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1. Introduction

Let X be a Riemannian symmetric space of non-compact type. Then X is isomorphic

to G/K, where G is a connected, real, semisimple Lie group, and K a maximal compact

subgroup. Consider further the Oshima compactification X̃ of X [16], which is a simply

connected, closed, real-analytic manifold carrying an analytic G-action. The orbital de-

composition of X̃ is of normal crossing type, and the open orbits are isomorphic to G/K,

the number of them being equal to 2l, where l denotes the rank of G/K. In this paper,

we study integral operators of the form

π(f) =

ˆ

G

f(g)π(g)dG(g), (1)

where π is the regular representation of G on the Banach space C(X̃) of continuous func-

tions on X̃, f a smooth, rapidly decreasing function on G, and dG a Haar measure on G.

These operators play an important role in representation theory, and our interest will be

directed towards the elucidation of the microlocal structure of the operators π(f). Since

the underlying group action on X̃ is not transitive, the operators π(f) are not smooth,

and the orbit structure of X̃ is reflected in the singular behavior of their Schwartz kernels.

As it turns out, the operators in question can be characterized as totally characteristic

pseudodifferential operators, a class which was first introduced in [15] in connection with

boundary problems. In fact, if X̃∆ denotes a component in X̃ isomorphic to G/K, we

prove that the restrictions

π(f)
|X̃∆

: C∞
c (X̃∆) → C∞(X̃∆)

of the operators π(f) to the manifold with corners X̃∆ are totally characteristic pseu-

dodifferential operators of class L−∞
b . A similar structure theorem was already obtained

in [18] for integral operators on prehomogeneous vector spaces, but only away from the

set of singular points of the complement of the open orbit. In the present case, we are

able to achieve a complete description of the operators π(f) on X̃∆ even near the corners

due to the fact that the orbital decomposition of X̃ is of normal crossing type.

As a first application, we employ the structure theorem to examine the holomorphic

semigroup generated by a strongly elliptic operator Ω associated to the regular repre-

sentation (π, C(X̃)) of G, as well as its resolvent. Since both the holomorphic semigroup

and the resolvent can be characterized as operators of the form (1), they can be studied

applying our structure theorem, and relying on the theory of elliptic operators on Lie

groups [19] we obtain a description of the asymptotic behavior of the semigroup and

resolvent kernels on X̃∆ ≃ X at infinity. In the particular case of the Laplace–Beltrami

operator on X, these questions have been studied intensively before. For the classical heat

kernel on X, precise upper and lower bounds were obtained in [1] using spherical analysis,
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under certain restrictions coming from the lack of control of the Trombi–Varadarajan

expansion for spherical functions along the walls. Our results are less explicit, but free

of any restrictions, and applicable to a large class of operators. A detailed description of

the resolvent of the Laplace–Beltrami operator on X and its analytic continuation was

given in [12–14].

As another consequence of the structure theorem, a regularized trace for the opera-

tors π(f) is defined, yielding a distribution on the group G which can be thought of as

the character of the representation (π, C(X̃)). In his early work on infinite dimensional

representations of semi-simple Lie groups, Harish-Chandra [9] realized that the correct

generalization of the character of a finite-dimensional representation was a distribution

on the group given by the trace of a convolution operator on representation space. This

distribution character is given by a locally integrable function which is analytic on the

set of regular elements, and satisfies character formulae analogous to the finite dimen-

sional case. Later, Atiyah and Bott [4] gave a similar description of the character of a

parabolically induced representation in their work on Lefschetz fixed point formulae for

elliptic complexes. More precisely, let H be a closed, co-compact subgroup of G, and

̺ a representation of H on a finite dimensional vector space V . If T (g) = (ι∗̺)(g) is

the representation of G induced by ̺ in the space of sections over G/H with values in

the homogeneous vector bundle G ×H V , then its distribution character is given by the

distribution

ΘT : C∞
c (G) ∋ f �→ Tr T (f), T (f) =

ˆ

G

f(g)T (g)dG(g),

where dG denotes a Haar measure on G. The point to be noted is that T (f) is a smooth

operator, and since G/H is compact, it does have a well-defined trace. On the other hand,

assume that g ∈ G is transversal, meaning that it acts on G/H only with simple fixed

points. In this case, a flat trace Tr♭ T (g) of T (g) can be defined within the framework of

pseudodifferential operators, which is given by a sum over fixed points of g. Atiyah and

Bott then showed that, on an open set GT ⊂ G of transversal elements,

ΘT (f) =

ˆ

GT

f(g) Tr♭ T (g)dG(g), f ∈ C∞
c (GT ).

This means that, on GT , the character ΘT of the induced representation T is repre-

sented by the locally integrable function Tr♭ T (g), and its computation reduced to the

evaluation of a sum over fixed points. In our case, contrasting with the classical homoge-

neous setting, the convolution operators π(f) are not smooth due to the presence of the

lower-dimensional orbits, and therefore do not have a well-defined trace. Nevertheless,

by showing that they can be characterized as totally characteristic pseudodifferential

operators of order −∞, we are able to define a regularized trace Trreg π(f) for the oper-

ators π(f), and in this way obtain a map
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Θπ : C∞
c (G) ∋ f �→ Trreg(f) ∈ C,

which is shown to be a distribution on G. This distribution can be thought of as the

character of the representation π. We then show that, on a certain open set G(X̃) of

transversal elements,

Trreg π(f) =

ˆ

G(X̃)

f(g) Tr♭ π(g)dG(g), f ∈ C∞
c

(
G(X̃)

)
,

where, with the notation Φg(x̃) = g−1 · x̃,

Tr♭ π(g) =
∑

x̃∈Fix(X̃,g)

1

|det(1 − dΦg(x̃))|
,

the sum being over the (simple) fixed points of g ∈ G(X̃) on X̃. Thus, on the open

set G(X̃), Θπ is represented by the locally integrable function Tr♭ π(g), which is given

by a formula similar to the character of a parabolically induced representation. In a

subsequent work, the authors intend to interpret Θπ in representation theoretic terms,

and to describe the singularities of Θπ in a more detailed way. Furthermore, it is natural

to ask whether similar distribution characters can be introduced on spherical varieties,

which are normal algebraic varieties with the action of a reductive algebraic group, and

a Zariski-dense orbit of a Borel subgroup, and whether corresponding character formulae

can be proved. Such characters are expected to be relevant in the context of harmonic

analysis on spherical varieties.

The paper is organized as follows. In Section 2 we recall those parts of the structure

theory of real, semisimple Lie groups that are relevant to our purposes. We then de-

scribe the G-action on certain homogeneous spaces G/PΘ(K), where PΘ(K) is a closed

subgroup of G associated naturally to a subset Θ of the set of simple roots, and the

corresponding fundamental vector fields. This leads to the definition of the Oshima com-

pactification X̃ of the symmetric space X = G/K, together with a description of the

orbital decomposition of X̃. Since this decomposition is of normal crossing type, it is

well-suited for our analytic purposes. A thorough and unified description of the various

compactifications of a symmetric space is given in [6]. Section 3 contains a summary

of some basic facts in the theory pseudodifferential operators needed in the sequel. In

particular, the class of totally characteristic pseudodifferential operators on a manifold

with corners is introduced. Section 4 is the central part of this paper. By analyzing the

orbit structure of the G-action on X̃, we are able to elucidate the microlocal structure of

the convolution operators π(f), and characterize them as totally characteristic pseudod-

ifferential operators on the manifold with corners X̃∆. This leads to a description of the

asymptotic behavior of their Schwartz kernels at infinity when approaching the boundary

of X̃∆ ≃ X. In Section 5, we consider the holomorphic semigroup Sτ generated by the

closure Ω of a strongly elliptic differential operator Ω associated to the representation π.
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Since Sτ = π(fτ ), where fτ (g) is a smooth and rapidly decreasing function on G, we can

apply our previous results to describe the Schwartz kernel of Sτ . The treatment of the

Schwartz kernel of the resolvent (λ1 + Ω)−α, where α > 0, and Re λ is sufficiently large,

is similar, but subtler due to the singularity of the corresponding group kernel rα,λ(g)

at the identity. The regularized trace for the convolution operators π(f) is defined in

Section 6. After studying fixed points of G-actions on homogeneous spaces in Section 7,

and introducing the transversal trace of a pseudodifferential operator in Section 8, we

finally prove that the distribution Θπ is regular on the set of transversal elements G(X̃),

and given by the locally integrable function Tr♭ π(g).

2. The Oshima compactification of a Riemannian symmetric space

Let G be a connected, real, semisimple Lie group with finite center and Lie algebra g,

and denote by 〈X, Y 〉 = tr(ad X ◦ad Y ) the Cartan-Killing form on g. Let θ be a Cartan

involution of g, and let

g = k ⊕ p

be the Cartan decomposition of g into the eigenspaces of θ, corresponding to the eigen-

values +1 and −1, respectively, and put 〈X, Y 〉θ := −〈X, θY 〉. Note that the Cartan

decomposition is orthogonal with respect to 〈 , 〉θ. Consider further a maximal Abelian

subspace a of p. The dimension l of a is called the real rank of G and the rank of

the symmetric space G/K. Then ad(a) is a commuting family of self-adjoint operators

on g. Next, one defines for each α ∈ a∗, the dual of a, the simultaneous eigenspaces

gα = {X ∈ g : [H, X] = α(H)X for all H ∈ a} of ad(a). A functional 0 = α ∈ a∗ is called

a (restricted) root of (g, a) if gα = {0}, and setting Σ = {α ∈ a∗ : α = 0, gα = {0}}, we

obtain the decomposition

g = m ⊕ a ⊕
⊕

α∈Σ

gα,

where m is the centralizer of a in k. Note that this decomposition is orthogonal with

respect to 〈·,·〉θ. With respect to an ordering of a∗, let Σ+ = {α ∈ Σ : α > 0} denote the

set of positive roots, and ∆ = {α1, . . . , αl} the set of simple roots. Let ̺ = 1
2

∑
α∈Σ+ α,

and put m(α) = dim gα which is, in general, greater than 1. Define n+ =
⊕

α∈Σ+ gα,

n− = θ(n+), and write K, A, N+ and N− for the analytic subgroups of G corresponding

to k, a, n+, and n−, respectively. The Iwasawa decomposition of G is then given by

G = KAN±.

Next, let M = {k ∈ K : Ad(k)H = H for all H ∈ a} be the centralizer of a in K and

M∗ = {k ∈ K : Ad(k)a ⊂ a} the normalizer of a in K. The quotient W = M∗/M is the

Weyl group corresponding to (g, a), and acts on a as a group of linear transformations
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via the adjoint action. Alternatively, W can be characterized as follows. For each αi ∈ ∆,

define a reflection in a∗ with respect to the Cartan-Killing form 〈·,·〉 by

wαi
: λ �→ λ − 2αi〈λ, αi〉/〈αi, αi〉,

where 〈λ, α〉 = 〈Hλ, Hα〉. Here Hλ is the unique element in a corresponding to a

given λ ∈ a∗, and is determined by the non-degeneracy of the Cartan-Killing form.

One can then identify the Weyl group W with the group generated by the reflections

{wαi
: αi ∈ ∆}. For a subset Θ of ∆, let WΘ denote the subgroup of W generated by

reflections corresponding to elements in Θ, and define

PΘ =
⋃

w∈WΘ

PmwP,

where mw denotes a representative of w in M∗, and P = MAN+ is a minimal parabolic

subgroup. It is then a classical result in the theory of parabolic subgroups [22] that, as

Θ ranges over the subsets of ∆, one obtains, in this way, all the parabolic subgroups of

G containing P . In particular, if Θ = ∅, PΘ = P . Let us now introduce for Θ ⊂ ∆ the

subalgebras

aΘ =
{

H ∈ a : α(H) = 0 for all α ∈ Θ
}

,

a(Θ) =
{

H ∈ a : 〈H, X〉θ = 0 for all X ∈ aΘ

}
.

Note that, when restricted to the +1 or the −1 eigenspace of θ, the orthogonal comple-

ment of a subspace with respect to 〈·,·〉 is the same as its orthogonal complement with

respect to 〈·,·〉θ. We further define

n+
Θ =

∑

α∈Σ+\〈Θ〉+

gα, n−
Θ = θ

(
n+

Θ

)
,

n+(Θ) =
∑

α∈〈Θ〉+

gα, n−(Θ) = θ
(
n+(Θ)

)
,

mΘ = m + n+(Θ) + n−(Θ) + a(Θ), mΘ(K) = mΘ ∩ k,

where 〈Θ〉+ = Σ+ ∩
∑

αi∈Θ Rαi. Denoting by AΘ, A(Θ), N±
Θ , N±(Θ), MΘ,0,

and MΘ(K)0, the corresponding connected analytic subgroups of G, we obtain the

decompositions A = AΘA(Θ) and N± = N±
Θ N(Θ)±, the second being a semi-direct

product. Let next MΘ = MMΘ,0, MΘ(K) = MMΘ(K)0. One has the Iwasawa decom-

positions

MΘ = MΘ(K)A(Θ)N±(Θ),

and the Langlands decompositions

PΘ = MΘAΘN+
Θ = MΘ(K)AN+.
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In particular, P∆ = M∆ = G, since m∆ = m⊕a⊕
⊕

α∈Σ gα, and a∆, n+
∆ are trivial. One

then defines

PΘ(K) = MΘ(K)AΘN+
Θ ⊂ PΘ.

According to [16, Lemma 1], PΘ(K) is a closed subgroup, and G is a union of the open

and dense submanifold N−A(Θ)PΘ(K) = N−
Θ PΘ, and submanifolds of lower dimension.

For ∆ = {α1, . . . , αl}, let next {H1, . . . , Hl} be the basis of a, dual to ∆, i.e. αi(Hj) = δij .

Fix a basis {Xλ,i : 1 � i � m(λ)} of gλ for each λ ∈ Σ+. Clearly,

[H, −θXλ,i] = −θ[θH, Xλ,i] = −λ(H)(−θXλ,i), H ∈ a,

so that setting X−λ,i = −θ(Xλ,i), one obtains a basis {X−λ,i : 1 � i � m(λ)} of

g−λ ⊂ n−. One now has the following lemma, due to Oshima, which gives a description

of the infinitesimal action of G.

