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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

Appropriate lighting is one of the indispensable elements in inspection using machine vision system. Illumination variation affects the accuracy 
and robustness of an inspection method that employs a machine vision system. The lighting inhomogeneity is the disturbing signal that needed 
to be suppressed to achieve accuracy and consistency in surface roughness quantification. In this work, the illumination compensation techniques 
are used for ground surface roughness evaluation by statistical texture parameters using machine vision method. The three-dimensional (3-D) 
surface roughness parameters are compared with the texture parameters. The experimental results are based on the ground surface images that 
are machined at different machining parameters. After the grinding process, the images are captured under halogen lighting. The acquired images 
of ground specimens are used for illumination compensation using: homomorphic filtering, Discrete Cosine Transform (DCT) based filtering and 
Fourier Transform (FT) based filtering techniques. This helps to suppress the low frequency components and amplify the high frequency 
components in order to extract the texture information. Owing the fact that the ground surfaces were weaker anisotropic surfaces, the second 
order statistical evaluation methods are used to extract the changes in the image texture due to the variation in surface roughness of the component. 
The texture parameters evaluated using these methods are correlated with the 3-D surface roughness parameters measured using an optical 
profiler. The texture parameters showed better correlation with the measured roughness values and this can be an integral part of any grinding 
system to inspect the machined components. In order to establish the homogeneity achieved after compensation of images, the inhomogeneity 
indicator and harmonic distortion values are calculated for the ground images. 
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1. Introduction 

The surface topography plays a key role in defining 
the functional requirement of any machined component. The 
measurement and characterization of surface topography of 
machined surface is essential to control the manufacturing 
process and relate the parameters with functional requirement. 
Measurement can be classified based on the interaction with 
work piece as contact type and non-contact type measurement. 
In contact type, the measurement of manufactured surfaces is 
carried out by stylus based contact instruments [24]. The 
drawbacks of the stylus measurement are: (i) Small stylus radii 
that cannot penetrate into minute crevices. (ii) Sharp stylus tip 

can damage the surface (iii) Low measuring speed. In current 
industrial practice, it is required to inspect each and every 
component machined out of the manufacturing shop floor to 
ensure the stringent surface tolerance requirements. The stylus 
based instrument may not be adequate to meet the requirement. 
With the advancements in optics, laser and high speed 
computational resources, there is a lot of opportunity to 
characterize the machined surface by non-contact methods: 
capacitance, pneumatic, ultrasonic, microwave, machine vision 
and optical method. Some of the non-contact characterization 
methods are discussed here. Abouelatta [1] proposed a method 
to measure the 3D roughness by combining a computer vision 
system with a light sectioning microscope. Dutta et al. [2] 
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calculated the surface roughness with variation in cutting time 
and tool wear examining texture descriptors of the turned 
surface images. The geometric search technique was utilized to 
find the optical surface roughness parameter value (Ga)  of 
machined surface images and obtained the surface roughness 
of shaped, milled and grounded components by forming 
regression equation [3,4]. The surface roughness parameters 
were estimated based on the amplitude and spacing deviations 
in the gray level values, grey level peak values per unit length 
in grey level mages [5]. Ying-ho et al. [6] predicted surface 
roughness in turning process by computer vision using gray 
level surface images and adaptive neuro-fuzzy inference 
system. They compared the measured surface roughness value 
(Ra) with the features obtained from the images of machined 
processes in varied speed, feed and depth of cut. Kassim et al. 
[7] examined the fractal surface texture features of machined 
components using hidden Markov Model (HMM) to find the 
tool wear in turning and end milling operations. Lee et al.  [8] 
measured surface roughness of turned components by a vision 
system and compared the gray level texture parameter with the 
stylus roughness value. Lee et al. [9] used adaptive neuro-fuzzy 
inference system to find surface roughness in turning operation 
and a demonstrated a relationship between average surface 
roughness values and texture characteristics of turned surface 
images. Narayanan et al. [10] estimated roughness of milled 
samples using a genetic algorithm hardware configuration to 
remove noise in the image. A correlation was obtained using 
both enhanced and raw image and the enhanced images showed 
better correlation with average surface roughness value, Ra. 
Palani and Natarajan [11] developed an artificial neural 
network (ANN) model based on back propagation method 
using image features obtained from 2D Fourier transform as 
inputs and surface roughness as output and predicted the 
surface roughness. Tomkiewicz  [12] estimated the surface 
roughness value Ra of turned components with the help of the 
neural network. Gupta and Raman [13] designed a vision 
system to capture the scattered laser light from machined 
surfaces and different optical parameters were assessed. 
Damodarasamy and Raman [14] performed a comparison 
based study of gray level histograms collected from machined 
samples. Bradley [15] have utilized Hurst operator to calculate 
the fractal dimension and assessed surface texture of milled and 
ground surfaces. In the case of machine vision system, the 
images should be captured with higher stability in lighting to 
achieve uniform illumination to capture images. In the 
processing of images, there are a lot of difficulties and more 
processing time due to variation in brightness and intensity. It 
contributes to changes in texture pattern also. Pfeifer and 
Wiegers  [16] described a method for adaptive control of 
imaging parameters to obtain an image that contains only the 
real edges. They eliminated the effects resulting from the 
specular reflection of the component for retrieving the the 
texture pattern more efficiently. Elango and Karunamoorthy 
[17] studied the effect of angle of illumination, the distance 
between the light source and the object and the machining 
direction on the optical parameters using the design of 
experiments. Freeling [18] described the design of proper 
lighting system based on the object shape and orientation for 
improved evaluation of surface defects in the finished surface. 

