20)

where the coefficients dgll”‘;'.:gg (z,9) are real-analytic functions given by the matriz coef-
ficients of I'(x, g) which are at most of exponential growth in g, and independent of &.
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Proof. The lemma is proved by induction. For r = 1 one has ulzgx( A
dL(Xp)wg,x( ), where 1 < p < d. Differentiating the latter equation with respect to X,

and writing I'¢, = Zfii I'ps(x, g)&s, we obtain with (19) the equality

k+l1

U7 (9T 18, = dL(X; X)) [ (9) = > (AL(X;)Tps) (2, 9)As (2, 9)dL(X, ), (9)-

s,r=1

Hence, the assertion of the lemma is correct for » = 1,2. Now, assume that it holds for
r < N. Setting r = N in (20), and differentiating with respect to X, yields for the left
hand side

Nyl ()T TEp, -+ Tép,,
k41

+in27m(g)< > (dL(Xp)Tp,5) (2, 9) A3 (, g)F£q> Iép, -+ Tépy +

s,q=1

By assumption, we can apply (20) to the products I'§,1¢g, - - ['€g,, ... of at most N
factors. Since

[7(g)]| < ce™Vl, gea, (21)

for some constants ¢ > 1, k > 0, see [19, p. 12], the functions n; z(g), x,(9,Z), and
consequently the coefficients of I'(z, g), are at most of exponential growth in g, and the
assertion of the lemma follows. O

End of proof of Theorem 2. Let us next show that aj(z,{) € S™°(W, x R’g”). As
already noted, d} (x,&) € C®(W,x R’g“). While differentiation with respect to £ does not
alter the growth properties of d} (z,€), differentiation with respect to x yields additional
powers in . Now, as an immediate consequence of (19) and (20), one computes for
arbitrary N € N

b L (9) (1 +1€%) Z > b (2, 9)dL(X )Y, (9), (22)
r=0 |a|=r

where the coefficients b} (z, g) are at most of exponential growth in g. Now, (9¢'97 ay) x
(z,€) is a finite sum of terms of the form

e [ ™) OF )

the functions dg 5., (z, g) being at most of exponential growth in g. Making use of (22),
and integrating according to Proposition 1, we finally obtain for arbitrary a, 8 the
estimate



940 A. Parthasarathy, P. Ramacher / Journal of Functional Analysis 267 (2014) 919-962

|(8?3£d’;) (1‘,5)| < ﬁ&w,& x ek,
where K denotes an arbitrary compact set in W, and N € N. This proves that
&}(x,g) € ST(W, x R’g“). Since (17) is an immediate consequence of the Fourier
inversion formula, it remains to show that d}(m,f) satisfies the lacunary condition (8)
for each of the coordinates t;. Now, it is clear that a}(x,{) € S™°(W5 x R’g“), since
G acts transitively on each Xa. As a consequence, the Schwartz kernel of the restriction
of the operator A} 1 G2 (W,) — C=(W,) to W is given by the absolutely convergent
integral

/e“w*y)fa;(z,g)dg € C™ (W2 x WI).
Next, let us write W, = Ugcp W, where W? = {z = (n,t) : t; # 0 & a; € O}. Since
on T/V,Y6 the function A}u depends only on the restriction of u € C*(W,,) to W,Y@ , one
deduces that

supp KA} C U WT? X VT?. (23)
OCA

Therefore, each of the integrals

/eimfyj)sja} (2,1 @ T,)E)dE;, j=k+1,....k+1,

which are smooth functions on W7 x W¥, must vanish if z; and y; do not have the same
sign. With the substitution r; = y;/z; — 1, {;z; = §; one finally arrives at the conditions

/e_”j&jd}(x,f)dfj =0 forr; <-1, z€eWJ.

But since d} is rapidly decreasing in &, the Lebesgue bounded convergence theorem
implies that these conditions must also hold for € W,. Thus, the lacunarity of the
symbol EL} follows. The fact that the kernel K A7 must be determined by its restriction to
W5 x W7, and hence by the oscillatory integral (18) now follows by arguments analogous
to those given in [15, Lemma 4.1]. This completes the proof of Theorem 2. O

As a consequence of Theorem 2, we can describe the asymptotic behavior of the kernels
Kay (x,y) as |z;| = 0 or |y;| — 0 for k+1 < j < k + . Note that this corresponds to

the asymptotic behavior of the kernel of 7(f) on Xa ~ X at infinity.

Corollary 2. Let k +1 < j < k+1. Then Kay (x,y) is rapidly decreasing as |x;| — 0 or
ly;| — 0, provided that x; # y;.
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Proof. According to Theorem 2, the kernel of 7(f) is locally given by

KA’fY (1773-/) — /el(zfy)ga'fy(x,é)dg — /G’L(I*y)(1k®T;1)E&’;(z7§)|det(1k ® T;l)/(gﬂdf

1 it Yk+1
:714’} T, 1 —Y1,y.--,1 — N xk+1"'$k+l7é0a
|Tht1 - Tt Thy1

where A}(:}; y) denotes the inverse Fourier transform of d}y(x, €),

B = [ evéajiz, e (24)

Since for z € W7 the amplitude é’} (z, &) is rapidly falling in &, it follows that fl} (z,y) €
S(REH!), the Fourier transform being an isomorphism on Schwartz space. Therefore the
kernel K43 (x,y) is rapidly decreasing as |z;| - 0if z; # y; and k+1 < j < k+ L
Furthermore, by the lacunarity of &}, Kay (x,y) is also rapidly decaying as |y;| — 0 if
v #y;jand k+1<j<k+10. O

The explicit local form of the kernels of w(f) in the above proof shows that the
singularities arise precisely from the lower-dimensional orbits, which are given by the
vanishing of one or more of the coordinates zxy1,..., Tk4i-

5. Holomorphic semigroup and resolvent kernels

In this section, we study the holomorphic semigroup generated by a strongly ellip-
tic operator {2 associated to the regular representation (W,C(X)) of G, as well as its
resolvent. Both the holomorphic semigroup and the resolvent can be characterized as
convolution operators of the type considered before, so that we can study them by the
methods developed in the previous section. In particular, this will allow us to obtain a
description of the asymptotic behavior of the semigroup and resolvent kernels on 3~§A ~ X
at infinity.