Lemma 1. Fix an element g ∈ G, and identify N− × A(Θ) with an open dense

submanifold of the homogeneous space G/PΘ(K) by the map (n, a) �→ gnaPΘ(K).

For Y ∈ g, let Y|G/PΘ(K) be the fundamental vector field corresponding to the ac-

tion of the one-parameter group exp(sY ), s ∈ R, on G/PΘ(K). Then, at any point

p = (n, a) ∈ N− × A(Θ), we have

(Y|G/PΘ(K))p =
∑

λ∈Σ+

m(λ)∑

i=1

c−λ,i(g, n)(X−λ,i)p +
∑

λ∈〈Θ〉+

m(λ)∑

i=1

cλ,i(g, n)e−2λ(log a)(X−λ,i)p

+
∑

αi∈Θ

ci(g, n)(Hi)p

with the identification TnN− ⊕ Ta(A(Θ)) ≃ Tp(N− × A(Θ)) ≃ TgnaPΘ(K)G/PΘ(K). The

coefficient functions cλ,i(g, n), c−λ,i(g, n), ci(g, n) are real-analytic, and are determined

by the equation

Ad−1(gn)Y =
∑

λ∈Σ+

m(λ)∑

i=1

(
cλ,i(g, n)Xλ,i + c−λ,i(g, n)X−λ,i

)

+

l∑

i=1

ci(g, n)Hi mod m. (2)

Proof. For a detailed proof following the original proof given in [16, Lemma 3], we refer

to [17]. ✷

By the identification G/K ≃ N− × A ≃ N− × R
l
+ via (n, t) �→ n · exp(−

∑l
i=1 Hi ×

log ti) �→ gnaK one sees that

Hi|N−×Rl
+

= −ti
∂

∂ti
.
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Therefore, the action on G/K of the fundamental vector field corresponding to exp(sY ),

Y ∈ g, is given by

Y|N−×Rl
+

=
∑

λ∈Σ+

m(λ)∑

i=1

(
cλ,i(g, n)t2λ + c−λ,i(g, n)

)
X−λ,i −

l∑

i=1

ci(g, n)ti
∂

∂ti
, (3)

where the coefficients are given by (2), and where we wrote tλ = t
λ(H1)
1 · · · t

λ(Hl)
l . The

vector field (3) can be extended analytically to N− ×R
l as there are no negative powers

of t.

We come now to the description of the Oshima compactification of the Riemannian

symmetric space G/K. For this, let X̂ be the product manifold G × N− × R
l. Take

x̂ = (g, n, t) ∈ X̂, where g ∈ G, n ∈ N−, t = (t1, . . . , tl) ∈ R
l, and define an action of G

on X̂ by g′ · (g, n, t) := (g′g, n, t), g′ ∈ G. For s ∈ R, let

sgn s =

{
s/|s|, s = 0,

0, s = 0,

and put sgn x̂ = (sgn t1, . . . , sgn tl) ∈ {−1, 0, 1}l. We then define the subsets Θx̂ =

{αi ∈ ∆ : ti = 0}. Similarly, let a(x̂) = exp(−
∑

ti �=0 Hi log |ti|) ∈ A(Θx̂). On X̂, define

now an equivalence relation by setting

x̂ = (g, n, t) ∼ x̂′ =
(
g′, n,′ t′

)
⇔

{
(a) sgn x̂ = sgn x̂′,

(b) gna(x̂)PΘx̂
(K) = g′n′a(x̂′)PΘx̂′ (K).

Note that the condition sgn x̂ = sgn x̂′ implies that x̂, x̂′ determine the same subset Θx̂

of ∆, and consequently the same group PΘx̂
(K), as well as the same homogeneous space

G/PΘx̂
(K), so that condition (b) makes sense. It says that gna(x̂), g′n′a(x̂′) are in the

same PΘx̂
(K) orbit on G, corresponding to the right action by PΘx̂

(K) on G. We now

define

X̃ := X̂/ ∼,

endowing it with the quotient topology, and denote by π : X̂ → X̃ the canonical pro-

jection. The action of G on X̂ is compatible with the equivalence relation ∼, yielding a

G-action g′ · π(g, n, t) := π(g′g, n, t) on X̃. For each g ∈ G, one can show that the maps

ϕg : N− × R
l → Ũg : (n, t) �→ π(g, n, t), Ũg = π

(
{g} × N− × R

l
)
,

are bijections. One has then the following

Theorem 1.

(1) X̃ is a simply connected, compact, real-analytic manifold without boundary.
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(2) X̃ =
⋃

w∈W Ũmw
=
⋃

g∈G Ũg. For g ∈ G, Ũg is an open submanifold of X̃ topologized

in such a way that the coordinate map ϕg defined above is a real-analytic diffeomor-

phism. Furthermore, X̃ \ Ũg is the union of a finite number of submanifolds of X̃

whose codimensions in X̃ are not lower than 2.

(3) The action of G on X̃ is real-analytic. For a point x̂ ∈ X̂, the G-orbit of π(x̂) is

isomorphic to the homogeneous space G/PΘx̂
(K), and for x̂, x̂′ ∈ X̂ the G-orbits of

π(x̂) and π(x̂′) coincide if and only if sgn x̂ = sgn x̂′. Hence the orbital decomposition

of X̃ with respect to the action of G is of the form

X̃ ≃
⊔

Θ⊂∆

2#Θ
(
G/PΘ(K)

)
(disjoint union), (4)

where #Θ is the number of elements of Θ and 2#Θ(G/PΘ(K)) is the disjoint union

of 2#Θ copies of G/PΘ(K).

Proof. See Oshima, [16, Theorem 5]. ✷

Observe that the theorem tells us, in particular, that there are 2l open orbits all of

which are isomorphic to G/K, and a unique closed orbit isomorphic to G/P . Next, define

for x̂ = (g, n, t) the set Bx̂ = {(t′
1 . . . t′

l) ∈ R
l : sgn ti = sgn t′

i, 1 � i � l}. By analytic

continuation, one can restrict the vector field (3) to N−×Bx̂, and with the identifications

G/PΘx̂
≃ N− × A(Θx̂) ≃ N− × Bx̂ via the maps

gnaPΘx̂
← (n, a) �→

(
n, sgn t1e−α1(log a), . . . , sgn tle

−αl(log a)
)
,

one actually sees that this restriction coincides with the vector field in Lemma 1. The

action of the fundamental vector field on X̃ corresponding to exp sY , Y ∈ g, is therefore

given by the extension of (3) to N− ×R
l. Note that for a simply connected nilpotent Lie

group N with Lie algebra n, the exponential exp : n → N is a diffeomorphism. So, in

our setting, we can identify N− with R
k. Thus, for every point in X̃, there exists a local

coordinate system (n1, . . . , nk, t1, . . . , tl) in a neighborhood of that point such that two

points (n1, . . . , nk, t1, . . . , tl) and (n′
1, . . . , n′

k, t′
1, . . . , t′

l) belong to the same G-orbit if,

and only if, sgn tj = sgn t′
j , for j = 1, . . . , l. This means that the orbital decomposition

of X̃ is of normal crossing type. In what follows, we shall identify the open G-orbit

π({x̂ = (e, n, t) ∈ X̂ : sgn x̂ = (1, . . . , 1)}) with the Riemannian symmetric space G/K,

and the orbit π({x̂ ∈ X̂ : sgn x̂ = (0, . . . , 0)}) of lowest dimension with its Martin

boundary G/P .
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3. Review of pseudodifferential operators

3.1. Generalities

In this section, we shall briefly recall some basic facts about pseudodifferential op-

erators needed to formulate our main results in the sequel. For a detailed exposition,

the reader is referred to [10] and [20]. Let U be an open set in R
n. A continuous linear

operator

A : C∞
c (U) → C∞(U)

is called a pseudodifferential operator of order l ∈ R if it is of the form

Au(x) =

ˆ

eix·ξa(x, ξ)û(ξ)dξ, (5)

where û denotes the Fourier transform of u, dξ = (2π)−ndξ, and the amplitude a belongs

to the symbol class Sl(U × R
n) of smooth functions satisfying the estimates

∣∣(∂α
ξ ∂β

x a
)
(x, ξ)

∣∣ � Cα,β,K

(
1 + |ξ|2

)(l−|α|)/2
, x ∈ K, ξ ∈ R

n,

for any multi-indices α, β, any compact set K ⊂ U , and suitable constants Cα,β,K > 0.

The Schwartz kernel of A is a distribution KA ∈ D′(U × U) given by the oscillatory

integral

KA(x, y) =

ˆ

ei(x−y)·ξa(x, ξ)dξ,

and is a smooth function off the diagonal in U × U . The class of all such operators

is denoted by Ll(U) and the set L−∞(U) =
⋂

l∈R
Ll(U) consists of all operators with

smooth kernel, or smooth operators. Consider next an n-dimensional paracompact C∞

manifold X, and let {(κγ , Ũγ)} be an atlas for X. Then a linear operator

A : C∞
c (X) → C∞(X) (6)

is called a pseudodifferential operator on X of order l if for each chart diffeomorphism

κγ : Ũγ → Uγ = κγ(Ũγ), the operator Aγu = [A|Ũγ (u ◦ κγ)] ◦ κ−1
γ given by the diagram

C∞
c (Ũγ)

A
|Ũγ

C∞(Ũγ)

C∞
c (Uγ)

Aγ

κ∗
γ

C∞(Uγ)

κ∗
γ
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is a pseudodifferential operator on Uγ of order l, and its Schwartz kernel KA is smooth off

the diagonal. In this case we write A ∈ Ll(X). Note that, since the Ũγ are not necessarily

connected, we can choose them in such a way that X × X is covered by the open sets

Ũγ × Ũγ . Therefore the condition that KA is smooth off the diagonal can be dropped.

The kernel of A is determined by the kernels KAγ ∈ D′(Uγ ×Uγ). If l < −dim X, they are

continuous, and given by absolutely convergent integrals. In this case, their restrictions

to the respective diagonals in Uγ × Uγ define continuous functions

kγ(x̃) = KAγ

(
κγ(x̃), κγ(x̃)

)
, x̃ ∈ Ũγ ,

which, for x̃ ∈ Ũγ1 ∩ Ũγ2 , satisfy the relations kγ2(x̃) = |det(κγ1
◦ κ−1

γ2
)′| ◦ κγ2

(x̃)kγ1(x̃),

and therefore define a density k ∈ C(X, Ω) on ∆X×X ≃ X, where Ω denotes the density

bundle on X. If X is compact, this density can be integrated, yielding the trace of the

operator A,

tr A =

ˆ

X

k =
∑

γ

ˆ

Uγ

(
αγ ◦ κ−1

γ

)
(x)KAγ (x, x)dx, (7)

where {αγ} denotes a partition of unity subordinated to the atlas {(κγ , Ũγ)}, and dx is

Lebesgue measure in R
n.

3.2. Totally characteristic pseudodifferential operators

We introduce now a special class of pseudodifferential operators associated in a natural

way to a C∞ manifold X with boundary ∂X. Our main reference will be [15] in this case.

Let C∞(X) be the space of functions on X which are C∞ up to the boundary, and Ċ∞(X)

the subspace of functions vanishing to all orders on ∂X, and define corresponding spaces

of distributions over X by

D′(X) =
(
Ċ∞

c (X, Ω)
)′

, Ḋ(X)′ =
(
C∞

c (X, Ω)
)′

.

Consider the translated partial Fourier transform of a symbol a(x, ξ) ∈ Sl(Rn × R
n),

Ma
(
x, ξ′; t

)
=

ˆ

ei(1−t)ξ1a
(
x, ξ1, ξ′

)
dξ1,

where we wrote ξ = (ξ1, ξ′). Ma(x, ξ′; t) is C∞ away from t = 1, and one says that a(x, ξ)

is lacunary if it satisfies the condition

Ma
(
x, ξ′; t

)
= 0 for t < 0. (8)

The subspace of lacunary symbols will be denoted by Sl
la(Rn ×R

n). Let Z = R+ ×R
n−1

be the standard manifold with boundary with the natural coordinates x = (x1, x′). In
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order to define on Z operators of the form (5), where now a(x, ξ) = ã(x1, x′, x1ξ1, ξ′) is

a more general amplitude and ã(x, ξ) is lacunary, one considers the formal adjoint A∗ of

A and shows that it defines a separately continuous form

S∞
la

(
Z × R

n
)

× C∞
c (Z) → C∞(Z),

see [15, Propositions 3.6 and 3.9]. For ã ∈ S∞
la (Z × R

n), one then defines the operator

A : Ė ′(Z) → Ḋ′(Z), (9)

written formally as (5), as the adjoint of A∗. The space Ll
b(Z) of totally characteristic

pseudodifferential operators on Z of order l consists of those continuous linear maps (9)

such that for any u, v ∈ C∞
c (Z), vAu is of the form (5) with a(x, ξ) = ã(x1, x′, x1ξ1, ξ′)

and ã(x, ξ) ∈ Sl
la(Z × R

n). Similarly, a continuous linear map (6) on a smooth manifold

X with boundary ∂X is said to be an element of the space Ll
b(X) of totally characteristic

pseudodifferential operators on X of order l, if for a given atlas {(κγ , Ũγ)} the operators

Aγu = [A|Ũγ (u ◦ κγ)] ◦ κ−1
γ are elements of Ll

b(Z), where the Ũγ are coordinate patches

isomorphic to subsets in Z.

In an analogous way, it is possible to introduce the concept of a totally characteristic

pseudodifferential operator on a manifold with corners. As the standard manifold with

corners, consider

R
n,k = [0, ∞)k × R

n−k, 0 � k � n,

with coordinates x = (x1, . . . , xk, x′). Under a totally characteristic pseudodifferential

operator on R
n,k of order l we shall understand a continuous linear operator which is

locally given by an oscillatory integral (5) with a(x, ξ) = ã(x, x1ξ1, . . . , xkξk, ξ′), where

now ã(x, ξ) is a symbol of order l that satisfies the lacunary condition for each of the

coordinates x1, . . . , xk, i.e.

ˆ

ei(1−t)ξj a(x, ξ)dξj = 0 for t < 0 and 1 � j � k.