Therefore, the previous works related to machine vision based 
inspection demands a downright evaluation for the illumination 
compensation of images in machine vision approach. Thereby, 
providing a detailed evaluation to quantify the surface texture 
parameters expeditiously. In this work, the surface topography 
of ground components is evaluated after illumination 
compensation technique using machine vision. 

2.  Experimental Details 

In this experiment, High Carbon High Chromium 
(HCHC) Steel is used for the grinding operation to manufacture 
surfaces of varied surface finish. All the experiments were 
conducted on HCHC steel of dimension 30 mm x 20 mm. 
Grinding is performed under different machining parameters 
by changing the speed, feed and depth of cut. The machining 
parameters are tabulated in table 1.  

Table 1. Grinding parameters 

Machining parameters specifications 

Cutting speed (m/s) 21 24 27 

Feed (mm/min) 5 10 15 

Depth of Cut (µm) 10  30 50  

2.1 Lighting Configuration and Image acquisition 

A single point source halogen lamp is considered for 
illuminating the surface. The point source lighting is used to 
provide direct lighting to the specified location in the machined 
sample. The point source halogen light also has less intensity 
that helps to be appropriate for using it as a spot light for 
evaluating a specified location. Directional halogen light with 
wavelength in the range of 650nm to 700nm has been used for 
image acquisition at an angle of 45º. The spotlight diameter has 
been 2cm. The lighting setup is shown in Fig. 1. 

 

 

 

 

 

 

Fig. 1. Schematic of single point lighting system 

The images were captured using Basler CCD camera of 
1392 x 1040 resolution. The IEEE 1384 standard interface 
camera link at 17fps and C-mount for focus and aperture 
adjustment were used for image acquisition. 
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2.2 3-D Surface Roughness Measurement 

The 3-D optical profiler was used for measuring the 
3-D surface roughness (Bruker 3-D non-contact optical 
microscope) of the machined components. The components are 
scanned at a sampling length of 0.91µm to extract 3-D 
roughness parameters. The 3-D surface roughness parameters 
extracted are: 

Average 3D surface roughness parameter, Sa, 

11

0 0

1 [ (x , y )]
QP

a r s
R S

S Z
PQ

−−

= =

= ∑∑    (1) 

Root Mean Square (RMS) 3D roughness parameter, Sq, 
11

2

0 0

1 [ (x , y )]
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q r s
R S

S Z
PQ

−−

= =

= ∑∑    (2) 

Where, P & Q are number of data points in X & Y axis and Z 
(Xr, Ys) is the amplitude variation. The 3-D surface roughness 
parameters are measured using the Bruker 3-D surface profiler 
at three distinct locations. The average 3-D surface roughness 
parameters (Sa & Sq) of grinding process are shown in Table 2. 

