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We find quantum signatures of chaos in various metrics of information gain in quantum tomography. We

employ a quantum state estimator based on weak collective measurements of an ensemble of identically

prepared systems. The tomographic measurement record consists of a sequence of expectation values of a

Hermitian operator that evolves under repeated application of the Floquet map of the quantum kicked top.

We find an increase in information gain and, hence, higher fidelities in the reconstruction algorithm when

the chaoticity parameter map increases. The results are well predicted by random matrix theory.
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Signatures of chaos in quantum mechanics appear in a

variety of contexts. Examples include the level statistics as-

sociated with the random matrices of chaotic Hamiltonians

[1,2], hypersensitivity of dynamics to perturbations [3,4],

the role of open quantum systems dynamics (decoherence

or measurement) in the emergence of chaos [5,6], and the

connection between chaos and the dynamical generation of

entanglement [7–11]. In this Letter, we identify and analyze

a new signature that unifies the characterization of chaos in

both classical and quantum physics—chaos as a source for

information gain in state estimation (tomography).

At a fundamental level, chaos represents unpredict-

ability, so this seems at odds with the goal of estimating an

unknown state. On the flip side, however, this unpredict-

ability represents the potential information to be gained

in an estimation process. If everything is predicted and

known, we learn nothing new. The missing information

in deterministic chaos is the initial condition. In classical

dynamics, a time history of a coarse grained trajectory at

discrete times is an archive of information about the initial

conditions given perfect knowledge about the dynamics.

Moreover, if the dynamics is chaotic, the rate at which

we learn information increases due to the rapid Lyapunov

divergence of distinguishable trajectories. This informa-

tion-theoretic picture is quantified by the Kolmogorov-

Sinai (KS) entropy [12], which measures the information

required to retrieve the increasingly fine-grained knowledge

about the initial condition that is necessary to maintain a

constant coarse-grained prediction of the future chaotic

trajectory [13].

To probe the connection between quantum chaos and

tomography, we consider a protocol based on the weak

(nonprojective) collective measurement of an ensemble

of NA identically prepared states that undergo well chosen

dynamics [14,15]. The time series of the measurement rec-

ord provides the information used to reconstruct the initial

condition. The dynamics is “informationally complete” if

the time history contains information about an arbitrary ini-

tial condition. Such a protocol has been implemented

through continuous time measurement of an atomic spin

ensemble driven by external magnetic fields while it is

monitored by a weakly coupled laser probe [16,17]. This

protocol allows us to explore how the chaotic nature of

the dynamics is revealed in the information content of the

measurement record.

The goal in quantum tomography is to determine the

state ρ0 (here, for a spin j) given an ensemble prepared

in the state ρ
⊗NA

0 . We achieve this by driving the system

so that it undergoes dynamics according to a prescribed

unitary evolution, UðtÞ and then perform a collective meas-

urement as described above. The elements of the POVM,

labeled by measurement outcomes XðtÞ at time t, are taken
to be [18]

EXðtÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp

�

−

1

2σ2
½XðtÞ − JzðtÞ�2

�

: (1)

We use the Heisenberg picture, so the observable being

measured at time t is JzðtÞ ¼ U†ðtÞJzUðtÞ, where Jz is

the z projection of the collective angular momentum oper-

ator, Jz ¼
P

ij
ðiÞ
z , and j

ðiÞ
z is the projection for the ith spin.

The Gaussian spread in the POVM elements, σ, is set by

the shot noise of the probe. When the randomness of the

measurement outcomes is dominated by the quantum noise

in the probe rather than the uncertainty ΔJz ¼
ffiffiffiffiffiffiffi

NA

p
Δjz

(“projection noise”), quantum backaction is negligible,

and the state remains approximately separable [18]. In this

case, the stochastic measurement record, normalized by the

number of atoms, is well approximated by

MðtÞ ¼ XðtÞ=NA ¼ Tr½jzðtÞρ0� þWðtÞ; (2)

where WðtÞ is Gaussian white noise with spread σ=NA.