Let us begin by recalling some basic facts about elliptic operators and parabolic
evolution equations on Lie groups, our main reference being [19]. Let G be a Lie group,
and 7 a continuous representation of G on a Banach space B. Let further Xq,..., X be
a basis of the Lie algebra Lie(G) of G, and

2= codr(X*)

lal<q

a strongly elliptic differential operator of order q associated with 7, meaning that for
all £ € R? one has the inequality Re(—l)q/QZ‘alzq ca€* > k[€|? for some k > 0. By
the general theory of strongly continuous semigroups, its closure generates a strongly
continuous holomorphic semigroup of bounded operators given by
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S, = % /e”(n +2)7ta),
r

where I is an appropriate path in C coming from infinity and going to infinity such that

A does not lie in the spectrum o(£2) of §2 for A € I'. Here |arg 7| < a for an appropriate

a € (0,7/2], and the integral converges uniformly with respect to the operator norm.

Furthermore, for 7 > 0, the subgroup S; can be characterized by a convolution semigroup

of complex measures {p; }->0 on G according to

S, = [ wldur(o).

g

7 being measurable with respect to the measures p,. The measures p, are absolutely
continuous with respect to Haar measure dg on G, and denoting by f.(g) € L*(G,dg)
the corresponding Radon—Nikodym derivative, one has

&:ﬂmaz/ﬂ@w@@@»
g

The function f,(g) € L'(G,dg) is analytic in 7 and g, and universal for all Banach
representations. It satisfies the parabolic differential equation

%

S(9)+ Y cadL(X) f-(9) =0, lim f-(g) =6(g),

T—0
lal<q
where (L, C*(G)) denotes the left regular representation of G. As a consequence, f; must
be supported on the identity component Gy of G. We call it the Langlands kernel of the

holomorphic semigroup S, and it satisfies the following L!- and L>°-bounds.

Theorem 3. For each k > 0, there exist constants a,b,c > 0, and w > 0 such that

/‘dL(Xa)(?ffT(gHe”‘gldgo (9) < abla‘c’8|a|!ﬁ!(1 + T_ﬁ_lal/q)e‘”, (25)
Go

forallT>0,5=0,1,2,... and multi-indices . Furthermore,
’dL(Xa)ﬁffT(g)‘ < ab‘o‘lcﬁ\aﬂb’!(l + T_B_(lo“Jr””rl)/‘J)e“’Te_"lg‘7 (26)

for all g € Gg, where d = dim Gy, and q denotes the order of £2. Similar bounds hold for
the derivatives dR(X®).

A detailed exposition of these facts can be found in [19, pp. 30, 152, 166, and 167]. Let
now G = G, and (m, B) be the regular representation of G on C’(X) Theorem 3 implies
that the Langlands kernel f, belongs to the space S(G) of rapidly falling functions on G.
As a consequence of the previous considerations we obtain
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Theorem 4. Let 2 be a strongly elliptic differential operator of order q associated with the
reqular representation (m, C(X)), and S; = w(f;) the holomorphic semigroup of bounded
operators generated by 2. Then the operators S, are locally of the form (17) with f being
replaced by fr, and totally characteristic pseudodifferential operators of class L, > on the

manifolds with corners Xa. Furthermore, on W, x W,, the kernel of S; is given by

S3a.9) = K o) = [ €0} (2. €)d
1

= B o (O T =)

where Tgy1 - xpr # 0, and fl'}f (z,y) was defined in (24). In particular, SY(z,y) is
rapidly falling as |z;| — 0, or |y;| — 0, as long as x; # y;, where k+1<j<k+1. In
addition,

cr(14 7= UHkD/a) 0 < 7 <1,

27
coeT, 1<, 27

A} (z,y)] < {

uniformly on compact subsets of W, x W, for some constants c; > 0.

Proof. The first assertions are immediate consequences of Theorem 2, and its corollary.
In order to prove (27), note that for large N € N one computes with (14), (22), and (24)

1A} (,y)]
< /|a} x,€)|dé = /‘/ww )ey(,9)f-(g)d (9)‘d§

1+ €[%) '/C'y (x,9)f-(g Z >N (g7 dL(X )y, (97 ) dalg )‘df-

r=0 |a|=r
If we now apply Proposition 1, and take into account the estimate (25) we obtain

A} (,9))|

/ 1+[¢%) ‘/ww Z > dL(X%)[bY (2, g)ey (2,9™ )ff(gl)]d(;(g)‘da
r=0 |a|=r
< {01(1 + 72N/ o< <,
b e, 1<,

for certain constants ¢; > 0. Expressing £k+l+1w€ L(g) on {& e R™: [&] < ¢ for all i}
as left derivatives of 1/)5 . (9) according to (19) and (20), and estimating the maximum
norm by the usual norm, a similar argument shows that the last estimate is also valid
for N = (k+1+1)/2, compare (33). The proof is now complete. O



944 A. Parthasarathy, P. Ramacher / Journal of Functional Analysis 267 (2014) 919-962

Let us now turn to the resolvent of the closure of the strongly elliptic operator 2.
By (25) one has the bound ||S-|| < ce®” for some constants ¢ > 1, w > 0. For A € C
with Re A > w, the resolvent of £2 can be expressed by means of the Laplace transform
according to

(oo}

M+2)t=ra)! /ef)‘TSTdT7
0

where I is the I'-function. More generally, one can consider for arbitrary o > 0 the
integral transforms

A +02)“=T(a)”" / e MraT1lS dr.
0

As it turns out, the functions

o0
Ta,)\( 1/ AT lfT ) T
0

are in L'(G, e*191d), where & > 0 is such that ||7(g)| < ce®l9! for some ¢ > 1, see (21).
This implies that the resolvent of 2 can be expressed as the convolution operator

(142 =) = [ ranr(@)n(o)dato)

G

The resolvent kernels r, ) decrease exponentially as |g| — oo, but they are singular at
the identity if d > qa. More precisely, one has the following

Theorem 5. There exist constants b,c, Ao > 0, and aq x > 0, such that

aay)\|g|_(d+|6|_qa)6_(b(Re A)l/q_c)lgh d > qa7

[dL(X°)rax(9)] < § aa(1 + [log |g|))e RN =)ol - ¢ = ga,
G e~ (BN 1=l d < qa

for each A € C with Re A > Xg.