In this case, we write ã(x, ξ) ∈ Sl
la(Rn,k ×R

n). A continuous linear map (6) on a smooth

manifold X with corners is then said to be an element of the space Ll
b(X) of totally

characteristic pseudodifferential operators on X of order l, if for a given atlas {(κγ , Ũγ)}

the operators Aγu = [A|Ũγ (u ◦ κγ)] ◦ κ−1
γ are totally characteristic pseudodifferential

operators on R
n,k of order l, where the Ũγ are coordinate patches isomorphic to subsets

in R
n,k. For a treatment within the calculus of b-pseudodifferential operators, we refer

the reader to [11]. To formulate the results proved in this paper, it suffices to work with

the concept of totally characteristic pseudodifferential operators.
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4. Integral operators

Let X̃ be the Oshima compactification of a Riemannian symmetric space X = G/K of

non-compact type. As was already explained, G acts analytically on X̃, and the orbital

decomposition is of normal crossing type. Consider the Banach space C(X̃) of continuous,

complex valued functions on X̃, equipped with the supremum norm, and let (π, C(X̃))

be the corresponding continuous left-regular representation of G given by

π(g)ϕ(x̃) = ϕ
(
g−1 · x̃

)
, ϕ ∈ C(X̃).

The representation of the universal enveloping algebra U of the complexification gC of g

on the space of differentiable vectors C(X̃)∞ will be denoted by dπ. We will also consider

the regular representation of G on C∞(X̃) which, equipped with the topology of uniform

convergence, becomes a Fréchet space. This representation will be denoted by π as well.

Let (L, C∞(G)) be the left regular representation of G. With respect to the left-invariant

metric on G given by 〈 , 〉θ, we define d(g, h) as the distance between two points g, h ∈ G,

and set |g| = d(g, e), where e is the identity element of G. A function f on G is said to

be of at most of exponential growth, if there exists a κ > 0 such that |f(g)| � Ceκ|g| for

some constant C > 0. As before, denote a Haar measure on G by dG. Consider next the

Casselman–Wallach space S(G) of rapidly decreasing functions on G introduced first in

[21,7] in a slightly different way.

Definition 1. The space of rapidly decreasing functions on G, denoted by S(G), is given

by all functions f ∈ C∞(G) satisfying the following conditions:

(i) For every κ � 0, and X ∈ U, there exists a constant C > 0 such that

∣∣dL(X)f(g)
∣∣ � Ce−κ|g|;

(ii) For every κ � 0, and X ∈ U, one has dL(X)f ∈ L1(G, eκ|g|dG).

Remark 1.

(1) Note that condition (ii) in the previous definition is already implied by condition (i).

Furthermore, if f ∈ S(G), dR(X)f satisfies conditions (i) and (ii) of the definition

as well.

(2) In our context, the consideration of the space S(G) was motivated by the study of

strongly elliptic operators and the decay properties of the semigroups generated by

them, see Section 5.

For later purposes, let us recall the following integration formulae.
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Proposition 1. Let f1 ∈ S(G), and assume that f2 ∈ C∞(G), together with all its

derivatives, is at most of exponential growth. Let X1, . . . , Xd be a basis of g, and for

Xγ = Xγ1

i1
. . . Xγr

ir
write X γ̃ = Xγr

ir
. . . Xγ1

i1
, where γ is an arbitrary multi-index. Then

ˆ

G

f1(g)dL
(
Xγ

)
f2(g)dG(g) = (−1)|γ|

ˆ

G

dL
(
X γ̃

)
f1(g)f2(g)dG(g).

Proof. See [18, Proposition 1]. ✷

Next, we associate to every f ∈ S(G) and ϕ ∈ C(X̃) the element
´

G
f(g)π(g)ϕdG(g) ∈

C(X̃). It is defined as a Bochner integral, and the continuous linear operator on C(X̃)

obtained this way is denoted by (1). Its restriction to C∞(X̃) induces a continuous linear

operator

π(f) : C∞(X̃) → C∞(X̃) ⊂ D′(X̃),

with Schwartz kernel given by the distribution section Kf ∈ D′(X̃ × X̃, 1 ⊠ Ω
X̃
). The

properties of the Schwartz kernel Kf will depend on the analytic properties of f , as well

as the orbit structure of the underlying G-action, and our main effort will be directed

towards the elucidation of the structure of Kf . For this, let us consider the orbital

decomposition (4) of X̃, and remark that the restriction of π(f)ϕ to any of the connected

components isomorphic to G/PΘ(K) depends only on the restriction of ϕ ∈ C(X̃) to that

component, so that we obtain the continuous linear operators

π(f)|X̃Θ
: C∞

c (X̃Θ) → C∞(X̃Θ),

where X̃Θ denotes a component in X̃ isomorphic to G/PΘ(K). Let us now assume

that Θ = ∆, so that PΘ(K) = K. Since G acts transitively on X̃∆ one deduces that

π(f)|X̃∆
∈ L−∞(X̃∆), c.p. [18, Section 4]. The main goal of this section is to prove

that the restrictions of the operators π(f) to the manifolds with corners X̃∆ are totally

characteristic pseudodifferential operators of class L−∞
b .

Let {(Ũmw
, ϕ−1

mw
)}w∈W be the finite atlas on the Oshima compactification X̃ defined

earlier. For each point x̃ ∈ X̃, choose open neighborhoods W̃x̃ ⊂ W̃ ′
x̃ of x̃ contained in a

chart Ũmw(x̃). Since X̃ is compact, we can find a finite subcover of the cover {W̃x̃}x̃∈X̃
,

and in this way obtain a finite atlas {(W̃γ , ϕ−1
γ )}γ∈I of X̃, where for simplicity we wrote

W̃γ = W̃x̃γ
, ϕγ = ϕmw(x̃γ). Further, let {αγ}γ∈I be a partition of unity subordinate

to this atlas, and let {ᾱγ}γ∈I be another set of functions satisfying ᾱγ ∈ C∞
c (W̃ ′

γ) and

ᾱ
γ|W̃γ

≡ 1. Consider now the localization of π(f) with respect to the atlas above given

by

Aγ
f u =

[
π(f)

|W̃γ

(
u ◦ ϕ−1

γ

)]
◦ ϕγ , u ∈ C∞

c (Wγ), Wγ = ϕ−1
γ (W̃γ) ⊂ R

k+l.
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Writing ϕg
γ = ϕ−1

γ ◦ g−1 ◦ ϕγ and x = (x1, . . . , xk+l) = (n, t) ∈ Wγ we obtain

Aγ
f u(x) =

ˆ

G

f(g)
[(

u ◦ ϕ−1
γ

)
ᾱγ

](
g−1 · ϕγ(x)

)
dG(g) =

ˆ

G

f(g)cγ(x, g)
(
u ◦ ϕg

γ

)
(x)dG(g),

where we put cγ(x, g) = ᾱγ(g−1 · ϕγ(x)). Next, define the functions

f̂γ(x, ξ) =

ˆ

G

eiϕg
γ(x)·ξcγ(x, g)f(g)dg, aγ

f (x, ξ) = e−ix·ξ f̂γ(x, ξ).

Differentiating under the integral we see that f̂γ(x, ξ), aγ
f (x, ξ) ∈ C∞(Wγ × R

k+l). We

now have the following

Lemma 2. For x̃ = ϕγ(n, t) ∈ W̃γ, let Vγ,x̃ denote the set of g ∈ G such that g · x̃ ∈ W̃γ.

Then we have the power series expansion

tj(g · x̃) =
∑

α,β
βj �=0

cj
α,β(g)nα(x̃)tβ(x̃), j = 1, . . . , l, (10)

where the coefficients cj
α,β(g) depend real-analytically on g ∈ Vγ,x̃, and α, β are multi-

indices.

Proof. By Theorem 1, a G-orbit in X̃ is locally determined by the signature of any of

its elements. In particular, for x̃ ∈ W̃γ and g ∈ Vγ,x̃ as above, we have sgn tj(g · x̃) =

sgn tj(x̃) for all j = 1, . . . , l. Hence, tj(g · x̃) = 0 if and only if tj(x̃) = 0. Now, due to

the analyticity of the coordinates (ϕγ , W̃γ), there is a power series expansion

tj(g · x̃) =
∑

α,β

cj
α,β(g)nα(x̃)tβ(x̃), x̃ ∈ W̃γ , g ∈ Vγ,x̃,

for every j = 1, . . . , l, which can be rewritten as

tj(g · x̃) =
∑

α,β
βj �=0

cj
α,β(g)nα(x̃)tβ(x̃) +

∑

α,β
βj=0

cj
α,β(g)nα(x̃)tβ(x̃). (11)

Suppose tj(x̃) = 0. Then the first summand of the last equation must vanish, as in each

term of the summation a non-zero power of tj(x̃) occurs. Also, tj(g · x̃) = 0. Therefore

(11) implies that the second summand must vanish, too. But the latter is independent

of tj . So we conclude

∑

α,β
βj=0

cj
α,β(g)nα(x̃)tβ(x̃) ≡ 0

for all x̃ ∈ W̃γ , g ∈ Vγ,x̃, and the assertion follows. ✷
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From Lemma 2 we deduce that

tj(g · x̃) = t
qj

j (x̃)χj(g, x̃), x̃ ∈ W̃γ , g ∈ Vγ,x̃,

where χj(g, x̃) is a function that is real-analytic in g and in x̃, and qj � 1 is the lowest

power of tj that occurs in the expansion (10). Furthermore, since tj(g · x̃) = tj(x̃) for

g = e, one has q1 = · · · = ql = 1. A computation now shows that

1 = χj

(
g−1, g · x̃

)
· χj(g, x̃), ∀x̃ ∈ W̃γ , g ∈ Vγ,x̃,

where g−1 ∈ Vγ,gx̃. This implies

χj(g, x̃) = 0, ∀x̃ ∈ W̃γ , g ∈ Vγ,x̃, (12)

since χj(g−1, g · x̃) is a finite complex number. Thus, for x̃ = ϕγ(x) ∈ W̃γ , x = (n, t),

g−1 ∈ Vγ,x̃, we have

ϕg
γ(x) =

(
n1

(
g−1 · x̃

)
, . . . , nk

(
g−1 · x̃

)
, t1(x̃)χ

1

(
g−1, x̃

)
, . . . , tl(x̃)χ

l

(
g−1, x̃

))
.

Note that similar formulae hold for x̃ ∈ Ũmw
and g sufficiently close to the identity. The

following lemma describes the G-action on X̃ as far as the t-coordinates are concerned.

Lemma 3. Let X−λ,i and Hj be the basis elements for n− and a introduced in Section 2,

w ∈ W , and x̃ ∈ Ũmw
. Then, for small s ∈ R,

χ
j

(
esHi , x̃

)
= e−cij(mw)s,

where the cij(mw) are the matrix coefficients of the adjoint representation of M∗ on a,

and are given by Ad(m−1
w )Hi =

∑l
j=1 cij(mw)Hj. Furthermore, when x̃ = π(e, n, t),

χj

(
esX−λ,i , x̃

)
≡ 1.

Proof. Let Y ∈ g. From the proof of Lemma 1 it follows that the action of the one-

parameter group exp(sY ) on the homogeneous space G/PΘ(K) is given by

exp(sY )gnaPΘ(K) = gn exp N−
3 (s)a exp

(
A1(s) + A2(s)

)
PΘ(K), (13)

where N−
3 (s) ∈ n−, A1(s) ∈ a, A2(s) ∈ a(Θ). Denote the derivatives of N−

3 (s), A1(s),

and A2(s) at s = 0 by N−
3 , A1, and A2 respectively. The analyticity of the G-action

implies that N−
3 (s), A1(s), A2(s) are real-analytic functions in s. Furthermore, from

(13) it is clear that N−
3 (0) = 0, A1(0) + A2(0) = 0, so that for small s we have
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A1(s) + A2(s) = (A1 + A2)s +
1

2

d2

ds2

(
A1(s) + A2(s)

)∣∣∣∣
s=0

s2 + · · · ,

N−
3 (s) = N−

3 s +
1

2

d2

ds2
N−

3 (s)

∣∣∣∣
s=0

s2 + · · · .

Next, fix mw ∈ M∗ and let Θ = ∆. The action of the one-parameter group corresponding

to Hi at x̃ = π(mw, n, t) ∈ Ũmw
∩ X̃∆ is given by

exp(sHi)mwnaK = mw

(
m−1

w exp(sHi)mw

)
naK = mw exp

(
s Ad

(
m−1

w

)
Hi

)
naK.

As mw lies in M∗, exp(s Ad(m−1
w )Hi) lies in A. Since A normalizes N−, we conclude

that exp(s Ad(m−1
w )Hi)n exp(−s Ad(m−1

w )Hi) belongs to N−. Writing

n−1 exp
(
s Ad

(
m−1

w

)
Hi

)
n exp

(
−s Ad

(
m−1

w

)
Hi

)
= exp N−

3 (s)

we get

exp(sHi)mwnaK = mwn exp N−
3 (s)a exp

(
s Ad

(
m−1

w

)
Hi

)
K.

In the notation of (13) we therefore obtain A1(s)+A2(s) = s Ad(m−1
w )Hi, and by writing

Ad(m−1
w )Hi =

∑l
j=1 cij(mw)Hj we arrive at

a exp
(
A1(s) + A2(s)

)
= exp

(
l∑

j=1

(
cij(mw)s − log tj

)
Hj

)
.

In terms of the coordinates this shows that tj(exp(sHi) · x̃) = tj(x̃)e−cij(mw)s for x̃ ∈

Ũmw
∩ X̃∆, and by analyticity we obtain that χ

j
(esHi , x̃) = e−cij(mw)s for arbitrary

x̃ ∈ Ũmw
. On the other hand, let Y = X−λ,i, and x̃ = ϕe(n, t) ∈ Ũe ∩ X̃∆. Then the

action corresponding to X−λ,i at x̃ is given by

exp(sX−λ,i)naK = n exp N−
3 (s)aK,

where we wrote exp N−
3 (s) = s Ad(n−1) exp X−λ,i. In terms of the coordinates this im-

plies that tj(exp(sX−λ,i) · x̃) = tj(x̃) showing that χ
j
(esX−λ,i , x̃) ≡ 1 for x̃ ∈ Ũe ∩ X̃∆,

and, by analyticity, for general x̃ ∈ Ũe, finishing the proof of the lemma. ✷

Let now x = (n, t) ∈ Wγ , and let Tx be the diagonal (l × l)-matrix with entries

xk+1, . . . , xk+l. Introduce the auxiliary symbol

ãγ
f (x, ξ) = aγ

f

(
x,
(
1k ⊗ T −1

x

)
ξ
)

= e−i(x1,...,xk,1,...,1)·ξ

ˆ

G

ψγ
ξ,x

(
g−1

)
cγ(x, g)f(g)dG(g)

=

ˆ

G

eiΨγ(g,x)·ξcγ(x, g)f(g)dG(g), (14)
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where we put

Ψγ(g, x) =
[(

1k ⊗ T −1
x

)(
ϕg

γ(x) − x
)]

=
(
x1

(
g−1 · x̃

)
− x1(x̃), . . . , xk

(
g−1 · x̃

)
− xk(x̃), χ

1

(
g−1, x̃

)
− 1,

. . . , χ
l

(
g−1, x̃

)
− 1

)
,

as well as

ψγ
ξ,x(g) = ei(x1(g·x̃),...,xk(g·x̃),χ1(g,x̃),...,χl(g,x̃))·ξ.