Table 2. 3D surface roughness parameters of grinding processes. 

Sl. No. Sa(µm) Sq(µm) 

1 0.507 0.592 

2 0.398 0.466 

3 0.413 0.495 

4 0.399 0.471 

5 0.398 0.468 

6 0.458 0.546 

7 0.518 0.610 

8 0.455 0.541 

9 0.549 0.630 

10 0.526 0.614 

11 0.407 0.492 

12 0.493 0.577 

13 0.533 0.652 

14 0.557 0.676 

15 0.498 0.594 

16 0.530 0.627 

17 0.340 0.411 

18 0.301 0.321 

 

3. Illumination Compensation Method 

The illumination affects the quality of the acquired images. The 
high-frequency components in an image are considered to be 
due to reflection and low-frequency components are presumed 
to be due to non-uniform illumination content in an image. 
Therefore, the high-frequency components are improved and 
low-frequency components are compressed to make 

homogenous luminance. The following illumination 
compensation methods utilized for image normalization. 

3.1 Homomorphic Filtering 

Homomorphic filter increases the contrast of the image and 
enhances reflective properties in an image. This technique 
discriminate the reflectance (u, v)R and luminance (u, v)L of 
image (u, v)I by taking the natural logarithm and used for 
further normalization. The second stage is transforming the 
image to the frequency domain from the spatial domain using 
Fourier transform [19] . 

{ (u, v)} {ln (u, v} {ln (u, v)} {ln (u, v)}F Z F I F R F L= = +  (3) 

The image is filtered with the filter function H(x,y) that helps 
to amplify the high frequencies and lower the low frequencies. 
The normalized image N’(u,v) is finally obtained by finding the 
inverse Fourier transform of the filtered image and taking the 
exponential. 

1'(u, v) exp{ [ ( , ). (x, y)]}N F H x y Z−=   (4) 

Where, (x, y)H  is homomorphic filtering function and
{Z(u, v)} (x, y) F (x, y) F (x, y)R LF Z= = + . Normalized image 

N’(u,v) gives a high-frequency image with amplified high 
frequency and reduced low frequency. 

3.2 Discrete Cosine Transform (DCT) Filtering 

The DCT technique presumes that the illumination change is 
due to the low-frequency functions of the DCT transformed 
image. Thereby, discarding these low-frequency components 
and transforming the image by inverse DCT achieves the 
illumination invariance. Initially, the logarithm of the input 
image is taken to separate illuminance and reflection. The 2D-
DCT of an image of L × M  size is defined as [20] :  

,
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And the inverse transform can be defined as 
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Where,  

u & v are coordinates in image block,  L x M in the spatial 
domain, x & y are coordinates in DCT coefficients, (x)α &
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(y)α  are basis functions of DCT, L x M is the size of image 
block. 
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α = =
 , 

2(x) , x 1,2,...,L 1
L

α = = − , 
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, 
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Now, low-frequency DCT coefficients are assigned to zero. 
Let, n be the number of DCT coefficients with values as zero. 
Then, 
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Here the term 
1

(x , y )
n

i i
i=
∑ is considered as normalization term. 

'(u, v)G  is the desired illumination compensated image. 

3.3 Fourier Transform based filtering 

The physical texture t(u) of the surface represented onto the 
gray level image during the image acquisition process helps in 
extraction of parameters. Texture t(u) and lighting 
inhomogeneity i(u) together forms the signal model for the 
textured surface image in the gray level domain. The 
inhomogeneity i(u) should be suppressed to enrich the texture 
information about the machined surfaces. 