A proof of these estimates is given in [19, pp. 238 and 245]. Our next aim is to under-
stand the microlocal structure of the operators 7(rq,x) on the Oshima compactification X
of X = G/K. Consider again the atlas {( 05 ) byer of X introduced in Section 4, and
the local operators
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A7 = [r(ran)im, (wews)] o pn, (28)

where u € C(W,) and W, = ¢~ (W ). By the Fourier inversion formula, A is given
by the absolutely convergent integral

A7 ulx) = / a1 (, €)aE)dE, (20)
]Rn
where
Q. (06 = [ ESC@DE (2 g)rar(9)da(o),

i) (x,6) = [ 9 (x, 9)rar(g)da(g)

Q\ Q\

are smooth functions on W, x RE+ since Tax € LY@, e"’""]'dg) Moreover, in view of the
L'-bound (25), the functions e~ 77~ 14 (z,€) and e AT law (z,€) are integrable in

7 over (0,00), and by Fubini we obtain the equalities

-1

a;/ak(l'f 67)\7— a—1 at (fﬂ é’)

e)\'ral’y(xf)

ay, \(,€) = -

e |
e |

In what follows, we shall describe the microlocal structure of the resolvent (A1 + 2)~
on X, and in particular, its kernel.

Proposition 3. Let Q@ be the largest integer such that Q < qa. Then a)  (x,§) €

S;LQ(WA, x R That is, for any compactum K C W, and arbitrary multi-indices 3, €
there exist constants Cx g, > 0 such that

|(0z00a7, ) (@.6)] < Crpe(1+[62) T2 w ek, e emMY, (30)

and aj | satisfies the lacunary condition (8) for each of the coordinates x;, k+1 < j <
k+1.

Proof. For a fixed chart (W.Y,cp,y) of X we write z = (n,t) € Wy, & = py(x) € W,Y,
as usual. As a consequence of Proposition 2 and Lemma 4 one computes with (22) for
arbitrary N € N
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(02%a7, ) (@, €) = /eiWw)f[i%(g,x)] Pey(z, 9)ran(9)da(g)

G

(g Vet €S S [ o g )L (XY, (67

=0 |5|=r
i (2,9)] e (@, 9)ran(9)da (9)-

Now, n,(g- &) — n,(Z) and x,(g,%) — 1 as g — e, so that due to the analyticity of the
G-action on X one deduces

|W7(g,x)| = |(n1(g_1 :E) —n1(Z), ...,Xl(g ! ;ﬁ) - 1,...)| < Cklgl, zek, (31)
for some constant Cx. Indeed, let
(Cl? et Cd) }_) 6C1X1++CdXd = g

be canonical coordinates of the first type near the identity e € G. We then have the
power expansions

Xelg,®) = 1= ch s P, n(g- i) —ne(@) = Y dp 5 ntPC, (32)
a,B,y a,f,y

where ¢}, 5 . d;, 5. = 01if [y| = 0. Hence,

Ine(g- &) —ne(@)], |xr(9,2) — 1] < C1[¢] < Calgl,

compare [19, pp. 12-13], and we obtain (31). With Theorem 5, and, say, d > qa, we
therefore have the pointwise estimates

’ ’ _ "N—ga—|B" _ e N 1/a_¢
|@7(97x)ﬁ dL(X6 )m,x(g)| < Cr.anlgl (d+16"|—ga—|B"]) ,—(b(Re A) gl

for some constant Cx o,» > 0 uniformly on K x V, z. Now, let 2Q) be the largest even
number strictly smaller than ga. Applying the same reasoning as in the proof of Propo-
sition 1, one obtains for N = Q + |3

2Q+2|8|

(0%, ) (.0 = 1+~ ST S (- / it (o7 )€

r=0 |(5‘_7‘ G
5 1,0 . _ 28 _ -
AL(X) (o, g) [0 (97" 0)] e (2,97 ) ran (97 ] de ),
since all the occurring combinations ¥, (¢, )% dL(X? )[ra.x(g~")] on the right hand

side are such that ga + |8’| — |8’| > 0, implying that the corresponding integrals over G
converge. Equality then follows by the left-invariance of dg(g), and Lebesgue’s theorem
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on dominated convergence. To show the estimate (30) in general for € = 0, let = € K,
and & € R be such that [£] > 1, and |€|pmax = max{|&| 1 1 < r < k+1} = |¢]. Using
(19) and (20) we can express ijHB Iz/)g’m(g) as left derivatives of 9 ,(g), and repeating
the previous argument we obtain the estimate

Q+18|

> 3 [Hhleg arx)eg, (o)

r=0 |5‘—7”G

|(3ﬁa'y I§I_|€| Q18|

Ta, A

. [i%,(x, g)] ﬂcﬁf (x,9)rax(9)dc(g)

c 1 1
e @rlEl S < Crss |€]Q+1AT (33)

where the coefficients bg(x,g) are at most of exponential growth in g. But since
ay,  (2,§) € C®(W, x R*+1), we obtain (30) for & = 0. Let us now turn to the
z-derivatives. We have to show that the powers in £ that arise when differentiating
(6? a;, )(x,§) with respect to  can be compensated by an argument similar to the

previous considerations. Now, (32) clearly implies

95 (xr(9:%) = 1) =0(lgl), 95 (nr(g-2) —ne(2)) = O(lgl).