Clearly, ãγ
f (x, ξ) ∈ C∞(Wγ × R

k+l). Our next goal is to show that ãγ
f (x, ξ) is a lacunary

symbol. To do so, we need the following

Proposition 2. Let (L, C∞(G)) be the left regular representation of G. Let X−λ,i, Hj be

the basis elements of n− and a introduced in Section 2, and (W̃γ , ϕγ) an arbitrary chart.

With x = (n, t) ∈ Wγ , x̃ = ϕγ(x) ∈ W̃γ , g ∈ Vγ,x̃ one has

⎛
⎜⎝

dL(X−λ,1)ψγ
ξ,x(g)

...

dL(Hl)ψ
γ
ξ,x(g)

⎞
⎟⎠ = iψγ

ξ,x(g)Γ (x, g)ξ, (15)

with

Γ (x, g) =

(
Γ1 Γ2

Γ3 Γ4

)
=

( dL(X−λ,i)nj,x̃(g) dL(X−λ,i)χj(g, x̃)

dL(Hi)nj,x̃(g) dL(Hi)χj(g, x̃)

)
(16)

belonging to GL(l + k,R), where nj,x̃(g) = nj(g · x̃).

Proof. Fix a chart (W̃γ , ϕ−1
γ ), and let x, x̃, g be as above. For X ∈ g, one computes that

dL(X)ψγ
ξ,x(g) =

d

ds
ei(1k⊗T −1

x )ϕe−sX g
γ (x)·ξ

∣∣∣∣
s=0

= iψγ
ξ,x(g)

[
k∑

i=1

ξidL(X)ni,x̃(g) +

l∑

j=1

ξk+jdL(X)χj(g, x̃)

]
,

showing the first equality. To see the invertibility of the matrix Γ (x, g), note that for

small s

χj

(
e−sXg, x̃

)
= χj(g, x̃)χj

(
e−sX , g · x̃

)
.

Lemma 3 then yields

dL(Hi)χj(g, x̃) = χj(g, x̃)
d

ds

(
ecij(mwγ )s

)
|s=0

= χj(g, x̃)cij(mwγ
).
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This means that Γ4 is the product of the matrix (cij(mwγ
))i,j with the diagonal matrix

whose j-th diagonal entry is χj(g, x̃). Since (cij(mwγ
))i,j is just the matrix realization

of Ad(m−1
wγ

) relative to the basis {H1, . . . , Hl} of a, it is invertible. On the other hand,

by (12), χj(g, x̃) is non-zero for all j ∈ {1, . . . , l} and arbitrary g and x̃. Therefore Γ4,

being the product of two invertible matrices, is invertible. Next, let us show that the

matrix Γ1 is non-singular. Its (ij)th entry reads

dL(X−λ,i)nj,x̃(g) =
d

ds
nj,x̃

(
e−sX−λ,i · g

)
|s=0

= (−X−λ,i|X̃)g·x̃(nj).

For Θ ⊂ ∆, q ∈ R
l, we define the k-dimensional submanifolds

LΘ(q) =
{

x̃ = ϕγ(n, q) ∈ W̃γ : qi = 0 ⇔ αi ∈ Θ
}

.

As g varies over G in Lemma 1, one deduces that N− × A(Θ) acts locally transitively

on X̃Θ. In addition, Tg·x̃LΘ(q) is equal to the span of the vector fields {X−λ,i|X̃},

which means that N− acts locally transitively on LΘ(q) for arbitrary Θ. Since the

latter is parametrized by the coordinates (n1, . . . , nk), one concludes that the ma-

trix ((X−λ,i|X̃)g·x̃(nj))ij has full rank. Thus, Γ1 is non-singular. On the other hand,

if x̃ = π(e, n, t) ∈ Ũe, Lemma 3 implies

dL(X−λ,i)χj(g, x̃) = χj(g, x̃)
d

ds

(
χj

(
e−sX−λ,i , g · x̃

))
|s=0

= 0,

showing that Γ2 is identically zero, while Γ4 is a non-singular diagonal matrix in this case.

Geometrically, this amounts to the fact that the fundamental vector field corresponding

to Hj is transversal to the hypersurface defined by tj = q ∈ R\{0}, while the vector fields

corresponding to the Lie algebra elements X−λ,r, Hi, i = j, are tangential. We therefore

conclude that Γ (x, g) is non-singular if x̃ ∈ Ũe, which is dense in X̃. For symmetry

reasons, the same must hold if x̃ lies in one of the remaining charts Ũmwγ
, and the

assertion of the proposition follows. ✷

We can now state the main result of this paper. In what follows, {(W̃γ , ϕ−1
γ )}γ∈I will

always denote the finite atlas of X̃ constructed above.

Theorem 2. Let X̃ be the Oshima compactification of a Riemannian symmetric space

X = G/K of non-compact type, and f ∈ S(G) a rapidly decaying function on G. Then

the operators π(f) are locally of the form

Aγ
f u(x) =

ˆ

eix·ξaγ
f (x, ξ)û(ξ)dξ, u ∈ C∞

c (Wγ), (17)

where aγ
f (x, ξ) = ãγ

f (x, ξ1, . . . , ξk, xk+1ξk+1, . . . , ξk+lxk+l), and ãγ
f (x, ξ) ∈ S−∞

la (Wγ ×

R
k+l
ξ ) is given by (14). In particular, the kernel of the operator Aγ

f is determined by its
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restrictions to W ∗
γ × W ∗

γ , where W ∗
γ = {x = (n, t) ∈ Wγ : t1 · · · tl = 0}, and given by the

oscillatory integral

KAγ
f
(x, y) =

ˆ

ei(x−y)·ξaγ
f (x, ξ)dξ. (18)

As a consequence, we obtain the following

Corollary 1. Let X̃∆ be an open G-orbit in X̃ isomorphic to G/K. Then the continuous

linear operators

π(f)
|X̃∆

: C∞
c (X̃∆) → C∞(X̃∆),

are totally characteristic pseudodifferential operators of class L−∞
b on the manifold with

corner X̃∆.

Proof of Theorem 2. Our considerations closely follow, by adapting to our setting, the

reasoning of the proof of Theorem 4 in [18]. Let Γ (x, g) be the matrix defined in (16),

and consider its extension as an endomorphism in C
1[Rk+l

ξ ] to the symmetric algebra

S(C1[Rk+l
ξ ]) ≃ C[Rk+l

ξ ]. By Proposition 2, Γ (x, g) is invertible for x̃ ∈ W̃γ , g ∈ Vγ,x̃.

Therefore, its extension to SN (C1[Rk+l
ξ ]) is also an automorphism for any N ∈ N. Re-

garding the polynomials ξ1, . . . , ξk+l as a basis in C
1[Rk+l

ξ ], let us denote the image of

the basis vector ξj under the endomorphism Γ (x, g) by Γξj , so that by (15)

Γξj = −iψγ
−ξ,x(g)dL(X−λ,j)ψγ

ξ,x(g), 1 � j � k,

Γξj = −iψγ
−ξ,x(g)dL(Hj)ψγ

ξ,x(g), k + 1 � j � k + l.

Every polynomial ξj1
⊗· · ·⊗ξjN

≡ ξj1
. . . ξjN

can then be written as a linear combination

ξα =
∑

β

Λα
β(x, g)Γξβ1

· · · Γξβ|α|
, (19)

where the Λα
β(x, g) are real-analytic functions given in terms of the matrix coefficients

of Γ (x, g). We need now the following

Lemma 4. For arbitrary indices β1, . . . , βr, one has

irψγ
ξ,x(g)Γξβ1

· · · Γξβr
= dL(Xβ1

· · · Xβr
)ψγ

ξ,x(g)

+
r−1∑

s=1

∑

α1,...,αs

dβ1,...,βr
α1,...,αs

(x, g)dL(Xα1
· · · Xαs

)ψγ
ξ,x(g), (20)

where the coefficients dβ1,...,βr
α1,...,αs

(x, g) are real-analytic functions given by the matrix coef-

ficients of Γ (x, g) which are at most of exponential growth in g, and independent of ξ.
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Proof. The lemma is proved by induction. For r = 1 one has iψγ
ξ,x(g)Γξp =

dL(Xp)ψγ
ξ,x(g), where 1 � p � d. Differentiating the latter equation with respect to Xj ,

and writing Γξp =
∑k+l

s=1 Γps(x, g)ξs, we obtain with (19) the equality

−ψγ
ξ,x(g)ΓξjΓξp = dL(XjXp)ψγ

ξ,x(g) −
k+l∑

s,r=1

(
dL(Xj)Γps

)
(x, g)Λs

r(x, g)dL(Xr)ψγ
ξ,x(g).

Hence, the assertion of the lemma is correct for r = 1, 2. Now, assume that it holds for

r � N . Setting r = N in (20), and differentiating with respect to Xp, yields for the left

hand side

iN+1ψγ
ξ,x(g)ΓξpΓξβ1

· · · ΓξβN

+ iN ψγ
ξ,x(g)

(
k+l∑

s,q=1

(
dL(Xp)Γβ1s

)
(x, g)Λs

q(x, g)Γξq

)
Γξβ2

· · · ΓξβN
+ · · · .

By assumption, we can apply (20) to the products ΓξqΓξβ2
· · · ΓξβN

, . . . of at most N

factors. Since

∥∥π(g)
∥∥ � ceκ|g|, g ∈ G, (21)

for some constants c � 1, κ � 0, see [19, p. 12], the functions ni,x̃(g), χj(g, x̃), and

consequently the coefficients of Γ (x, g), are at most of exponential growth in g, and the

assertion of the lemma follows. ✷

End of proof of Theorem 2. Let us next show that ãγ
f (x, ξ) ∈ S−∞(Wγ × R

k+l
ξ ). As

already noted, ãγ
f (x, ξ) ∈ C∞(Wγ×R

k+l
ξ ). While differentiation with respect to ξ does not

alter the growth properties of ãγ
f (x, ξ), differentiation with respect to x yields additional

powers in ξ. Now, as an immediate consequence of (19) and (20), one computes for

arbitrary N ∈ N

ψγ
ξ,x(g)

(
1 + |ξ|2

)N
=

2N∑

r=0

∑

|α|=r

bN
α (x, g)dL

(
Xα

)
ψγ

ξ,x(g), (22)

where the coefficients bN
α (x, g) are at most of exponential growth in g. Now, (∂α

ξ ∂β
x ãγ

f ) ×

(x, ξ) is a finite sum of terms of the form

ξβ′

e−i(x1,...,xk,1,...,1)·ξ

ˆ

G

f(g)dα
β′β′′(x, g)ψγ

ξ,x

(
g−1

)(
∂β′′

x cγ

)
(x, g)dg,

the functions dα
β′β′′(x, g) being at most of exponential growth in g. Making use of (22),

and integrating according to Proposition 1, we finally obtain for arbitrary α, β the

estimate
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∣∣(∂α
ξ ∂β

x ãγ
f

)
(x, ξ)

∣∣ � 1

(1 + ξ2)N
Cα,β,K x ∈ K,

where K denotes an arbitrary compact set in Wγ , and N ∈ N. This proves that

ãγ
f (x, ξ) ∈ S−∞(Wγ × R

k+l
ξ ). Since (17) is an immediate consequence of the Fourier

inversion formula, it remains to show that ãγ
f (x, ξ) satisfies the lacunary condition (8)

for each of the coordinates ti. Now, it is clear that aγ
f (x, ξ) ∈ S−∞(W ∗

γ × R
k+l
ξ ), since

G acts transitively on each X̃∆. As a consequence, the Schwartz kernel of the restriction

of the operator Aγ
f : C∞

c (Wγ) → C∞(Wγ) to W ∗
γ is given by the absolutely convergent

integral

ˆ

ei(x−y)·ξaγ
f (x, ξ)dξ ∈ C∞

(
W ∗

γ × W ∗
γ

)
.

Next, let us write Wγ =
⋃

Θ⊂∆ W Θ
γ , where W Θ

γ = {x = (n, t) : ti = 0 ⇔ αi ∈ Θ}. Since

on W Θ
γ the function Aγ

f u depends only on the restriction of u ∈ C∞
c (Wγ) to W Θ

γ , one

deduces that

supp KAγ
f

⊂
⋃

Θ⊂∆

W Θ
γ × W Θ

γ . (23)

Therefore, each of the integrals

ˆ

ei(xj−yj)ξj ãγ
f

(
x, (1k ⊗ Tx)ξ

)
dξj , j = k + 1, . . . , k + l,

which are smooth functions on W ∗
γ × W ∗

γ , must vanish if xj and yj do not have the same

sign. With the substitution rj = yj/xj −1, ξjxj = ξ′
j one finally arrives at the conditions

ˆ

e−irjξj ãγ
f (x, ξ)dξj = 0 for rj < −1, x ∈ W ∗

γ .

But since ãγ
f is rapidly decreasing in ξ, the Lebesgue bounded convergence theorem

implies that these conditions must also hold for x ∈ Wγ . Thus, the lacunarity of the

symbol ãγ
f follows. The fact that the kernel KAγ

f
must be determined by its restriction to

W ∗
γ ×W ∗

γ , and hence by the oscillatory integral (18) now follows by arguments analogous

to those given in [15, Lemma 4.1]. This completes the proof of Theorem 2. ✷

As a consequence of Theorem 2, we can describe the asymptotic behavior of the kernels

KAγ
f
(x, y) as |xj | → 0 or |yj | → 0 for k + 1 � j � k + l. Note that this corresponds to

the asymptotic behavior of the kernel of π(f) on X̃∆ ≃ X at infinity.