(u) (u). (u)g i t=     (8) 

Where, 

g(u) is the image captured by the CCD camera 

t(u) is the texture and i(u) is the lighting inhomogeneity.  

Beyer and Leon [21] separated the in-homogeneity signal i(u) 
into two spatially varying components i1(u) and i2(u). The i1(u) 

and i2(u) represents the local mean gray level value and the 
local contrast in the image respectively. 

Then homogenization is done by  

{ } 1
2

2

(u) (u)(u) (u)
(u)

g it H g
i
−

= =
  (9) 

The varying component i1(u) subtracted from the image g(u) 
gives the first degree of homogenization and division of i2(u) 
gives the second moment of g(u). 

{ }1 i (u)=LP g(u)
      (10) 

( ){ }( )
1

2 2
2 1(u) (u)i LP g i u= −  

  (11) 

where,  

LP-is a Gaussian low pass filter 

The homogenization is done using the Fourier transform and a 
Gaussian based low pass filter. The Fourier transformed image 
provides the local mean gray value and local contrast variation 
by subtracting the magnitude of compensated image from the 
original image. The local contrast i2(u) is extracted from 
Fourier transformed difference image by applying the Gaussian 
low pass filter. The final result is illumination compensated 
image after the Gaussian low pass filtering. 

4. Illumination Inhomogeneity Evaluation 

The variance in the illumination degrades texture pattern 
leading to loss of useful information in an image. These images 
are compensated using different illumination normalization 
techniques. The variation in illumination inhomogeneity of the 
images are analyzed by inhomogeneity indicator parameter and 
harmonic distortion proposed by Beyerer and Leon [21]. 

4.1 Inhomogeneity Indicator 

The inhomogeneity value for the uncompensated and 
compensated images are compared to analyze the improvement 
in visual aspect of image. The image is separated in four equal 
parts and each part is further divided into four parts of equal 
window size to find inhomogeneity indicator. The process of 
partitioning is carried out as in Fig. 2. 
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Fig. 2. Image segmentation for illumination inhomogeneity evaluation. 

The cumulative histogram Hi,j(g) is computed for each 
window, (i,j). The inhomogeneity indicator, QI for each 
window is calculated:
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The value of m must be selected such that the smallest 
windows of size, (N/2m x N/2m) are larger than biggest details 
of the texture t(x).  

The mean empirical standard deviation σl in the plane, l is 
defined as:  
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The illumination inhomogeneity for the experimented lighting 
configuration and machining process are studied. 

4.2 Harmonic Distortion 

The harmonic distortion is mainly due to the nonlinear 
characteristics in any signal or image. The factor that has more 
effect on harmonic distortion is lighting. If the lighting is 
uniform, the harmonic distortion can be eliminated to a higher 
extent. In order to compare the harmonic distortion, the 
nonlinear characteristics are applied to a test signal of harmonic 
variations with a superimposed low frequency inhomogeneity 
in a particular bandwidth and a constant additive factor, µ. The 
harmonic distortion is determined by: 

 
(14) 

 

The nonlinear distortion in a single image under different 
lighting is characterized using the harmonic distortion value. 

5. Texture Parameter Extraction Methods 

In machine vision system, the texture evaluation is 
based on the images captured. The images contain the useful 
information called texture which is the regular pattern in the 
surface of any object. In this context, the texture parameters are 
evaluated under the best lighting configuration for each 
process:  

5.1 Gray Level Co-occurrence Matrix (GLCM) Method 

               A GLCM p(k,l) is defined as a second order statistical 
matrix with all pairs of same gray level values and  relationship 
between pixels within a region in an image. A GLCM is 
obtained for various directions 0˚, 45 ˚, 90 ̊ , 135˚ for a distance 
(d), direction (θ) and gray level k x l  [22]. From the obtained 
GLCM, selected second-order statistical parameters are 
extracted and the five parameters extracted are:  
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         (19) 
Where,  

(k, l)p : GLCM matrix of size k l× . 
n : Total number of gray levels. 

uµ & vµ : Mean of up & vp . 

uσ & vσ : Standard deviations of up & vp . 