Thus, each time we differentiate the exponential e?%7(9:%)€ with respect to z, the result is
of order O(J¢||g]). Therefore, expressing the occurring powers £° /w;x (g) as left derivatives
of wgw(g), we can repeat the preceding argument to absorb the powers in £, and (30)
follows. Note next that the previous argument also implies a} | (x,€) € S™9(W2 x RIEH),
where we wrote W = {z = (n,t) € W, : t1---1; # 0}, the G-action being transitive on
cach Xa. The Schwartz kernel K »y \ of the restriction of the operator (28) to W7 is
therefore given by the oscillatory mtegral

/ei(x—y)'faza)x(%g)dg €D (W2 x W),

which is C* off the diagonal. As in (23) we have supp K4; € Ugca WQ X W@, SO
that each of the integrals '

/ ¢mviSiay (z, (L @ Tp)€)dey, j=k+1,... k+l,

must vanish if z; and y; do not have the same sign. Hence,

[emon, @ =0 torr; <1, 2 e W5,
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Since aj | (z,£) € STW,, x R’g“), these integrals are absolutely convergent for r; # 0.
Lebesgue’s theorem on bounded convergence theorem then implies that these conditions
must also hold for x € W,. The proof of the proposition is now complete. O

Remark 2. One would actually expect that a; | (z,€) € S}, (W, x R**1), being the local
symbol of the resolvent (A\1+£2)~“. Nevertheless, the general estimates of Theorem 5 for
the resolvent kernels r, x, which correctly reflect the singular behavior at the identity,
are not sufficient to show this, and more information about them is required. Indeed,

dL(XP)re \ € L1(G,dg(g)) only holds if 0 < ga — |3
We are now able to describe the microlocal structure of the resolvent (A1 + £2)~.

Theorem 6. Let {2 be a strongly elliptic differential operator of order q associated with the
representation (m, C(X)) of G. Let w > 0 be given by Theorem 3, and A € C be such that
Re A > w. Let further a > 0, and denote by Q the largest integer such that QQ < qga. Then
(M1+02)"% = w(ra,n) is locally of the form (29), where a]_ (x,£) = ay, (@, (1,0T;)E),
and @y (z,§) € Sl_aQ(Wq, x RFHY). In particular, (A1 + 2)~% is a totally characteristic
pseudodifferential operators of class Lb_Q on the manifolds with corners §§A. Furthermore,
its kernel is locally given by the oscillatory integral

1

B |$k+1 T $k+l|

i(z— (Le®T ) (z—y)-€ 5
R, \(z,y) = /ez(z y)EaZ%A(ﬂ%ﬁ)df /e (Le®T; ") (z—y) Eaga,k(a:?g)d&
where Ty1 - Tp # 0, x,y € W, Rz)\(x,y) is smooth off the diagonal, and rapidly
falling as |x;| — 0, or |y;| = 0, as long as x; # y;, where k+1 < j < k+1.

Proof. The assertions of the theorem are direct consequences of our previous considera-
tions, except for the behavior of R;)\(x, y) at infinity. Let k 4+ 1 < j < k + [. While the
behavior as |y;| — 0 is a direct consequence of the lacunarity of d%ﬂw the behavior as
|z;| — 0 is a direct consequence of the fact that, as oscillatory integrals,

1
(L ® T5 ') (@ —y)2Y

/ei(1k®T;1)(x—y)-£&za’A(x’g)dg — /e"(m‘y)fAélea,A(m,ﬁ)df,

where Ag = 9 +---+ 9, x #y, and N is arbitrarily large. O

k41’
Remark 3. The singular behavior of r, x(g) at the identity corresponds to the fact that,
as a pseudodifferential operator of class LgQ, (A1 + ) has a kernel which is singular
at the diagonal.

To conclude, let us say some words about the classical heat kernel on a Riemannian
symmetric space of non-compact type. Consider thus the regular representation (o, C(X))
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of the solvable Lie group S = AN~ ~ X = G/K on the Oshima compactification X of X,
and associate to every f € S(S) the corresponding convolution operator

/ f(9)o(g)ds(g)-
S

Its restriction to C”(X) induces again a continuous linear operator
a(f) : C®(X) = C*(X) ¢ D'(X),

and an examination of the arguments in Section 7 shows that an analogous analysis
applies to the operators o(f). In particular, Theorem 2 holds for them, too. Let g be the
half sum of all positive roots, and

C=Y H!-Y 77> [X;0(X;) +0(X;)X;] => H} —20+2) X7 mod t(g)t
J j J j

be the Casimir operator in $(g), where {H;}, {Z,}, and {X,} are orthonormal basis of
a, m, and n~, respectively, and put ¢’ = >, HJ2 — 20+ 2ZX32. Though —dm(C") is
not a strongly elliptic operator in the sense defined above, 2 = —do(C’) certainly is.
Consequently, if f7(g) € S(S) denotes the corresponding Langlands kernel, Theorems 4
and 6 yield descriptions of the Schwartz kernels of o(f1) and (A1 + £2)~* on X. On the
other hand, denote by A the Laplace-Beltrami operator on X. Then

Ap(gK) =p(g:C)=p(9:C"), ¢eC®(X),

and the associated heat kernel i, (g) on X coincides with the heat kernel on S associated
to C’. But the latter is essentially given by the Langlands kernel f/(g), being the solution
of the parabolic equation

a !
Lo —an@) sy =0, i s9) =500)

on S. In this particular case, optimal upper and lower bounds for A, and the Bessel-
Green—Riesz kernels were given in [1] using spherical analysis under certain restrictions
coming from the lack of control in the Trombi—Varadarajan expansion for spherical func-
tions along the walls. Our asymptotics for the kernels of o(f.) and (A1 + )% on
Xa ~ X are free of restrictions, and in concordance with those of [1], though, of course,
less explicit. A detailed description of the resolvent of A on X was given in [12,14].

6. Regularized traces
We shall now define a regularized trace for the convolution operators m(f) introduced

in Section 4. To begin with, recall that, as a consequence of Theorem 2, we can write
the kernel of 7(f) locally in the form
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Ky (0,y) = / ei@0€q] (1, £)dE = / ¢ BTG (5 6)|det (14 0 T 1) (€)]dé

1 i Yk+1
:—A} x7x1—y1,...,1— PR $k+1"'xk+l7éo,
|33k+1"'33k+l| Th+1

(34)

where A} (z,y) denotes the inverse Fourier transform of the lacunary symbol d'} (z,8)
given by (24). Consider now the partition of unity {a,} subordinate to the atlas
W.,,071)}. By (34), the restriction of the kernel of A} to the diagonal is given by

v Py f

1 -
KA~ =———A%(z,0 0.
Af(xal”) Tt - Tord] f(fU, )y Tkl Tkl F

These restrictions yield a family of smooth functions k(%) = KA}(@;l(:E),gogl(i))
which define a density ky on

2#1(G/K) c X.