We parametrize the state in terms of a generalized Bloch

vector r for a d-dimensional Hilbert space (d ¼ 2jþ 1) by
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ρ0 ¼ I=dþP

d2−1
α¼1 rαΞα, where fΞαg form an orthonormal

basis of traceless Hermitian operators. Taking the record at

discrete times Mn ¼ MðtnÞ, it follows, then, from Eq. (1),

that in the weak backaction limit, the probability of finding

measurement history M conditioned on the state r is

pðMjrÞ ∝ exp

�

−

N2
A

2σ2

X

i

�

Mi −

X

α

Oiαrα

�

2
�

∝ exp

�

−

N2
A

2σ2

X

α;β

ðr − rMLÞαC−1αβ ðr − rMLÞβ
�

; (3)

where Onα ¼ Tr½jzðtnÞΞα� and C−1 ¼ OTO is the inverse

of the covariance matrix. The peak of this distribution is the

(unconstrained) maximum-likelihood (ML) estimate of the

Bloch vector, rML ¼ COTM. The problem of quantum

tomography, therefore, reduces to linear stochastic state

estimation. The eigenvalues of C−1 determine the relative

signal-to-noise ratio with which we have measured differ-

ent observables (represented by its eigenvectors). When the

covariance matrix is full rank, the measurement record is

“informationally complete.” Because of finite signal-to-noise

ratios, however, the Bloch vector rML may not be associated

with a physical density matrix with nonnegative eigenvalues,

and therefore, we must constrain the solution. The final esti-

mate r̄ is found as the closest matrix according to

r̄ ¼ argmin
X

i

�

Mi −

X

α

Oiαrα

�

2

;

subject to;
1

d
I þ

X

d2−1

α¼1

r̄αΞα ≥ 0.

(4)

We find the solution efficiently via convex optimization.
We now come to the central question of this Letter. How

is the information content in the measurement record

related to the complexity of the dynamics encoded in

UðtÞ? To simplify the analysis, we consider periodic appli-

cation of a given Floquet operatorUτ, so that at the nth time

step UðnτÞ ¼ Un
τ . The measurement record generated by

such periodic evolution is generally not informationally

complete; it lacks information about a matrix subspace

of dimension ≥ d − 2 out of the total dimension d2 − 1

[19]. As such, this is not the optimal approach to tomog-

raphy. However, the condition that ρ̄ be a positive matrix is

a powerful constraint, that effectively allows “compressed

sensing” [17,20], resulting in high fidelity reconstruction

with the available information in the measurement record

generated by the orbit of a single Uτ.

Our goal is to relate the information generating power of

Uτ to the properties of quantum state reconstruction accord-

ing to the protocol above. For this purpose, we consider a

well-studied paradigm of quantum chaos: the kicked top

(KT) [2], described by the Floquet operator

Uτ ¼ e−iλj
2
z=2je−iαjx : (5)

In our analysis, we fix α ¼ 1.4 and choose λ to be our cha-

oticity parameter. As we vary λ from 0 to 7, the classical

limit of the dynamics changes from highly regular to com-

pletely chaotic. In the quantum description, as the dynam-

ics becomes globally chaotic, and for j ≫ 1, the Floquet

operator has the properties of a random matrix picked from

the appropriate ensemble. It is this randomness that leads to

the analog of ergodic mixing for quantum systems. We take

j ¼ 10 in our studies, which is sufficient to achieve the

statistics of random matrices, but small enough to be

essentially quantum.

We study the behavior of our reconstruction algorithm

for an ensemble of 100 random pure states sampled from

the Haar measure on SUðdÞ, where d ¼ 2jþ 1 ¼ 21. The

dynamical evolution of the measurement record is gener-

ated by repeated application of the kicked top Floquet oper-

ator in Eq. (5). Figure 1(a) shows the fidelity of the state

estimate, ρ̄, relative to the true state, jψ0i, F ¼ hψ0jρ̄jψ0i,
averaged over the ensemble of random states as a function

of time, for different values of chaoticity in the kicked top.

Two important features are apparent. As the level of chaos

increases, both the rate of increase of fidelity and its value

after 100 periods of control by the Floquet operator

increases. When the classical description is globally cha-

otic, the corresponding quantum Floquet operator is well

described as a random matrix and the measurement record

we generate allows us to reconstruct the quantum state with

high fidelity.

We can further quantify the correlation between chaos

and the performance of quantum state estimation using

information theoretic metrics. Brukner and Zeilinger [21]

defined the information available in a quantum measure-

ment of a system, E, by the uncertainty of the outcomes

summed over a set of mutually complementary experi-

ments. Řeháček and Hradil showed that this uncertainty

is equal to the Hilbert-Schmidt distance between the true

and estimated state in quantum tomography, averaged over

many runs of the estimator, E ¼ hTrfðρ0 − ρ̄Þ2gi [22],

which can be expressed as the total uncertainty in the

Bloch vector components, E ¼
P

αhðΔrαÞ2i. These uncer-
tainties are always greater than the Cramer-Rao bound,

hðΔrαÞ2i ≥ ½F−1�αα, where F is the Fisher information

matrix associated with the conditional probability distribu-

tion, Eq. (3), and thus, E ≥ TrF−1. In the limit of negligible

quantum backaction, we saturate this bound, as our prob-

ability distribution is Gaussian, regardless of the state. In

that case, the Fisher information matrix equals the inverse

of the covariance matrix, F ¼ C−1, in units of N2
A=σ

2.