5.2 Gray Level Run Length Matrix (GLRLM) Method 

GLRLM finds the pattern and direction of the gray level 
intensities and form a matrix to study the texture pattern. The 
gray level intensities in a definite direction, length and equal 
values constitute to form a run length. The run length matrix 
measures the recurrently occurring adjacent gray level values 
in a particular direction (0˚, 45 ˚, 90 ˚, 135˚). In different 
directions, run-length matrices are computed based on gray 
level values [23]. The following GLRLM texture parameters 
are extracted: 
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Short run emphasis, 

2
k,l

1 (k, l)pSRE
n l

= ∑
    (20) 

Long run emphasis, 

2

k,l

1 (k, l)LRE k p
n

= ∑
    (21) 

Run percentage, 

k,l (k, l) k
nRP

p
=∑

    (22) 
Low gray level run emphasis, 

2
k,l

1 (k, l)pLGRE
n k

= ∑
    (23) 

 

High gray level run emphasis, 

2

k,l

1 (k, l)HGRE k p
n

= ∑
   (24) 

Where, 
(k, l)p : GLRLM matrix of size k l× . 

n : Total number of gray levels. 

6. Results and Discussions 

The halogen lighting set up was used to capture the images of 
all the machined samples. The variation in intensity was 
studied with respect to halogen lighting in the grinding process 
and the samples showed better results under halogen lighting. 
The compensated and uncompensated ground images are 
shown in Fig. 3. The selected machined samples and respective 
GLCM and GLRLM parameters are tabulated in Table 3 and 
correlation coeffiecients are shown in Table 4. 

 

Table 3. 3D surface roughness parameters and second order statistical texture parameters in halogen lighting of grinding process 

 
3D Surface roughness 
parameters 

GLCM Parameters GLRLM parameters 

Sl. 
No. 

Sa(µm) Sq(µm) Contrast Corre-
lation 

Energy Entropy Homo-
geneity 

SRE LRE RP LGRE HGRE 

Uncompensated Image 
         

Gr1 0.301 0.364 0.020 0.358 0.164 0.145 0.547 0.011 8.636 3.848 0.124 26.987 

Gr2 0.493 0.577 0.206 0.643 0.315 1.292 0.855 0.074 14.237 8.009 0.229 102.18 

Gr3 0.557 0.676 0.221 0.770 0.568 1.616 0.960 0.095 23.630 9.707 0.266 163.44 

Homomorphic Filtering 
         

Gr1 0.301 0.364 0.028 0.425 0.029 0.507 0.575 0.046 30.120 3.588 0.144 12.166 

Gr2 0.493 0.577 0.337 0.699 0.191 1.851 0.885 0.073 42.642 13.317 0.242 88.716 

Gr3 0.557 0.676 0.627 0.837 0.360 2.585 1.030 0.067 47.628 18.752 0.300 192.11 

DCT Filtering 
          

Gr1 0.301 0.364 0.289 0.490 0.089 1.449 0.510 0.008 11.867 8.673 0.051 27.037 

Gr2 0.493 0.577 0.593 0.770 0.137 2.475 0.824 0.024 20.326 15.827 0.228 55.904 

Gr3 0.557 0.676 0.573 0.895 0.162 2.723 0.939 0.033 27.387 17.532 0.345 77.614 

FT Filtering 
          

Gr1 0.301 0.364 0.496 0.365 0.063 1.553 0.452 0.039 11.666 15.239 0.222 11.745 

Gr2 0.493 0.577 0.908 0.590 0.101 2.623 0.741 0.064 19.677 24.739 0.358 19.866 

Gr3 0.557 0.676 0.841 0.661 0.133 2.761 0.853 0.080 19.795 26.908 0.396 24.829 

(a) Original image   (b) Homomorphic image  (c) DCT image   (d) FT image 

Fig. 3. Ground sample images under halogen lighting (Sa =0.493µm) 
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Table 4. Correlation between 3D surface roughness parameters, GLCM parameters GLRLM parameters of grinding. 