Nevertheless, the functions k} (Z) are not locally integrable on the entire compactifica-

tion §~§, so that we cannot define a trace of 7(f) by integrating the density k; over the
diagonal Az g ~ X as in (7). Instead, we have the following

Proposition 4. Let f € S(G), s € C, and define for Res > 0

Ty n(f) =Y / (0y © 92)(@) |21+ ol A (2, 0)da
7w

— (lawer i, Ea 0 0) A 0) ).

~

Then Trs w(f) can be continued analytically to a meromorphic function in s with at most
poles at —1,—3,.... Furthermore, for s € C — {—1,-3,...},

O] :CX(G)> f—Trsn(f) eC (35)
defines a distribution density on G.
Proof. The fact that Trs 7(f) can be continued meromorphically is a consequence of the

analytic continuation of |z, - - - zx1|* as a distribution in R¥*!| proved by Bernshtein—
Gel'fand in [5, Lemma 2]. One even has that

<‘$k+1|81 e |$k+l|5lau>a u € Cso (Rk+l)7
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can be continued meromorphically in the variables si,...,s; to C' with poles s; =
—1,-3,.... To see that (35) is a distribution density, note that @5 : C*(G) — C is
certainly linear. Since |z11 - -+ Zx41|® is a distribution, for any open, relatively compact
subset w C R*¥* there exist C,, > 0 and B, € N such that

||k @] u)| < C Z Sup|a"8u
|8]<B.,

, we C®(w). (36)

Let now O C G be an arbitrary open, relatively compact subset, and f € C°(0O). With
(24) one has

Trn() = (Jowr il Yo 00) [ €06 ). (37)

~

By (22), one computes for arbitrary N € N that

e _; € @) g L -1
¥y (9:2) (1+|£|2)szb g )dL(X)[W( )5]( )

r=0 |a|=r

where the coefficients bY (z, g) are smooth, and at most of exponential growth in g. With
(14) and Proposition 1 we therefore obtain for a}(z, &) the expression

ay(z,§)

1 etPr(g sz a 1 -1
=W! @SS Y (AL B g0 57 (0 o)

=0 |a|=r
Inserting this in (37), and taking N sufficiently large, we obtain with (36) that

[ Trom(f)| < Co D supldL(X?)f|

|B1<Bo

for suitable Cp > 0 and Bp € N. Since the universal enveloping algebra {(gc) can be
identified with the algebra of invariant differential operators on G, the assertion now
follows with [22, p. 480]. O

Remark 4. Using Hironaka’s theorem on resolution of singularities, Bernstein-Gel’fand [5]
and Atiyah [2] even proved the following general result. Let M be a real analytic mani-
fold and f a non-zero, real analytic function on M. Then |f|®, which is locally integrable
for Res > 0, extends analytically to a distribution on M which is a meromorphic func-
tion of s in the whole complex plane. The poles are located at the negative rational
numbers, and their order does not exceed the dimension of M. From this one deduces
that if f : M — C is a non-zero analytic function, then there exists a distribution
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S on M such that fS = 1. This is the Héormander—Lojasiewicz theorem on the divi-
sion of distributions, and implies the existence of temperate fundamental solutions for
constant-coefficient differential operators.

Consider next the Laurent expansion of @ (f) at s = —1. For this, let u € C°(R*+!)
be a test function, and consider the expansion

(Jwpgr - zppl®uy = > Si(u)(s + 1),

Jj=—q
where S;, € D'(R*¥*!). Since |41 ---2p4|*T! has no pole at s = —1, we necessarily
must have
|Tks1 - ] - S5 =0 for j <0, |Thq1 - Trgt] - So =1

as distributions. Therefore Sy € D'(R**!) represents a distributional inverse of
|Zg41 - - k41| By repeating the reasoning of the proof of Proposition 4 we arrive at
the following

Proposition 5. For f € S(G), let the regularized trace of the operator w(f) be defined by

Ty 7() = { S0 (e 00) 430 ).

Y

Then O : C°(G) 3 f + Trygm(f) € C constitutes a distribution density on G, which
is called the character of the representation 7.

Remark 5. An alternative definition of Tr,., m(f) could be given within the calculus
of b-pseudodifferential operators developed by Melrose. For a detailed description, the
reader is referred to [11, Section 6].

In what follows, we shall identify distributions with distribution densities on G via the
Haar measure dg. Our next aim is to understand the distributions ©; and ©; in terms
of the G-action on X. We shall actually show that on a certain open set of transversal
elements, they are represented by locally integrable functions given in terms of fixed
points. For this, we shall first review some largely known facts about group actions on
homogeneous spaces.

7. Fixed points of group actions on homogeneous spaces

Let G be a Lie group with Lie algebra g, H C G a closed subgroup with Lie algebra b,
and 7 : G — G/H the canonical projection. For an element g € G, consider the natural
left action I, : G/H — G/H given by l,(xH) = gzH. Let Ad® denote the adjoint action
of G on g.
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Lemma 5.

(1) lg— : G/H — G/H has a fived point if and only if g € |, cq xHx~t. Moreover, to
every fixed point tH one can associate a unique conjugacy class h(g,xH) in H.
(2) Let xH be a fived point of lg—1 and let h € h(g,xH). Then

det(1 — dly-1),m = det(1 — Adf(h)),
where AdS, : H — Aut(g/b) is the isotropy action of H on g/b.
Proof. See e.g. [4, p. 463]. O

Consider now the case when G is a connected, real, semi-simple Lie group with finite
center, 6 a Cartan involution of g, and g = ¢ @ p the corresponding Cartan decomposi-
tion. Further, let K be the maximal compact subgroup of G associated to £, and consider
the corresponding Riemannian symmetric space X = G/K which is assumed to be of
non-compact type. By definition, # is an involutive automorphism of g such that the
bilinear form (-,-)¢ is strictly positive definite. In particular, (-,-)g|pxp is a symmetric,
positive-definite, bilinear form, yielding a left-invariant metric on G/K. Endowed with
this metric, G/K becomes a complete, simply connected, Riemannian manifold with
non-positive sectional curvature. Such manifolds are called Hadamard manifolds. Fur-
thermore, for each g € G, l;-1 : G/K — G/K is an isometry on G/K with respect
to this left-invariant metric. Note that Riemannian symmetric spaces of non-compact
type are precisely the simply connected Riemannian symmetric spaces with sectional
curvature £ < 0 and with no Euclidean de Rham factor.