Corollary 2. Let k + 1 � j � k + l. Then KAγ
f
(x, y) is rapidly decreasing as |xj | → 0 or

|yj | → 0, provided that xj = yj.
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Proof. According to Theorem 2, the kernel of π(f) is locally given by

KAγ
f
(x, y) =

ˆ

ei(x−y)·ξaγ
f (x, ξ)dξ =

ˆ

ei(x−y)·(1k⊗T −1
x )ξãγ

f (x, ξ)
∣∣det

(
1k ⊗ T −1

x

)′
(ξ)

∣∣dξ

=
1

|xk+1 · · · xk+l|
Ãγ

f

(
x, x1 − y1, . . . , 1 −

yk+1

xk+1
, . . .

)
, xk+1 · · · xk+l = 0,

where Ãγ
f (x, y) denotes the inverse Fourier transform of ãγ

f (x, ξ),

Ãγ
f (x, y) =

ˆ

eiy·ξãγ
f (x, ξ)dξ. (24)

Since for x ∈ W γ the amplitude ãγ
f (x, ξ) is rapidly falling in ξ, it follows that Ãγ

f (x, y) ∈

S(Rk+l
y ), the Fourier transform being an isomorphism on Schwartz space. Therefore the

kernel KAγ
f
(x, y) is rapidly decreasing as |xj | → 0 if xj = yj and k + 1 � j � k + l.

Furthermore, by the lacunarity of ãγ
f , KAγ

f
(x, y) is also rapidly decaying as |yj | → 0 if

xj = yj and k + 1 � j � k + l. ✷

The explicit local form of the kernels of π(f) in the above proof shows that the

singularities arise precisely from the lower-dimensional orbits, which are given by the

vanishing of one or more of the coordinates xk+1, . . . , xk+l.

5. Holomorphic semigroup and resolvent kernels

In this section, we study the holomorphic semigroup generated by a strongly ellip-

tic operator Ω associated to the regular representation (π, C(X̃)) of G, as well as its

resolvent. Both the holomorphic semigroup and the resolvent can be characterized as

convolution operators of the type considered before, so that we can study them by the

methods developed in the previous section. In particular, this will allow us to obtain a

description of the asymptotic behavior of the semigroup and resolvent kernels on X̃∆ ≃ X

at infinity.

Let us begin by recalling some basic facts about elliptic operators and parabolic

evolution equations on Lie groups, our main reference being [19]. Let G be a Lie group,

and π a continuous representation of G on a Banach space B. Let further X1, . . . , Xd be

a basis of the Lie algebra Lie(G) of G, and

Ω =
∑

|α|�q

cαdπ
(
Xα

)

a strongly elliptic differential operator of order q associated with π, meaning that for

all ξ ∈ R
d one has the inequality Re(−1)q/2

∑
|α|=q cαξα � κ|ξ|q for some κ > 0. By

the general theory of strongly continuous semigroups, its closure generates a strongly

continuous holomorphic semigroup of bounded operators given by
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Sτ =
1

2πi

ˆ

Γ

eλτ (λ1 + Ω)−1dλ,

where Γ is an appropriate path in C coming from infinity and going to infinity such that

λ does not lie in the spectrum σ(Ω) of Ω for λ ∈ Γ . Here |arg τ | < α for an appropriate

α ∈ (0, π/2], and the integral converges uniformly with respect to the operator norm.

Furthermore, for τ > 0, the subgroup Sτ can be characterized by a convolution semigroup

of complex measures {μτ }τ>0 on G according to

Sτ =

ˆ

G

π(g)dμτ (g),

π being measurable with respect to the measures μτ . The measures μτ are absolutely

continuous with respect to Haar measure dG on G, and denoting by fτ (g) ∈ L1(G, dG)

the corresponding Radon–Nikodym derivative, one has

Sτ = π(fτ ) =

ˆ

G

fτ (g)π(g)dG(g).

The function fτ (g) ∈ L1(G, dG) is analytic in τ and g, and universal for all Banach

representations. It satisfies the parabolic differential equation

∂fτ

∂τ
(g) +

∑

|α|�q

cαdL
(
Xα

)
fτ (g) = 0, lim

τ→0
fτ (g) = δ(g),

where (L, C∞(G)) denotes the left regular representation of G. As a consequence, fτ must

be supported on the identity component G0 of G. We call it the Langlands kernel of the

holomorphic semigroup Sτ , and it satisfies the following L1- and L∞-bounds.

Theorem 3. For each κ � 0, there exist constants a, b, c > 0, and ω � 0 such that

ˆ

G0

∣∣dL
(
Xα

)
∂β

τ fτ (g)
∣∣eκ|g|dG0

(g) � ab|α|cβ |α|!β!
(
1 + τ−β−|α|/q

)
eωτ , (25)

for all τ > 0, β = 0, 1, 2, . . . and multi-indices α. Furthermore,

∣∣dL
(
Xα

)
∂β

τ fτ (g)
∣∣ � ab|α|cβ |α|!β!

(
1 + τ−β−(|α|+d+1)/q

)
eωτ e−κ|g|, (26)

for all g ∈ G0, where d = dim G0, and q denotes the order of Ω. Similar bounds hold for

the derivatives dR(Xα).

A detailed exposition of these facts can be found in [19, pp. 30, 152, 166, and 167]. Let

now G = G, and (π, B) be the regular representation of G on C(X̃). Theorem 3 implies

that the Langlands kernel fτ belongs to the space S(G) of rapidly falling functions on G.

As a consequence of the previous considerations we obtain
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Theorem 4. Let Ω be a strongly elliptic differential operator of order q associated with the

regular representation (π, C(X̃)), and Sτ = π(fτ ) the holomorphic semigroup of bounded

operators generated by Ω. Then the operators Sτ are locally of the form (17) with f being

replaced by fτ , and totally characteristic pseudodifferential operators of class L−∞
b on the

manifolds with corners X̃∆. Furthermore, on Wγ × Wγ, the kernel of Sτ is given by

Sγ
τ (x, y) = KAγ

fτ
(x, y) =

ˆ

ei(x−y)·ξaγ
fτ

(x, ξ)dξ

=
1

|xk+1 · · · xk+l|
Ãγ

fτ

(
x,
(
1k ⊗ T −1

x

)
(x − y)

)
,

where xk+1 · · · xk+l = 0, and Ãγ
fτ

(x, y) was defined in (24). In particular, Sγ
τ (x, y) is

rapidly falling as |xj | → 0, or |yj | → 0, as long as xj = yj, where k + 1 � j � k + l. In

addition,

∣∣Ãγ
fτ

(x, y)
∣∣ �

{
c1(1 + τ−(l+k+1)/q), 0 < τ � 1,

c2eωτ , 1 < τ,
(27)

uniformly on compact subsets of Wγ × Wγ for some constants ci > 0.

Proof. The first assertions are immediate consequences of Theorem 2, and its corollary.

In order to prove (27), note that for large N ∈ N one computes with (14), (22), and (24)

∣∣Ãγ
fτ

(x, y)
∣∣

�

ˆ ∣∣ãγ
fτ

(x, ξ)
∣∣dξ =

ˆ

∣∣∣∣
ˆ

G

ψγ
ξ,x

(
g−1

)
cγ(x, g)fτ (g)dG(g)

∣∣∣∣dξ

=

ˆ (
1 + |ξ|2

)−N
∣∣∣∣
ˆ

G

cγ(x, g)fτ (g)
2N∑

r=0

∑

|α|=r

bN
α

(
x, g−1

)
dL

(
Xα

)
ψγ

ξ,x

(
g−1

)
dG(g)

∣∣∣∣dξ.

If we now apply Proposition 1, and take into account the estimate (25) we obtain

∣∣Ãγ
fτ

(x, y)
∣∣

�

ˆ (
1 + |ξ|2

)−N
∣∣∣∣
ˆ

G

ψγ
ξ,x(g)

2N∑

r=0

∑

|α|=r

dL
(
X α̃

)[
bN

α (x, g)cγ

(
x, g−1

)
fτ

(
g−1

)]
dG(g)

∣∣∣∣dξ

�

{
c1(1 + τ−2N/q), 0 < τ � 1,

c2eωτ , 1 < τ,

for certain constants ci > 0. Expressing ξk+l+1
j ψγ

ξ,x(g) on {ξ ∈ R
n : |ξi| � |ξj | for all i}

as left derivatives of ψγ
ξ,x(g) according to (19) and (20), and estimating the maximum

norm by the usual norm, a similar argument shows that the last estimate is also valid

for N = (k + l + 1)/2, compare (33). The proof is now complete. ✷
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Let us now turn to the resolvent of the closure of the strongly elliptic operator Ω.

By (25) one has the bound ‖Sτ ‖ � ceωτ for some constants c � 1, ω � 0. For λ ∈ C

with Re λ > ω, the resolvent of Ω can be expressed by means of the Laplace transform

according to

(λ1 + Ω)−1 = Γ (1)
−1

∞̂

0

e−λτ Sτ dτ,

where Γ is the Γ -function. More generally, one can consider for arbitrary α > 0 the

integral transforms

(λ1 + Ω)−α = Γ (α)
−1

∞̂

0

e−λτ τα−1Sτ dτ.

As it turns out, the functions

rα,λ(g) = Γ (α)−1

∞̂

0

e−λτ τα−1fτ (g)dτ

are in L1(G, eκ|g|dG), where κ � 0 is such that ‖π(g)‖ � ceκ|g| for some c � 1, see (21).

This implies that the resolvent of Ω can be expressed as the convolution operator

(λ1 + Ω)−α = π(rα,λ) =

ˆ

G

rα,λ(g)π(g)dG(g).

The resolvent kernels rα,λ decrease exponentially as |g| → ∞, but they are singular at

the identity if d � qα. More precisely, one has the following

Theorem 5. There exist constants b, c, λ0 > 0, and aα,λ > 0, such that

∣∣dL
(
Xδ

)
rα,λ(g)

∣∣ �

⎧
⎪⎪⎨
⎪⎪⎩

aα,λ|g|−(d+|δ|−qα)e−(b(Re λ)1/q−c)|g|, d > qα,

aα,λ(1 + |log |g||)e−(b(Re λ)1/q−c)|g|, d = qα,

aα,λe−(b(Re λ)1/q−c)|g|, d < qα

for each λ ∈ C with Re λ > λ0.

A proof of these estimates is given in [19, pp. 238 and 245]. Our next aim is to under-

stand the microlocal structure of the operators π(rα,λ) on the Oshima compactification X̃

of X = G/K. Consider again the atlas {(W̃γ , ϕ−1
γ )}γ∈I of X̃ introduced in Section 4, and

the local operators
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Aγ
rα,λ

u =
[
π(rα,λ)

|W̃γ

(
u ◦ ϕ−1

γ

)]
◦ ϕγ , (28)

where u ∈ C∞
c (Wγ) and Wγ = ϕ−1

γ (W̃γ). By the Fourier inversion formula, Aγ
rα,λ

is given

by the absolutely convergent integral

Aγ
rα,λ

u(x) =

ˆ

Rn

eix·ξaγ
rα,λ

(x, ξ)û(ξ)dξ, (29)

where

aγ
rα,λ

(x, ξ) =

ˆ

G

ei(ϕg
γ(x)−x)·ξcγ(x, g)rα,λ(g)dG(g),

ãγ
rα,λ

(x, ξ) =

ˆ

G

eiΨγ(g,x)·ξcγ(x, g)rα,λ(g)dG(g)

are smooth functions on Wγ ×R
k+l, since rα,λ ∈ L1(G, eκ|g|dG). Moreover, in view of the

L1-bound (25), the functions e−λτ τα−1ãγ
fτ

(x, ξ) and e−λτ τα−1aγ
fτ

(x, ξ) are integrable in

τ over (0, ∞), and by Fubini we obtain the equalities

aγ
rα,λ

(x, ξ) = Γ (α)−1

∞̂

0

e−λτ τα−1aγ
fτ

(x, ξ)dτ,

ãγ
rα,λ

(x, ξ) = Γ (α)−1

∞̂

0

e−λτ τα−1ãγ
fτ

(x, ξ)dτ.

In what follows, we shall describe the microlocal structure of the resolvent (λ1 + Ω)−α

on X̃, and in particular, its kernel.

Proposition 3. Let Q be the largest integer such that Q < qα. Then ãγ
rα,λ

(x, ξ) ∈

S−Q
la (Wγ ×R

k+l). That is, for any compactum K ⊂ Wγ , and arbitrary multi-indices β, ε

there exist constants CK,β,ε > 0 such that

∣∣(∂ε
x∂β

ξ ãγ
rα,λ

)
(x, ξ)

∣∣ � CK,β,ε

(
1 + |ξ|2

)(−Q−|β|)/2
, x ∈ K, ξ ∈ R

k+l, (30)

and ãγ
rα,λ

satisfies the lacunary condition (8) for each of the coordinates xj, k + 1 � j �

k + l.

Proof. For a fixed chart (W̃γ , ϕγ) of X̃ we write x = (n, t) ∈ Wγ , x̃ = ϕγ(x) ∈ W̃γ ,

as usual. As a consequence of Proposition 2 and Lemma 4 one computes with (22) for

arbitrary N ∈ N
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(
∂2β

ξ ãγ
rα,λ

)
(x, ξ) =

ˆ

G

eiΨγ(g,x)·ξ
[
iΨγ(g, x)

]2β
cγ(x, g)rα,λ(g)dG(g)

=
(
1+|ξ|2

)−N
e−i(x1,...,xk,1,...,1)·ξ

2N∑

r=0

∑

|δ|=r

ˆ

G

bN
δ

(
x, g−1

)
dL

(
Xδ

)
ψγ

ξ,x

(
g−1

)

·
[
iΨγ(x, g)

]2β
cγ(x, g)rα,λ(g)dG(g).

Now, nr(g · x̃) → nr(x̃) and χr(g, x̃) → 1 as g → e, so that due to the analyticity of the

G-action on X̃ one deduces

∣∣Ψγ(g, x)
∣∣ =

∣∣(n1

(
g−1 · x̃

)
− n1(x̃), . . . , χ1

(
g−1 · x̃

)
− 1, . . .