Thus, a metric for the total information gained in tomog-

raphy is the inverse of this uncertainty,

J ¼ 1

TrðCÞ ¼
1

Tr½ðOTOÞ−1� ; (6)
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which measures the total Fisher information. Quantum

tomography can also be viewed as a form of “parameter

estimation,” i.e., estimating the Bloch vector components

that define ρ0. The Fisher information, then, quantifies

how well our estimator can predict these parameters from

the data, regardless of the state.

In Fig. 1(b), we plot J as a function of time, generated

by repeated application of the kicked top dynamics

described above. As before, we see the close correlation

between the degree of chaoticity and the information gain

in tomography. Note that the inverse covariance matrix is

never full rank in this protocol, and J is always ill defined.

We rectify this, regularizing C−1 by adding to it a small

fraction of the identity matrix, similar to the Tikhonov regu-

larization (see, e.g., [23]). In this way, our estimator ignores

the directions in the space of observables that are largely

unmeasured, and then makes the best guess consistent with

the positivity constraint.

There is a close relationship between Fisher information

and fidelity as a metric for information gain. When ρ0
is a pure state, the average Hilbert-Schmidt distance,

E¼ 1=J ¼ 1− hTr ρ̄2i−2hF i [24]. A correlation between

chaos in the dynamics and the information gain as seen in

the average fidelity implies that the Fisher information will

exhibit the same correlation. Moreover, the Fisher informa-

tion can be further related to a true information metric—the

mutual information I ½r;M�—defined as the information

we obtain about r from measurement record M, which

is given by I ½r;M� ¼ HðMÞ −HðMjrÞ [25]. Here, H is

the Shannon entropy of the given probability distribution.

Assuming perfect knowledge of the dynamics, the entropy

of the measurement record, HðMÞ, irrespective of the

state, is due solely to shot noise, and thus, is constant.

This is analogous, in the classical case, to the entropy asso-

ciated with equal a priori probability to finding a trajectory

in one of the coarse grains of phase space. Neglecting irrel-

evant constants, the mutual information between the Bloch

vector and a given measurement record is then specified

by the entropy of the conditional probability distribution,

Eq. (3),

I ½r;M� ¼ −HðMjrÞ ¼ −

1

2
log ðdetCÞ ¼ logð1=VÞ; (7)

where V is the volume of the error ellipsoid whose semi-

major axes are defined by the covariance matrix.

In order to maximize the information gain, we seek the

dynamics that maximizes 1=V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðC−1Þ
p

. An impor-

tant constraint is that after time tn,

TrðC−1Þ ¼
X

i;α

ðOi;αÞ2 ¼ n∥Oð0Þ∥2; (8)

where ∥Oð0Þ∥2 ¼
P

αTr½Oð0ÞΞα�2 is the Euclidean square
norm, withOð0Þ ¼ jz for our example. The right-hand side

of this equation is independent of U and increases mono-

tonically with time. It follows, then, from the inequality of

arithmetic and geometric means,

detðC−1Þ ≤
�

1

D
Tr ðC−1Þ

�

D

¼
�

n

D
∥Oð0Þ∥2

�

D

; (9)

whereD ¼ d2 − 1 is the rank of the regularized covariance

matrix. The maximum possible value of the mutual infor-

mation is attained when all eigenvalues are equal and

the above inequality is saturated, implying that the error

(a) (b) (c)
λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

FIG. 1 (color online). Information gain in tomography as quantified by various metrics, given a measurement record generated

by iterations of a quantum-kicked-top Floquet map Uτ ¼ expf−iλj2z=ð2jÞg expf−iαjxg, for a spin j ¼ 10. The value of α

is fixed and λ serves as the chaoticity parameter, varying from regular dynamics, λ ¼ 0.5, to fully chaotic, λ ¼ 7.0. All results are

shown as the average of 100 Haar-random pure states. (a) Fidelity of state reconstruction. (b) The Fisher information of estimating

the parameters that define the state. (c) The Shannon entropy of the normalized eigenvalues of the inverse of covariance matrix of the

likelihood function. In all cases, both the rate of growth and the final value of the information metric are increased with higher values of

the chaoticity parameter, λ. In the fully chaotic regime, λ ¼ 7.0, the results are well predicted by tomography performed with a meas-

urement record generated by a Haar-random matrix picked from the COE. The COE results, averaged over 100 random pure states, are

plotted as the dashed line in (a)–(c).
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ellipsoid is a hypersphere. At a given time step, the dynam-

ics that gives the largest mutual information is the one that

mixes the eigenvalues most evenly. We quantify this by the

Shannon entropy H of the eigenvalues of the inverse of

covariance matrix, λα, normalized as a probability distribu-

tion, pα ¼ λα=Tr ðC−1Þ. Figure 1(c), showsHðp⃗Þ as a func-
tion of time generated by the kicked top Floquet map.