Next, let M be a smooth manifold, and recall that a fixed point xy of a smooth map
f: M — M is said to be simple if det(1 — df,,) # 0, where df,, denotes the differential
of f at xg. The map f is called transversal if it has only simple fixed points. Note that
the non-vanishing condition on the determinant is equivalent to the requirement that
the graph of f intersects the diagonal transversally at (zo,zo) € M x M, and hence the
terminology. In particular, a simple fixed point is an isolated fixed point. We then have
the following

Lemma 6. Let g € G be such that l,-1 : G/K — G/K is transversal. Then l,-1 has a
unique fixed point in G/K.

Proof. Let M be a Hadamard manifold, and ¢ an isometry on M that leaves two distinct
points x,y € M fixed. By general theory, there is a unique minimal geodesic v: R — M
joining x and y. Let 4(0) = x and (1) = y, so that ¢ 0 y(0) = p(z) =z and po (1) =
©(y) = y. Since isometries take geodesics to geodesics, ¢ o« is a geodesic in M, joining
x and y. By the uniqueness of v we therefore conclude that ¢ oy = ~. This means that
an isometry on a Hadamard manifold with two distinct fixed points also fixes the unique
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geodesic joining them point by point. Since, by assumption, /,-1 : G/K — G/K has
only isolated fixed points, the lemma follows. O

In what follows, we shall call an element g € G transversal relative to a closed sub-
group H if l,-1 : G/H — G/H is transversal, and denote the set of all such elements by
G(H).

Proposition 6. Let G be a connected, real, semi-simple Lie group with finite center, and
K a mazimal compact subgroup of G. Suppose rank(G) = rank(K). Then any regular
element of G is transversal relative to K. In other words, G' C G(K), where G' denotes
the set of regular elements in G.

Proof. If a regular element g is such that I,-1 : G/K — G/K has no fixed points, it is
of course transversal. Let, therefore, g € G’ be such that I,-1 has a fixed point 2¢K. By
Lemma 5, g must be conjugate to an element k(g,zo) in K. Consider now a maximal
family of mutually non-conjugate Cartan subgroups .Jy, ..., J, in G, and put J, = J;NG’
for i € {1,...,r}. A result of Harish-Chandra then implies that

G = O U wJlx !,

i=1lzeG
see [22, Theorem 1.4.1.7]. From this we deduce that
g = xk(g,z0)x t = yjy~' for some z,y € G, j € J| for some i.

Hence, k(g, zo) must be regular. Now, let 7" be a maximal torus of K. It is a Cartan sub-
group of K, and the assumption that rank(G) = rank(K) implies that T is also Cartan in
G. Let k(g, 2o K) be the conjugacy class in K associated to 29K, as in Lemma 5. As K is
compact, the maximal torus 7" intersects every conjugacy class in K. Varying z over the
coset 2o K, we can therefore assume that k(g, zo) € k(g, 2o K)NT. Thus, we conclude that
k(g,xo) € TNG'. Note that, in particular, we can choose J; = T' by the maximality of the
family Ji,...,J.. Now, for a regular element h € G belonging to a Cartan subgroup H
one necessarily has det(1—Ad% (h)) # 0, compare the proof of Proposition 1.4.2.3 in [22].
Therefore det(1 — Ad$ (k(g,20))) # 0, and consequently, det(1 — Ad% (k(g,20))) # 0.
The assertion of the proposition now follows from Lemma 5. O

Corollary 3. Let G be a connected, real, semi-simple Lie group with finite center, K a
mazimal compact subgroup of G, and suppose that rank(G) = rank(K). Then the set of
transversal elements G(K) is dense in G.

Proof. Since the set of regular elements G’ is dense in G, the corollary follows from the
previous proposition. 0O

Remark 6. Let us remark that with G as above, and P a parabolic subgroup of G, it is
a classical result that G’ C G(P), see [8, p. 51].
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8. Transversal trace and character formulae

We are now ready to describe the distributions @7 and O, as locally integrable func-
tions in terms of the fixed points of the G-action on X. Similar expressions were derived
by Atiyah and Bott for the global character of an induced representation of G in [3],
where they extended the classical Lefschetz fixed point theorem to geometric endomor-
phisms on elliptic complexes. Their work relies on the concept of transversal trace of a
smooth operator, and its extension by continuity to pseudodifferential operators, which
we now recall.

Let U be an open subset of R™, V open in U, and consider a smooth map a: V — U
with a simple fixed point at xg. We choose V' so small, that * — x — «(z) defines a
diffeomorphism of V' onto its image. Let A : V — U x U be the map A(z) = (a(z), ),
and assume that A € L=°°(U) is a smooth operator with symbol a(z,§). The kernel K 4
of A is a smooth function on U x U, and its restriction A*K 4 to the graph of a defines
a distribution on V' according to

(A" K, v) = //ei(o‘(m)_m)'ga(a(x),f)v(ac)dﬁdac

eslole) D) e o
// |det ({L‘(’y)))‘ dydg, € G2 (V), (38)

where we made the substitution y = 2 — a(x), and the change in order of integration
is permissible because a(z,¢) € S™°(U). Now, for a(x,¢) € SY(U), we observe that by
differentiating

o(z(y))
[ e alo(e ) gt

with respect to £, and integrating by parts with respect to y, we obtain the estimate

0 [ e Saale)-€) g < €O

for arbitrary multi-indices v and  and some constant C' > 0. Thus, as an oscillatory
integral, the last expression in (38) defines a distribution on V for any a(z, &) € SH(U).
The distribution A*K 4 is called the transversal trace of A € LY(U). If, in particular,
a(x,€&) = a(z) is a polynomial of degree zero in &, one computes that

a(20)0z,

AEA= 15601 — dalzo))]