)∣∣ � CK|g|, x ∈ K, (31)

for some constant CK. Indeed, let

(ζ1, . . . , ζd) �→ eζ1X1+···+ζdXd = g

be canonical coordinates of the first type near the identity e ∈ G. We then have the

power expansions

χr(g, x̃) − 1 =
∑

α,β,γ

cr
α,β,γnαtβζγ , nr(g · x̃) − nr(x̃) =

∑

α,β,γ

dr
α,β,γnαtβζγ , (32)

where cr
α,β,γ , dr

α,β,γ = 0 if |γ| = 0. Hence,

∣∣nr(g · x̃) − nr(x̃)
∣∣,
∣∣χr(g, x̃) − 1

∣∣ � C1|ζ| � C2|g|,

compare [19, pp. 12–13], and we obtain (31). With Theorem 5, and, say, d > qα, we

therefore have the pointwise estimates

∣∣Ψγ(g, x)β′

dL
(
Xδ′)

rα,λ(g)
∣∣ � CK,α,λ|g|−(d+|δ′|−qα−|β′|)e−(b(Re λ)1/q−c)|g|

for some constant CK,α,λ > 0 uniformly on K × Vγ,x̃. Now, let 2Q̃ be the largest even

number strictly smaller than qα. Applying the same reasoning as in the proof of Propo-

sition 1, one obtains for N = Q̃ + |β|

(
∂2β

ξ ãγ
rα,λ

)
(x, ξ) =

(
1 + |ξ|2

)−Q̃−|β|
2Q̃+2|β|∑

r=0

∑

|δ|=r

(−1)|δ|

ˆ

G

eiΨγ(g−1,x)·ξ

· dL
(
X δ̃

)[
b

Q̃+|β|
δ (x, g)

[
iΨγ

(
g−1, x

)]2β
cγ

(
x, g−1

)
rα,λ

(
g−1

)]
dG(g),

since all the occurring combinations Ψγ(g−1, x)β′

dL(Xδ′

)[rα,λ(g−1)] on the right hand

side are such that qα + |β′| − |δ′| > 0, implying that the corresponding integrals over G

converge. Equality then follows by the left-invariance of dG(g), and Lebesgue’s theorem
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on dominated convergence. To show the estimate (30) in general for ε = 0, let x ∈ K,

and ξ ∈ R
k+l be such that |ξ| � 1, and |ξ|max = max{|ξr| : 1 � r � k + l} = |ξj |. Using

(19) and (20) we can express ξ
Q+|β|
j ψγ

ξ,x(g) as left derivatives of ψγ
ξ,x(g), and repeating

the previous argument we obtain the estimate

∣∣(∂β
ξ ãγ

rα,λ

)
(x, ξ)

∣∣ = |ξj |−Q−|β|

∣∣∣∣∣

Q+|β|∑

r=0

∑

|δ|=r

ˆ

G

bj
δ

(
x, g−1

)
dL

(
Xδ

)
ψγ

ξ,x

(
g−1

)

·
[
iΨγ(x, g)

]β
cγ(x, g)rα,λ(g)dG(g)

∣∣∣∣∣

� C̃K,β
1

|ξ|
Q+|β|
max

� CK,β
1

|ξ|Q+|β|
, (33)

where the coefficients bj
δ(x, g) are at most of exponential growth in g. But since

ãγ
rα,λ

(x, ξ) ∈ C∞(Wγ × R
k+l), we obtain (30) for ε = 0. Let us now turn to the

x-derivatives. We have to show that the powers in ξ that arise when differentiating

(∂β
ξ ãγ

rα,λ
)(x, ξ) with respect to x can be compensated by an argument similar to the

previous considerations. Now, (32) clearly implies

∂ε
x

(
χr(g, x̃) − 1

)
= O

(
|g|
)
, ∂ε

x

(
nr(g · x̃) − nr(x̃)

)
= O

(
|g|
)
.

Thus, each time we differentiate the exponential eiΨγ(g,x)·ξ with respect to x, the result is

of order O(|ξ||g|). Therefore, expressing the occurring powers ξε′

ψγ
ξ,x(g) as left derivatives

of ψγ
ξ,x(g), we can repeat the preceding argument to absorb the powers in ξ, and (30)

follows. Note next that the previous argument also implies aγ
rα,λ

(x, ξ) ∈ S−Q(W ∗
γ ×R

k+l
ξ ),

where we wrote W ∗
γ = {x = (n, t) ∈ Wγ : t1 · · · tl = 0}, the G-action being transitive on

each X̃∆. The Schwartz kernel KAγ
rα,λ

of the restriction of the operator (28) to W ∗
γ is

therefore given by the oscillatory integral

ˆ

ei(x−y)·ξaγ
rα,λ

(x, ξ)dξ ∈ D′
(
W ∗

γ × W ∗
γ

)
,

which is C∞ off the diagonal. As in (23) we have supp KAγ
rα,λ

⊂
⋃

Θ⊂∆ W Θ
γ × W Θ

γ , so

that each of the integrals

ˆ

ei(xj−yj)ξj ãγ
rα,λ

(
x, (1k ⊗ Tx)ξ

)
dξj , j = k + 1, . . . , k + l,

must vanish if xj and yj do not have the same sign. Hence,

ˆ

e−irjξj ãγ
rα,λ

(x, ξ)dξj = 0 for rj < −1, x ∈ W ∗
γ .
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Since ãγ
rα,λ

(x, ξ) ∈ S−Q(Wγ ×R
k+l
ξ ), these integrals are absolutely convergent for rj = 0.

Lebesgue’s theorem on bounded convergence theorem then implies that these conditions

must also hold for x ∈ Wγ . The proof of the proposition is now complete. ✷

Remark 2. One would actually expect that ãγ
rα,λ

(x, ξ) ∈ S−qα
la (Wγ ×R

k+l), being the local

symbol of the resolvent (λ1+Ω)−α. Nevertheless, the general estimates of Theorem 5 for

the resolvent kernels rα,λ, which correctly reflect the singular behavior at the identity,

are not sufficient to show this, and more information about them is required. Indeed,

dL(Xβ)rα,λ ∈ L1(G, dG(g)) only holds if 0 < qα − |β|.

We are now able to describe the microlocal structure of the resolvent (λ1 + Ω)−α.

Theorem 6. Let Ω be a strongly elliptic differential operator of order q associated with the

representation (π, C(X̃)) of G. Let ω � 0 be given by Theorem 3, and λ ∈ C be such that

Re λ > ω. Let further α > 0, and denote by Q the largest integer such that Q < qα. Then

(λ1+Ω)−α = π(rα,λ) is locally of the form (29), where aγ
rα,λ

(x, ξ) = ãγ
rα,λ

(x, (1k ⊗Tx)ξ),

and ãγ
rα,λ

(x, ξ) ∈ S−Q
la (Wγ × R

k+l). In particular, (λ1 + Ω)−α is a totally characteristic

pseudodifferential operators of class L−Q
b on the manifolds with corners X̃∆. Furthermore,

its kernel is locally given by the oscillatory integral

Rγ
α,λ(x, y) =

ˆ

ei(x−y)ξaγ
rα,λ

(x, ξ)dξ =
1

|xk+1 · · · xk+l|

ˆ

ei(1k⊗T −1
x )(x−y)·ξãγ

rα,λ
(x, ξ)dξ,

where xk+1 · · · xk+l = 0, x, y ∈ Wγ. Rγ
α,λ(x, y) is smooth off the diagonal, and rapidly

falling as |xj | → 0, or |yj | → 0, as long as xj = yj, where k + 1 � j � k + l.

Proof. The assertions of the theorem are direct consequences of our previous considera-

tions, except for the behavior of Rγ
α,λ(x, y) at infinity. Let k + 1 � j � k + l. While the

behavior as |yj | → 0 is a direct consequence of the lacunarity of ãγ
Rα,γ

, the behavior as

|xj | → 0 is a direct consequence of the fact that, as oscillatory integrals,

ˆ

ei(1k⊗T −1
x )(x−y)·ξãγ

rα,λ
(x, ξ)dξ =

1

|(1k ⊗ T −1
x )(x − y)|2N

ˆ

ei(x−y)·ξ∆N
ξ ãγ

rα,λ
(x, ξ)dξ,

where ∆ξ = ∂2
ξ1

+ · · · + ∂2
ξk+l

, x = y, and N is arbitrarily large. ✷

Remark 3. The singular behavior of rα,λ(g) at the identity corresponds to the fact that,

as a pseudodifferential operator of class L−Q
b , (λ1 + Ω)−α has a kernel which is singular

at the diagonal.

To conclude, let us say some words about the classical heat kernel on a Riemannian

symmetric space of non-compact type. Consider thus the regular representation (σ, C(X̃))
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of the solvable Lie group S = AN− ≃ X = G/K on the Oshima compactification X̃ of X,

and associate to every f ∈ S(S) the corresponding convolution operator

ˆ

S

f(g)σ(g)dS(g).

Its restriction to C∞(X̃) induces again a continuous linear operator

σ(f) : C∞(X̃) → C∞(X̃) ⊂ D′(X̃),

and an examination of the arguments in Section 7 shows that an analogous analysis

applies to the operators σ(f). In particular, Theorem 2 holds for them, too. Let ̺ be the

half sum of all positive roots, and

C =
∑

j

H2
j −

∑

j

Z2
j −

∑

j

[
Xjθ(Xj) + θ(Xj)Xj

]
≡
∑

j

H2
j − 2̺ + 2

∑
X2

j mod U(g)k

be the Casimir operator in U(g), where {Hj}, {Zj}, and {Xj} are orthonormal basis of

a, m, and n−, respectively, and put C ′ =
∑

j H2
j − 2̺ + 2

∑
X2

j . Though −dπ(C ′) is

not a strongly elliptic operator in the sense defined above, Ω = −dσ(C ′) certainly is.

Consequently, if f ′
τ (g) ∈ S(S) denotes the corresponding Langlands kernel, Theorems 4

and 6 yield descriptions of the Schwartz kernels of σ(f ′
τ ) and (λ1 + Ω)−α on X̃. On the

other hand, denote by ∆ the Laplace–Beltrami operator on X. Then

∆ϕ(gK) = ϕ(g : C) = ϕ
(
g : C ′

)
, ϕ ∈ C∞(X),

and the associated heat kernel hτ (g) on X coincides with the heat kernel on S associated

to C ′. But the latter is essentially given by the Langlands kernel f ′
τ (g), being the solution

of the parabolic equation

∂f ′
τ

∂τ
(g) − dL

(
C ′
)
f ′

τ (g) = 0, lim
τ→0

f ′
τ (g) = δ(g)

on S. In this particular case, optimal upper and lower bounds for hτ and the Bessel–

Green–Riesz kernels were given in [1] using spherical analysis under certain restrictions

coming from the lack of control in the Trombi–Varadarajan expansion for spherical func-

tions along the walls. Our asymptotics for the kernels of σ(f ′
τ ) and (λ1 + Ω)−α on

X̃∆ ≃ X are free of restrictions, and in concordance with those of [1], though, of course,

less explicit. A detailed description of the resolvent of ∆ on X was given in [12,14].

6. Regularized traces

We shall now define a regularized trace for the convolution operators π(f) introduced

in Section 4. To begin with, recall that, as a consequence of Theorem 2, we can write

the kernel of π(f) locally in the form
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KAγ
f
(x, y) =

ˆ

ei(x−y)·ξaγ
f (x, ξ)dξ =

ˆ

ei(x−y)·(1k⊗T −1
x )ξãγ

f (x, ξ)
∣∣det

(
1k ⊗ T −1

x

)′
(ξ)

∣∣dξ

=
1

|xk+1 · · · xk+l|
Ãγ

f

(
x, x1 − y1, . . . , 1 −

yk+1

xk+1
, . . .

)
, xk+1 · · · xk+l = 0,

(34)

where Ãγ
f (x, y) denotes the inverse Fourier transform of the lacunary symbol ãγ

f (x, ξ)

given by (24). Consider now the partition of unity {αγ} subordinate to the atlas

{(W̃γ , ϕ−1
γ )}. By (34), the restriction of the kernel of Aγ

f to the diagonal is given by

KAγ
f
(x, x) =

1

|xk+1 · · · xk+l|
Ãγ

f (x, 0), xk+1 · · · xk+l = 0.

These restrictions yield a family of smooth functions kγ
f (x̃) = KAγ

f
(ϕ−1

γ (x̃), ϕ−1
γ (x̃))

which define a density kf on

2#l(G/K) ⊂ X̃.

Nevertheless, the functions kγ
f (x̃) are not locally integrable on the entire compactifica-

tion X̃, so that we cannot define a trace of π(f) by integrating the density kf over the

diagonal ∆
X̃×X̃

≃ X̃ as in (7). Instead, we have the following

Proposition 4. Let f ∈ S(G), s ∈ C, and define for Re s > 0

Trs π(f) =
∑

γ

ˆ

Wγ

(αγ ◦ ϕγ)(x)|xk+1 · · · xk+l|
sÃγ

f (x, 0)dx

=

〈
|xk+1 · · · xk+l|

s,
∑

γ

(αγ ◦ ϕγ)Ãγ
f (·, 0)

〉
.

Then Trs π(f) can be continued analytically to a meromorphic function in s with at most

poles at −1, −3, . . . . Furthermore, for s ∈ C − {−1, −3, . . .},

Θs
π : C∞

c (G) ∋ f �→ Trs π(f) ∈ C (35)

defines a distribution density on G.