Again, we see a close relationship between the degree of

chaoticity of the map and this metric for information gain

in tomography. This makes sense physically. In order to

extract the maximum information about a random state,

we must measure all components of the Bloch vector with

maximum precision. Given finite time, we obtain the best

estimate by dividing equally between all observables.

Finally, we show that the information gain generated by

the quantum-chaotic dynamics is fully consistent with ran-

dom matrix theory. Because the kicked top dynamics is

time-reversal invariant without Kramer’s degeneracy, for

parameters in which the classical dynamics is globally cha-

otic, in general one expects the Floquet operator to have the

statistical properties of a random matrix chosen from

the circular orthogonal ensemble (COE) [2]. However,

the Floquet mapUτ has an additional symmetry. It is invari-

ant under the parity reflection, Π ¼ e−iπjx , and in a basis of
party eigenstates, the Floquet map has a block diagonal

structure corresponding to the þ1 and −1 parity eigenval-

ues. Because of the additional parity symmetry, we expect

the kicked top to be a random matrix chosen from an

ensemble of block diagonal matrices whose blocks are

sampled from the COE in the basis in which Π is diagonal.

Figure 1 shows the behavior of the fidelity, the Fisher

information, and Shannon entropy of the inverse of the

covariance matrix as a function of the number of applica-

tions for a measurement record generated by a typical ran-

dom unitary picked from the COE (dotted line) having the

block diagonal structure described above. We see excellent

agreement between our predictions from random matrix

theory and the calculation for the evolution by the

kicked-top Floquet map in the completely chaotic regime,

α ¼ 1.4, λ ¼ 7.

In addition, for a typical random unitary picked from the

COE with a block diagonal structure, we derive an analytic

expression for the expected Shannon entropy attained in the

asymptotic limit (details in the Supplemental Material [26]),

HexpðdÞ ¼ log

�

d2 − 1

2

�

− 0.729 637: (10)

For large d, this is close to the optimal value that can

be obtained with parity symmetric dynamics, Hopt ¼
log½ðd2 − 1Þ=2�. For the kicked-top treated here, d ¼ 21,

Hexp ¼ 4.66. Empirically, we find a slightly larger value

for the kicked top, HKT ¼ 4.85, and Have ¼ 4.69 for the

entropy averaged over 100 block-diagonal random COE

matrices. We attribute this variation to the fluctuations in

H about the expected value and have checked that the

fluctuations decrease as d increases, with all values converg-

ing to Eq. (10). Note that the maximum Shannon entropy,

Hmax ¼ log½d2 − 1�, is never attained. This is because our

measurement record is generated by an orbit of repeated

application of a single, parity symmetric, Uτ. None-

theless, as we have seen in our previous analysis [19], the

measurement record, together with the positivity constraint,

is sufficient to yield high fidelity reconstruction when the

Floquet map is deep in the chaotic regime.

In summary, complex dynamics reveals more informa-

tion about the initial condition as one observes the system

over the course of time. Classically, chaotic dynamics, with

its Lyapunov sensitivity to the initial conditions, generates

an exponentially expanding archive of information about

the initial state if we are able to track a trajectory with a

constant coarse-grained resolution. Similarly, we found that

the rate at which one obtains information about an initially

unknown quantum state in quantum tomography is corre-

lated with the extent of “quantum chaos” in the system, i.e.,

the degree to which the unitary dynamics maps a localized

coherent state to a random state in Hilbert space. Thus,

quantum tomography provides a forum in which to unify

the the notions of complexity of chaotic dynamics in

classical and quantum worlds. We quantified the informa-

tion gain in a variety of metrics, including reconstruction

fidelity, Fisher information, mutual information, and

Shannon entropy. When the system is fully chaotic, the rate

of information gain is well predicted by random matrix

theory. This novel signature of chaos can be explored using

current experimental techniques in the setting of cold

atoms interacting with lasers and magnetic fields [27]. In

future work, we hope to further quantify this in terms of

Kolmogorov-Sinai entropy which unifies quantum formu-

lations [28–31] with the classical [12].
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