(39)

This discussion can be globalized. Let X be a smooth manifold, E a vector bundle
over X, a : X — X a C*-map with only simple fixed points, and A : I'.(a*E) — I'(E)
a pseudodifferential operator of order [ between smooth sections. Denote the density
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bundle on X by {2, put F = o*FE, and define I/ = F* ® 2. The kernel K4 is then a
distributional section of EX F’. In other words, K4 € D'(EXF') =D'(X x X, EK F’).
Similarly, one has K,+4 € D'(X x X, F X F’), where a*A denotes the composition
o*A:T(F) 45 I(E) 5 I(F). If Ae L=®(F, E), K 4 is a smooth section on X x X,
and Ka(Z,9) € Bz ® F. In this case, Ko-a(Z,9) = Ka(a(Z),7), so that one deduces
Koa(2,2) € Eqg) @ Fy = F3 @ (F* ® 2); ~ L(F3, Fz) ® £2;. As a consequence,
Tr Ko+ 4(Z, &) becomes a section of {2, where Tr denotes the bundle homomorphism

Tr: FQF — £. (40)

Hence, if X is compact, one can define the trace of a*A as

Tra*A = /Tr Ko a(Z, 7).
X

This trace can be extended to arbitrary A € L!(X). Indeed, for compact X, the map
L=°(F,E) — C, A — Tra*A has a unique continuous extension

Tro : LYF,E) 5 C, Aw Tra A= (TrO(A),1),

called the transversal trace of A, see [3, Proposition 5.3]. In the case that A is induced
by a bundle homomorphism ¢, it follows from (39) that

Tr oz
Tr, A = f%{:@ vs(A), vz(A) = 0ot~ da (@) (41)

the sum being over the fixed points of @ on X, see [3, Corollary 5.4].

In the context of representation theory, this trace was employed by Atiyah and Bott
in [4] to compute the global character of an induced representation. To explain this,
let G be a Lie group, H a closed subgroup of G, and p a representation of H on a
finite dimensional vector space V. The representation of G’ induced by p is a geometric
endomorphism in the space of sections over G/H with values in the homogeneous vector
bundle G x i V, and shall be denoted by T(g) = (t«0)(g). Assume that G/H is compact,
and let dg be a Haar measure on G. Consider a compactly supported smooth function
f € CZ(G), and the corresponding convolution operator T'(f) = [, f(9)T(g9)da(g)- It is
a smooth operator, and, since G/H is compact, has a well defined trace. Consequently,
the map

Or:CF(G)> f—TrT(f)eC

defines a distribution on G called the distribution character of the induced represen-
tation T. On the other hand, assume that g € G is such that [,-» : G/H — G/H,
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xH — g~ 'zH, has only simple fixed points. In this case, a flat trace Tr’ T(g) of T(g)
can be defined according to

™ T(g) = Try, (I(pg))s

where g : 171 (G xg V) — G xp V is the endomorphism associated to T'(g) such that
T(g) = g o li—v, and I'(ipg) : T(I5-(G x5 V) = I'(G x g V). T’ T(g) is given by a
sum over fixed points of g, and one can show that, on an open set G C G,

/f )T¥ T(g)dalg), | € CX(Gr).

Thus, the distribution character of a parabolically induced representation of a Lie
group G is represented on G by the flat trace of the corresponding geometric endomor-
phism. If G is compact, the Lefschetz theorem reduces to the Hermann—Weyl formula by
the theory of Borel and Weil. It can be interpreted as expressing the character of a finite
dimensional representation as an alternating sum of characters of infinite dimensional
representations.

In what follows, we shall prove similar formulae for the distributions @, and 2
defined in Section 6. Let the notation be as before, and denote by @,(#) = g~1 - Z the
G-action on X. Note that the set G(X) = {g € G : &, is transversal} C G of elements
acting transversally on X is open. Furthermore, Corollary 3 and Remark 6 imply that
G(X) is dense if rank(G/K) = 1.

Theorem 7. Let f € C°(G) have support in G(X), and s € C, Res > —1. Then

0 @i (571 () x5 @)
frm / W ¥ % Aet(1 — b, (7)) )aeto)

ZeFix( ’9) v

(42)

where Fix(X, g) denotes the set of fized points of P, on X. In particular, ©5 : C°(G) >
f—= Trsn(f) € C is regular on G(X).

Proof. By Proposition 2,

Tre w(f) = Z / 0 ) ()| Tpt1 - xk+l|sg}(a:, 0)dx
¥

’Y

is a meromorphic function in s with possible poles at -1, — . Assume that Res > —1.
Since a, € C(W,), and A'Y (,0) = [a}(x,§)dE, Where ~'Y( L&) € S, (W, x Rk
is rapidly decaying in & by Theowm 2, we can interchange the order of integration to
obtain
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(7)) =3 [ [ (@0 e)@lon - oul*aj (e, dude.
vy W,

Let xy € C(R**!R*) be equal 1 in a neighborhood of 0, and £ > 0. Then, by Lebesgue’s
theorem on bounded convergence,

Tr, 7T(f) = il_r% I,

where we defined

I = Z/ /(O‘W o ‘PW)(.T)|CCI«+1 cee $k+l|8&’}($,§)x(€§)dl‘d§.
v 7w,

Taking into account (14), and interchanging the order of integration once more, one sees
that

I - / Y / / "0 (2,9) (@ 0 00) (@) |k -+ ] X (c6)dadEde(g).

everything in sight being absolutely convergent. Let us now set

L) =13 / / 9D (2, g) (0 0 o) (0)]hpn - hpt|* X (E)dardE,
T oW

so that I. = [, I.(g)da(g). We would like to pass to the limit under the integral, for
which we are going to show that lim._,o I-(g) is an integrable function on G. For this,
let us fix an arbitrary g € G(X) By definition, @, acts only with simple fixed points
on X. Since each of them is isolated, @, can have at most finitely many fixed points
on X. Consider therefore a cut-off function By € C* (X, R™) which is equal 1 in a small
neighborhood of each fixed point of @,, and whose support decomposes into a disjoint
union of connected components, each of which contains only one fixed point of @,. By
choosing the support of 3, sufficiently close to the fixed points we can, in addition,
assume that

det(1 — dPy(i)) #0 on supp fy. (43)
Since the action of G is real analytic, we obtain a family of functions B4(Z) depending

smoothly on g € G( ). Multiplying the integrand of I.(g) with 34 0 ¢ (), and 1 — 4 0
¢~ (z), respectively, we obtain the decomposition