Proof. The fact that Trs π(f) can be continued meromorphically is a consequence of the

analytic continuation of |xk+1 · · · xk+l|
s as a distribution in R

k+l, proved by Bernshtein–

Gel’fand in [5, Lemma 2]. One even has that

〈
|xk+1|s1 · · · |xk+l|

sl , u
〉
, u ∈ C∞

c

(
R

k+l
)
,
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can be continued meromorphically in the variables s1, . . . , sl to C
l with poles si =

−1, −3, . . . . To see that (35) is a distribution density, note that Θs
π : C∞

c (G) → C is

certainly linear. Since |xk+1 · · · xk+l|
s is a distribution, for any open, relatively compact

subset ω ⊂ R
k+l there exist Cω > 0 and Bω ∈ N such that

∣∣〈|xk+1 · · · xk+l|
s, u

〉∣∣ � Cω

∑

|β|�Bω

sup
∣∣∂βu

∣∣, u ∈ C∞
c (ω). (36)

Let now O ⊂ G be an arbitrary open, relatively compact subset, and f ∈ C∞
c (O). With

(24) one has

Trs π(f) =

〈
|xk+1 · · · xk+l|

s,
∑

γ

(αγ ◦ ϕγ)

ˆ

ãγ
f (·, ξ)dξ

〉
. (37)

By (22), one computes for arbitrary N ∈ N that

eiΨγ (g,x)·ξ =
1

(1 + |ξ|2)N

2N∑

r=0

∑

|α|=r

bN
α

(
x, g−1

)
dL

(
Xα

)[
eiΨγ(·−1,x)·ξ

](
g−1

)
,

where the coefficients bN
α (x, g) are smooth, and at most of exponential growth in g. With

(14) and Proposition 1 we therefore obtain for ãγ
f (x, ξ) the expression

ãγ
f (x, ξ)

=
1

(1 + |ξ|2)N

ˆ

G

eiΨγ(g−1,x)·ξ
2N∑

r=0

∑

|α|=r

(−1)rdL
(
X α̃

)[
bN

α (x, g)cγ

(
x, g−1)f

(
g−1

)]
dG(g).

Inserting this in (37), and taking N sufficiently large, we obtain with (36) that

∣∣Trs π(f)
∣∣ � CO

∑

|β|�BO

sup
∣∣dL

(
Xβ

)
f
∣∣

for suitable CO > 0 and BO ∈ N. Since the universal enveloping algebra U(gC) can be

identified with the algebra of invariant differential operators on G, the assertion now

follows with [22, p. 480]. ✷

Remark 4. Using Hironaka’s theorem on resolution of singularities, Bernstein–Gel’fand [5]

and Atiyah [2] even proved the following general result. Let M be a real analytic mani-

fold and f a non-zero, real analytic function on M . Then |f |s, which is locally integrable

for Re s > 0, extends analytically to a distribution on M which is a meromorphic func-

tion of s in the whole complex plane. The poles are located at the negative rational

numbers, and their order does not exceed the dimension of M . From this one deduces

that if f : M → C is a non-zero analytic function, then there exists a distribution
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S on M such that fS = 1. This is the Hörmander–Lojasiewicz theorem on the divi-

sion of distributions, and implies the existence of temperate fundamental solutions for

constant-coefficient differential operators.

Consider next the Laurent expansion of Θs
π(f) at s = −1. For this, let u ∈ C∞

c (Rk+l)

be a test function, and consider the expansion

〈
|xk+1 · · · xk+l|

s, u
〉

=
∞∑

j=−q

Sj(u)(s + 1)j ,

where Sk ∈ D′(Rk+l). Since |xk+1 · · · xk+l|
s+1 has no pole at s = −1, we necessarily

must have

|xk+1 · · · xk+l| · Sj = 0 for j < 0, |xk+1 · · · xk+l| · S0 = 1

as distributions. Therefore S0 ∈ D′(Rk+l) represents a distributional inverse of

|xk+1 · · · xk+l|. By repeating the reasoning of the proof of Proposition 4 we arrive at

the following

Proposition 5. For f ∈ S(G), let the regularized trace of the operator π(f) be defined by

Trreg π(f) =

〈
S0,

∑

γ

(αγ ◦ ϕγ)Ãγ
f (·, 0)

〉
.

Then Θπ : C∞
c (G) ∋ f �→ Trreg π(f) ∈ C constitutes a distribution density on G, which

is called the character of the representation π.

Remark 5. An alternative definition of Trreg π(f) could be given within the calculus

of b-pseudodifferential operators developed by Melrose. For a detailed description, the

reader is referred to [11, Section 6].

In what follows, we shall identify distributions with distribution densities on G via the

Haar measure dG. Our next aim is to understand the distributions Θs
π and Θπ in terms

of the G-action on X̃. We shall actually show that on a certain open set of transversal

elements, they are represented by locally integrable functions given in terms of fixed

points. For this, we shall first review some largely known facts about group actions on

homogeneous spaces.

7. Fixed points of group actions on homogeneous spaces

Let G be a Lie group with Lie algebra g, H ⊂ G a closed subgroup with Lie algebra h,

and π : G → G/H the canonical projection. For an element g ∈ G, consider the natural

left action lg : G/H → G/H given by lg(xH) = gxH. Let AdG denote the adjoint action

of G on g.
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Lemma 5.

(1) lg−1 : G/H → G/H has a fixed point if and only if g ∈
⋃

x∈G xHx−1. Moreover, to

every fixed point xH one can associate a unique conjugacy class h(g, xH) in H.

(2) Let xH be a fixed point of lg−1 and let h ∈ h(g, xH). Then

det(1 − dlg−1)xH = det
(
1 − AdG

H(h)
)
,

where AdG
H : H → Aut(g/h) is the isotropy action of H on g/h.

Proof. See e.g. [4, p. 463]. ✷

Consider now the case when G is a connected, real, semi-simple Lie group with finite

center, θ a Cartan involution of g, and g = k ⊕ p the corresponding Cartan decomposi-

tion. Further, let K be the maximal compact subgroup of G associated to k, and consider

the corresponding Riemannian symmetric space X = G/K which is assumed to be of

non-compact type. By definition, θ is an involutive automorphism of g such that the

bilinear form 〈·,·〉θ is strictly positive definite. In particular, 〈·,·〉θ|p×p is a symmetric,

positive-definite, bilinear form, yielding a left-invariant metric on G/K. Endowed with

this metric, G/K becomes a complete, simply connected, Riemannian manifold with

non-positive sectional curvature. Such manifolds are called Hadamard manifolds. Fur-

thermore, for each g ∈ G, lg−1 : G/K → G/K is an isometry on G/K with respect

to this left-invariant metric. Note that Riemannian symmetric spaces of non-compact

type are precisely the simply connected Riemannian symmetric spaces with sectional

curvature κ � 0 and with no Euclidean de Rham factor.

Next, let M be a smooth manifold, and recall that a fixed point x0 of a smooth map

f : M → M is said to be simple if det(1 − dfx0
) = 0, where dfx0

denotes the differential

of f at x0. The map f is called transversal if it has only simple fixed points. Note that

the non-vanishing condition on the determinant is equivalent to the requirement that

the graph of f intersects the diagonal transversally at (x0, x0) ∈ M × M , and hence the

terminology. In particular, a simple fixed point is an isolated fixed point. We then have

the following

Lemma 6. Let g ∈ G be such that lg−1 : G/K → G/K is transversal. Then lg−1 has a

unique fixed point in G/K.

Proof. Let M be a Hadamard manifold, and ϕ an isometry on M that leaves two distinct

points x, y ∈ M fixed. By general theory, there is a unique minimal geodesic γ : R → M

joining x and y. Let γ(0) = x and γ(1) = y, so that ϕ ◦ γ(0) = ϕ(x) = x and ϕ ◦ γ(1) =

ϕ(y) = y. Since isometries take geodesics to geodesics, ϕ ◦ γ is a geodesic in M , joining

x and y. By the uniqueness of γ we therefore conclude that ϕ ◦ γ = γ. This means that

an isometry on a Hadamard manifold with two distinct fixed points also fixes the unique
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geodesic joining them point by point. Since, by assumption, lg−1 : G/K → G/K has

only isolated fixed points, the lemma follows. ✷

In what follows, we shall call an element g ∈ G transversal relative to a closed sub-

group H if lg−1 : G/H → G/H is transversal, and denote the set of all such elements by

G(H).

Proposition 6. Let G be a connected, real, semi-simple Lie group with finite center, and

K a maximal compact subgroup of G. Suppose rank(G) = rank(K). Then any regular

element of G is transversal relative to K. In other words, G′ ⊂ G(K), where G′ denotes

the set of regular elements in G.

Proof. If a regular element g is such that lg−1 : G/K → G/K has no fixed points, it is

of course transversal. Let, therefore, g ∈ G′ be such that lg−1 has a fixed point x0K. By

Lemma 5, g must be conjugate to an element k(g, x0) in K. Consider now a maximal

family of mutually non-conjugate Cartan subgroups J1, . . . , Jr in G, and put J ′
i = Ji ∩G′

for i ∈ {1, . . . , r}. A result of Harish-Chandra then implies that

G′ =

r⋃

i=1

⋃

x∈G

xJ ′
ix

−1,

see [22, Theorem 1.4.1.7]. From this we deduce that

g = xk(g, x0)x−1 = yjy−1 for some x, y ∈ G, j ∈ J ′
i for some i.

Hence, k(g, x0) must be regular. Now, let T be a maximal torus of K. It is a Cartan sub-

group of K, and the assumption that rank(G) = rank(K) implies that T is also Cartan in

G. Let k(g, x0K) be the conjugacy class in K associated to x0K, as in Lemma 5. As K is

compact, the maximal torus T intersects every conjugacy class in K. Varying x0 over the

coset x0K, we can therefore assume that k(g, x0) ∈ k(g, x0K)∩T . Thus, we conclude that

k(g, x0) ∈ T ∩G′. Note that, in particular, we can choose Ji = T by the maximality of the

family J1, . . . , Jr. Now, for a regular element h ∈ G belonging to a Cartan subgroup H

one necessarily has det(1−AdG
H(h)) = 0, compare the proof of Proposition 1.4.2.3 in [22].

Therefore det(1 − AdG
T (k(g, x0))) = 0, and consequently, det(1 − AdG

K(k(g, x0))) = 0.

The assertion of the proposition now follows from Lemma 5. ✷

Corollary 3. Let G be a connected, real, semi-simple Lie group with finite center, K a

maximal compact subgroup of G, and suppose that rank(G) = rank(K). Then the set of

transversal elements G(K) is dense in G.

Proof. Since the set of regular elements G′ is dense in G, the corollary follows from the

previous proposition. ✷

Remark 6. Let us remark that with G as above, and P a parabolic subgroup of G, it is

a classical result that G′ ⊂ G(P ), see [8, p. 51].
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8. Transversal trace and character formulae

We are now ready to describe the distributions Θs
π and Θs as locally integrable func-

tions in terms of the fixed points of the G-action on X̃. Similar expressions were derived

by Atiyah and Bott for the global character of an induced representation of G in [3],

where they extended the classical Lefschetz fixed point theorem to geometric endomor-

phisms on elliptic complexes. Their work relies on the concept of transversal trace of a

smooth operator, and its extension by continuity to pseudodifferential operators, which

we now recall.

Let U be an open subset of Rn, V open in U , and consider a smooth map α : V → U

with a simple fixed point at x0. We choose V so small, that x �→ x − α(x) defines a

diffeomorphism of V onto its image. Let Λ : V → U × U be the map Λ(x) = (α(x), x),

and assume that A ∈ L−∞(U) is a smooth operator with symbol a(x, ξ). The kernel KA

of A is a smooth function on U × U , and its restriction Λ∗KA to the graph of α defines

a distribution on V according to

〈
Λ∗KA, v

〉
=

¨

ei(α(x)−x)·ξa
(
α(x), ξ

)
v(x)dξdx

=

¨

e−iy·ξ a(α(x(y)), ξ)v(x(y))

|det(1 − dα(x(y)))|
dydξ, v ∈ C∞

c (V ), (38)

where we made the substitution y = x − α(x), and the change in order of integration

is permissible because a(x, ξ) ∈ S−∞(U). Now, for a(x, ξ) ∈ Sl(U), we observe that by

differentiating

ˆ

e−iy·ξa
(
α
(
x(y)

)
, ξ
) v(x(y))

|det(1 − dα(x(y)))|
dy

with respect to ξ, and integrating by parts with respect to y, we obtain the estimate

∣∣∣∣∣∂
γ
ξ

ˆ

e−iy·ξa
(
α
(
x(y)

)
, ξ
) v(x(y))

|det(1 − dα(x(y)))|
dy

∣∣∣∣∣ � C〈ξ〉l−|β|

for arbitrary multi-indices γ and β and some constant C > 0. Thus, as an oscillatory

integral, the last expression in (38) defines a distribution on V for any a(x, ξ) ∈ Sl(U).

The distribution Λ∗KA is called the transversal trace of A ∈ Ll(U). If, in particular,

a(x, ξ) = a(x) is a polynomial of degree zero in ξ, one computes that

Λ∗KA =
a(x0)δx0

|det(1 − dα(x0))|
. (39)

This discussion can be globalized. Let X be a smooth manifold, E a vector bundle

over X, α : X → X a C∞-map with only simple fixed points, and A : Γc(α∗E) → Γ (E)

a pseudodifferential operator of order l between smooth sections. Denote the density
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bundle on X by Ω, put F = α∗E, and define F ′ = F ∗ ⊗ Ω. The kernel KA is then a

distributional section of E ⊠F ′. In other words, KA ∈ D′(E ⊠F ′) = D′(X × X, E ⊠F ′).

Similarly, one has Kα∗A ∈ D′(X × X, F ⊠ F ′), where α∗A denotes the composition

α∗A : Γc(F ) A−−→ Γ (E) α∗

−−→ Γ (F ). If A ∈ L−∞(F, E), KA is a smooth section on X × X,

and KA(x̃, ỹ) ∈ Ex̃ ⊗ F ′
ỹ. In this case, Kα∗A(x̃, ỹ) = KA(α(x̃), ỹ), so that one deduces

Kα∗A(x̃, x̃) ∈ Eα(x̃) ⊗ F ′
x̃ = Fx̃ ⊗ (F ∗ ⊗ Ω)x̃ ≃ L(Fx̃, Fx̃) ⊗ Ωx̃. As a consequence,

Tr Kα∗A(x̃, x̃) becomes a section of Ω, where Tr denotes the bundle homomorphism

Tr : F ⊗ F ′ → Ω. (40)

Hence, if X is compact, one can define the trace of α∗A as

Tr α∗A =

ˆ

X

Tr Kα∗A(x̃, x̃).

This trace can be extended to arbitrary A ∈ Ll(X). Indeed, for compact X, the map

L−∞(F, E) → C, A → Tr α∗A has a unique continuous extension

Trα : Ll(F, E) → C, A �→ Trα A =
〈
Tr Θ(A), 1

〉
,

called the transversal trace of A, see [3, Proposition 5.3]. In the case that A is induced

by a bundle homomorphism ϕ, it follows from (39) that

Trα A =
∑

x̃∈Fix(α)

νx̃(A), νx̃(A) =
Tr ϕx̃

|det(1 − dα(x̃))|
, (41)

the sum being over the fixed points of α on X, see [3, Corollary 5.4].