I.(g) = IM (g) + I?)(g).
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Let us first examine what happens away from the fixed points. Integrating by parts 2V
times with respect to £ yields

(g Z// Cey(m,9) (ary (1= By)) (05 (@) [Zrg1 - - whpt | x (€€) dd

T ot

X c,y(m,g) (0‘7(1 - ﬂg)) (307(x))|xk+1 x| Pdadg,

where Ag = 92 +--- + 8§k+l. Now, for arbitrary IV,

AN [x(E0)] | < On(1+ )

where C'y does not depend on € for 0 < € < 1, but certainly on the order of differentiation.
Furthermore, there exists a constant My > 0 such that |7, (g, z)|?" > M on the support
of 1 — 340 ¢, for all g € supp f and . By Lebesgue’s theorem, we may therefore pass

to the limit under the integral, and obtain

lim 12 (g) = 0.

e—0

Hence, as ¢ — 0, the main contributions to I.(g) originate from the fixed points of &,.
To examine these contributions, note that condition (43) implies that = — ¢9(z) —
defines a diffeomorphism on each of the connected components of supp(a.,84) © ¢~ onto
their respective images. Performing the change of variables y = x — J(x) we get for

s (g) the expression

Z// et 5 (@, 9>(awﬂg)(@7( ))‘karl @] "X (e€)dard€

Zﬂ —i(1®T,, 2wV’ f’xk.l,-]_ y) e '-fk+l(y)|s

o (@2 B) (04 (2(y))) e (2(y), 9)
|det(1 — dpd (x(y)))|

x(e§)dyd€

s (e B9) (o (W)X ((Lk © T, ) /)
(g);/’$k+1(fy)"'$k+l(y)| ey (2(y), 9) (2m)F R [det(1 _kdwg( ((;)m

Y

DY [lonnsten) - ouen)[ e, (olc0).0)

 (@Bo) (o ()M & Tl )
@m)FHdet(1 — def(a(ey))|
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Since in a neighborhood of a fixed point Z of g the Jacobian of the singular change of coor-
dinates z = (1, ®T (sy))y converges to the expression |zj11 (k51 (Z)) - - - 2pqa (65 1))
as € — 0, we finally obtain with (27r) "~ [ {(y)dy = x(0) = 1 that

;i_{%[s(l)( = lim f(g Z/‘mk+1 ey(z 'kaH(Ey(Z))‘scv(fﬂ(Ey(z))vg)

e—0

(ay89) (24 (x(ey(2))))|0y/ Oz
(2m)F+det(1 — dgf (2(ey(2))))]

o ()| (5 (8) -+ a5 (2)) 7
= f(9) FX(:X ); |01et(1—ddS (@)l ’

X(2)dz

since &y = 1 on supp a., and B4(&) = 1. The limit function lim. o I.(g) is therefore
clearly integrable on G for Res > —1, so that by passing to the limit under the integral
one computes

g o — v (7D o 7@
Trsm(f) = lim I. = lim Ia(g)dc(g)—/g%(fs + 1) (g9)da(g)

e— J J
o (T)| g1 (k5 1(E)) - - g (651 ()1
:/f(g) 2 Z |det(1—dq'> @) da(9),
G FeFix(X,g)

yielding the desired description of 2. O

As an immediate consequence of the previous theorem, we see that if f € C°(G (X))7
Trs 7(f) is not singular at s = —1. This observation leads to the following

Corollary 4. Let f € C°(G) have support in G(X). Then

1
o) =Tan()= [ 10 Y o=t

aX) FeFix(X,g)
In particular, the distribution O : f — Trpeq(f) is reqular on G(X).

Proof. Counsider the Laurent expansion of @%(f) at s = —1 given by

Trsm(f) = <|$k+1 - '$k+l|svz(0‘7 °© %)X}Y(.,o)>

5

= i Si <Z(awo%)5}(-,0))(s+ 1y,

Jj=—q Y
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where Sy € D'(RF*!). Since by (42), Trs w(f) has no pole at s = —1, we necessarily must
have

S (Z(% o %)Z}(-,m) =0 forj <0,

~

so that

Te_y m(f) = <so,z<av o %)Z}(~70)> — Taye, n(f).

v

The assertion now follows with the previous theorem. 0O

In particular, Corollary 4 implies that Trp., m(f) is invariantly defined. Now, inter-
preting 7(g) as a geometric endomorphism on the trivial bundle E = X x C over the
Oshima compactification X, a flat trace Tr’ 7(g) of m(g) can be defined according to

T 7(g) = Tra, (I(p,)),

where ¢, : &) F — E is the associated bundle homomorphism which identifies the fiber
Eg, &) with Ez, and satisfies (Trpg);z = 1 at each fixed point # of &,. Taking into
account (41), the previous corollary can be reformulated, and we finally deduce the
following fixed point formula for the distribution character of . In a future work, the
authors hope to obtain a better understanding of this formula, and the contribution of
the various orbit types to it.

Theorem 8. On the set of transversal elements G(X), the distribution O : f — Tryeq (f)
is given by

Trpey (/) = / F@) T n(g)dale), | e C2(GX)),
G(X)

where

1
T 7(g) = )
det(1 — dd,(2
L T )

the sum being over the (simple) fized points of g € G(X) on X.

We would like to finish by pointing out that, in obtaining our results, it was of cru-
cial importance that the orbital decomposition of X is of normal crossing type. Since
wonderful varieties, such as the De-Concini Procesi compactification of a complexifed
symmetric space, have the same kind of orbital decomposition, we expect that one could
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carry out a similar analysis on the real locus of such varieties, and introduce analogous
distribution characters. In fact, it seems to us that such varieties are amenable towards
a more refined understanding of these characters and the respective fixed point formulae
in terms of combinatorial invariants.
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