In the context of representation theory, this trace was employed by Atiyah and Bott

in [4] to compute the global character of an induced representation. To explain this,

let G be a Lie group, H a closed subgroup of G, and ̺ a representation of H on a

finite dimensional vector space V . The representation of G induced by ̺ is a geometric

endomorphism in the space of sections over G/H with values in the homogeneous vector

bundle G×H V , and shall be denoted by T (g) = (ι∗̺)(g). Assume that G/H is compact,

and let dG be a Haar measure on G. Consider a compactly supported smooth function

f ∈ C∞
c (G), and the corresponding convolution operator T (f) =

´

G
f(g)T (g)dG(g). It is

a smooth operator, and, since G/H is compact, has a well defined trace. Consequently,

the map

ΘT : C∞
c (G) ∋ f �→ Tr T (f) ∈ C

defines a distribution on G called the distribution character of the induced represen-

tation T . On the other hand, assume that g ∈ G is such that lg−1 : G/H → G/H,
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xH �→ g−1xH, has only simple fixed points. In this case, a flat trace Tr♭ T (g) of T (g)

can be defined according to

Tr♭ T (g) = Trlg−1

(
Γ (ϕg)

)
,

where ϕg : l∗
g−1(G ×H V ) → G ×H V is the endomorphism associated to T (g) such that

T (g) = ϕg ◦ l∗
g−1 , and Γ (ϕg) : Γ (l∗

g−1(G ×H V )) → Γ (G ×H V ). Tr♭ T (g) is given by a

sum over fixed points of g, and one can show that, on an open set GT ⊂ G,

ΘT (f) =

ˆ

GT

f(g) Tr♭ T (g)dG(g), f ∈ C∞
c (GT ).

Thus, the distribution character of a parabolically induced representation of a Lie

group G is represented on GT by the flat trace of the corresponding geometric endomor-

phism. If G is compact, the Lefschetz theorem reduces to the Hermann–Weyl formula by

the theory of Borel and Weil. It can be interpreted as expressing the character of a finite

dimensional representation as an alternating sum of characters of infinite dimensional

representations.

In what follows, we shall prove similar formulae for the distributions Θπ and Θs
π

defined in Section 6. Let the notation be as before, and denote by Φg(x̃) = g−1 · x̃ the

G-action on X̃. Note that the set G(X̃) = {g ∈ G : Φg is transversal} ⊂ G of elements

acting transversally on X̃ is open. Furthermore, Corollary 3 and Remark 6 imply that

G(X̃) is dense if rank(G/K) = 1.

Theorem 7. Let f ∈ C∞
c (G) have support in G(X̃), and s ∈ C, Re s > −1. Then

Trs π(f) =

ˆ

G(X̃)

f(g)

( ∑

x̃∈Fix(X̃,g)

∑

γ

αγ(x̃)|xk+1(κ−1
γ (x̃)) · · · xk+l(κ

−1
γ (x̃))|s+1

|det(1 − dΦg(x̃))|

)
dG(g),

(42)

where Fix(X̃, g) denotes the set of fixed points of Φg on X̃. In particular, Θs
π : C∞

c (G) ∋

f → Trs π(f) ∈ C is regular on G(X̃).

Proof. By Proposition 2,

Trs π(f) =
∑

γ

ˆ

Wγ

(αγ ◦ ϕγ)(x)|xk+1 · · · xk+l|
sÃγ

f (x, 0)dx

is a meromorphic function in s with possible poles at −1, −3, . . . . Assume that Re s > −1.

Since αγ ∈ C∞
c (W̃γ), and Ãγ

f (x, 0) =
´

ãγ
f (x, ξ)dξ, where ãγ

f (x, ξ) ∈ S−∞
la (Wγ × R

k+l)

is rapidly decaying in ξ by Theorem 2, we can interchange the order of integration to

obtain
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Trs π(f) =
∑

γ

ˆ ˆ

Wγ

(αγ ◦ ϕγ)(x)|xk+1 · · · xk+l|
sãγ

f (x, ξ)dxdξ.

Let χ ∈ C∞
c (Rk+l,R+) be equal 1 in a neighborhood of 0, and ε > 0. Then, by Lebesgue’s

theorem on bounded convergence,

Trs π(f) = lim
ε→0

Iε,

where we defined

Iε =
∑

γ

ˆ ˆ

Wγ

(αγ ◦ ϕγ)(x)|xk+1 · · · xk+l|
sãγ

f (x, ξ)χ(εξ)dxdξ.

Taking into account (14), and interchanging the order of integration once more, one sees

that

Iε =

ˆ

G

f(g)
∑

γ

ˆ ˆ

Wγ

eiΨγ(g,x)·ξcγ(x, g)(αγ ◦ ϕγ)(x)|xk+1 · · · xk+l|
sχ(εξ)dxdξdG(g),

everything in sight being absolutely convergent. Let us now set

Iε(g) = f(g)
∑

γ

ˆ ˆ

Wγ

eiΨγ (g,x)·ξcγ(x, g)(αγ ◦ ϕγ)(x)|xk+1 · · · xk+l|
sχ(εξ)dxdξ,

so that Iε =
´

G
Iε(g)dG(g). We would like to pass to the limit under the integral, for

which we are going to show that limε→0 Iε(g) is an integrable function on G. For this,

let us fix an arbitrary g ∈ G(X̃). By definition, Φg acts only with simple fixed points

on X̃. Since each of them is isolated, Φg can have at most finitely many fixed points

on X̃. Consider therefore a cut-off function βg ∈ C∞(X̃,R+) which is equal 1 in a small

neighborhood of each fixed point of Φg, and whose support decomposes into a disjoint

union of connected components, each of which contains only one fixed point of Φg. By

choosing the support of βg sufficiently close to the fixed points we can, in addition,

assume that

det
(
1 − dΦg(x̃)

)
= 0 on supp βg. (43)

Since the action of G is real analytic, we obtain a family of functions βg(x̃) depending

smoothly on g ∈ G(X̃). Multiplying the integrand of Iε(g) with βg ◦ ϕγ(x), and 1 − βg ◦

ϕγ(x), respectively, we obtain the decomposition

Iε(g) = I(1)
ε (g) + I(2)

ε (g).
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Let us first examine what happens away from the fixed points. Integrating by parts 2N

times with respect to ξ yields

I(2)
ε (g) = f(g)

∑

γ

ˆ ˆ

Wγ

eiΨγ(g,x)·ξcγ(x, g)
(
αγ(1 − βg)

)(
ϕγ(x)

)
|xk+1 · · · xk+l|

sχ(εξ)dxdξ

= f(g)
∑

γ

ˆ ˆ

Wγ

eiΨγ(g,x)·ξ

|Ψγ(g, x)|2N
∆N

ξ

[
χ(εξ)

]

× cγ(x, g)
(
αγ(1 − βg)

)(
ϕγ(x)

)
|xk+1 · · · xk+l|

sdxdξ,

where ∆ξ = ∂2
ξ1

+ · · · + ∂2
ξk+l

. Now, for arbitrary N ,

∣∣∆N
ξ

[
χ(εξ)

]∣∣ � CN

(
1 + |ξ|2

)−N
,

where CN does not depend on ε for 0 < ε � 1, but certainly on the order of differentiation.

Furthermore, there exists a constant Mf > 0 such that |Ψγ(g, x)|2N � Mf on the support

of 1 − βg ◦ ϕγ for all g ∈ supp f and γ. By Lebesgue’s theorem, we may therefore pass

to the limit under the integral, and obtain

lim
ε→0

I(2)
ε (g) = 0.

Hence, as ε → 0, the main contributions to Iε(g) originate from the fixed points of Φg.

To examine these contributions, note that condition (43) implies that x �→ ϕg
γ(x) − x

defines a diffeomorphism on each of the connected components of supp(αγβg) ◦ ϕγ onto

their respective images. Performing the change of variables y = x − ϕg
γ(x) we get for

I
(1)
ε (g) the expression

f(g)
∑

γ

ˆ ˆ

Wγ

eiΨγ(g,x)·ξcγ(x, g)(αγβg)
(
ϕγ(x)

)
|xk+1 · · · xk+l|

sχ(εξ)dxdξ

= f(g)
∑

γ

¨

e−i(1k⊗T −1
x(y))y·ξ

∣∣xk+1(y) · · · xk+l(y)
∣∣s

×
(αγβg)(ϕγ(x(y)))cγ(x(y), g)

|det(1 − dϕg
γ(x(y)))|

χ(εξ)dydξ

= f(g)
∑

γ

ˆ ∣∣xk+1(y) · · · xk+l(y)
∣∣scγ

(
x(y), g

) (αγβg)(ϕγ(x(y)))χ̂((1k ⊗ T −1
x(y))y/ε)

(2π)k+lεk+l|det(1 − dϕg
γ(x(y)))|

dy

= f(g)
∑

γ

ˆ ∣∣xk+1(εy) · · · xk+l(εy)
∣∣scγ

(
x(εy), g

)

×
(αγβg)(ϕγ(x(εy)))χ̂((1k ⊗ T −1

x(εy))y)

(2π)k+l|det(1 − dϕg
γ(x(εy)))|

dy.
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Since in a neighborhood of a fixed point x̃ of g the Jacobian of the singular change of coor-

dinates z = (1k ⊗T −1
x(εy))y converges to the expression |xk+1(κ−1

γ (x̃)) · · · xk+l(κ
−1
γ (x̃))|−1

as ε → 0, we finally obtain with (2π)−k−l
´

χ̂(y)dy = χ(0) = 1 that

lim
ε→0

I(1)
ε (g) = lim

ε→0
f(g)

∑

γ

ˆ ∣∣xk+1

(
εy(z)

)
· · · xk+l

(
εy(z)

)∣∣scγ

(
x
(
εy(z)

)
, g
)

×
(αγβg)(ϕγ(x(εy(z))))|∂y/∂z|

(2π)k+l|det(1 − dϕg
γ(x(εy(z))))|

χ̂(z)dz

= f(g)
∑

x̃∈Fix(X̃,g)

∑

γ

αγ(x̃)|xk+1(κ−1
γ (x̃)) · · · xk+l(κ

−1
γ (x̃))|s+1

|det(1 − dΦg(x̃))|
,

since ᾱγ ≡ 1 on supp αγ , and βg(x̃) = 1. The limit function limε→0 Iε(g) is therefore

clearly integrable on G for Re s > −1, so that by passing to the limit under the integral

one computes

Trs π(f) = lim
ε→0

Iε = lim
ε→0

ˆ

G

Iε(g)dG(g) =

ˆ

G

lim
ε→0

(
I(1)

ε + I(2)
ε

)
(g)dG(g)

=

ˆ

G

f(g)
∑

x̃∈Fix(X̃,g)

∑

γ

αγ(x̃)|xk+1(κ−1
γ (x̃)) · · · xk+l(κ

−1
γ (x̃))|s+1

|det(1 − dΦg(x̃))|
dG(g),

yielding the desired description of Θs
π. ✷

As an immediate consequence of the previous theorem, we see that if f ∈ C∞
c (G(X̃)),

Trs π(f) is not singular at s = −1. This observation leads to the following

Corollary 4. Let f ∈ C∞
c (G) have support in G(X̃). Then

Trreg π(f) = Tr−1 π(f) =

ˆ

G(X̃)

f(g)
∑

x̃∈Fix(X̃,g)

1

|det(1 − dΦg(x̃))|
dG(g).

In particular, the distribution Θπ : f → Trreg(f) is regular on G(X̃).

Proof. Consider the Laurent expansion of Θs
π(f) at s = −1 given by

Trs π(f) =

〈
|xk+1 · · · xk+l|

s,
∑

γ

(αγ ◦ ϕγ)Ãγ
f (·, 0)

〉

=
∞∑

j=−q

Sj

(∑

γ

(αγ ◦ ϕγ)Ãγ
f (·, 0)

)
(s + 1)j ,
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where Sk ∈ D′(Rk+l). Since by (42), Trs π(f) has no pole at s = −1, we necessarily must

have

Sj

(∑

γ

(αγ ◦ ϕγ)Ãγ
f (·, 0)

)
= 0 for j < 0,

so that

Tr−1 π(f) =

〈
S0,

∑

γ

(αγ ◦ ϕγ)Ãγ
f (·, 0)

〉
= Trreg π(f).

The assertion now follows with the previous theorem. ✷

In particular, Corollary 4 implies that Trreg π(f) is invariantly defined. Now, inter-

preting π(g) as a geometric endomorphism on the trivial bundle E = X̃ × C over the

Oshima compactification X̃, a flat trace Tr♭ π(g) of π(g) can be defined according to

Tr♭ π(g) = TrΦg

(
Γ (ϕg)

)
,

where ϕg : Φ∗
gE → E is the associated bundle homomorphism which identifies the fiber

EΦg(x̃) with Ex̃, and satisfies (Tr ϕg)|x̃ = 1 at each fixed point x̃ of Φg. Taking into

account (41), the previous corollary can be reformulated, and we finally deduce the

following fixed point formula for the distribution character of π. In a future work, the

authors hope to obtain a better understanding of this formula, and the contribution of

the various orbit types to it.

Theorem 8. On the set of transversal elements G(X̃), the distribution Θπ : f → Trreg π(f)

is given by

Trreg π(f) =

ˆ

G(X̃)

f(g) Tr♭ π(g)dG(g), f ∈ C∞
c

(
G(X̃)

)
,

where

Tr♭ π(g) =
∑

x̃∈Fix(X̃,g)

1

|det(1 − dΦg(x̃))|
,

the sum being over the (simple) fixed points of g ∈ G(X̃) on X̃.

We would like to finish by pointing out that, in obtaining our results, it was of cru-

cial importance that the orbital decomposition of X̃ is of normal crossing type. Since

wonderful varieties, such as the De-Concini Procesi compactification of a complexifed

symmetric space, have the same kind of orbital decomposition, we expect that one could
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carry out a similar analysis on the real locus of such varieties, and introduce analogous

distribution characters. In fact, it seems to us that such varieties are amenable towards

a more refined understanding of these characters and the respective fixed point formulae

in terms of combinatorial invariants.
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