3D surface 

roughness 

Parameters 

GLCM Parameters GLRLM parameters 

Contrast Correlation Energy Entropy Homogeneity SRE LRE RP LGRE HGRE 

Uncompensated Image          

Sa(µm) 0.534 0.770 0.542 0.621 0.952 0.596 0.553 0.562 0.730 0.418 

Sq(µm) 0.563 0.783 0.510 0.650 0.941 0.594 0.556 0.556 0.717 0.419 

Homomorphic image  
        

Sa(µm) 0.615 0.965 0.557 0.700 0.969 0.649 0.681 0.709 0.843 0.500 

Sq(µm) 0.607 0.953 0.552 0.699 0.948 0.644 0.669 0.706 0.833 0.496 

DCT filtered 
         

Sa(µm) 0.723 0.970 0.786 0.977 0.995 0.787 0.729 0.917 0.974 0.741 

Sq(µm) 0.719 0.962 0.784 0.964 0.985 0.784 0.718 0.902 0.978 0.749 

FT filtered 
         

Sa(µm) 0.658 0.989 0.668 0.934 0.992 0.741 0.777 0.955 0.980 0.705 

Sq(µm) 0.620 0.981 0.694 0.904 0.988 0.750 0.746 0.924 0.956 0.743 

 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Correlation of 3D surface roughness parameter, Sa with GLCM parameter Contrast and GLRLM parameter, SRE of DCT 
compensated images 

 

The correlation was found to better in most of the 
texture parameters. However, contrast in GLCM parameter and 
SRE in GLRLM parameter are plotted in the Fig. 4 to show the 
correlation results. The inhomogeneity indicator and harmonic 
distortion values are evaluated for inhomogeneity evaluation 
and tabulated in Table 5. The inhomogeneity and linear 
distortion are reduced after the compensation of acquired 
ground images. However, the fourier transform and discrete 

cosine transform based compensation methods showed better 
inhomogenity and harmonic dostortion value. 

Table 5. Inhomogeneity indicator and harmonic distortion values 

 Inhomogeneity 
indicator value 

Harmonic distortion 
value 

Raw Image 0.320 10.98 
Homomorphic 

compensated image 0.221 9.635 

DCT compensated 
image 0.041 0.671 

FT compensated image 0.062 0.670 
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Thus, it can be clearly infered that the illumination 
compensation techquies helps to improve the texture parameter 
quantification. 

6.1 Validation of experimental results 
The measured values of 3-D surface roughness values 

need to be validated with a set of data in grinding process. Thus, 
nine set of experiments are used for validation. The mean, 
standard deviation and coefficient of variance is found. The 
average 3-D surface roughness value, Sa is predicted using the 
equation obtained from the correlation model described in 
texture parameters extraction. The variation in lighting 
inhomogeneity under halogen light has been found based on 
the inhomogeneity indicator and harmonic distortion. The 
Mean, Standard Deviation and Coefficient of Variance are 
found as follows: 

Mean, 

x
n

µ = ∑
    (25) 

Standard Deviation, 
2(x )

1n
µ

σ
−

=
−

∑   (26) 

 

Coefficient of Variation, . .C OV σ
µ

=   (27) 

Table 6. Actual and predicted surface roughness parameter. 

Sl.  
No. 

Sa 
actual(µm) 

Sa 
predicted(µm) 
: 
contrast 

Sa 
predicted(µm):  
SRE 

1 0.385 0.439 0.457 

2 0.438 0.425 0.388 

3 0.405 0.399 0.367 

4 0.549 0.527 0.570 

5 0.515 0.564 0.513 

6 0.533 0.504 0.496 

7 0.491 0.483 0.520 

8 0.550 0.446 0.448 

9 0.321 0.329 0.340 

Mean 0.465 0.457 0.455 

SD 0.082 0.071 0.077 

C.O.V 0.176 0.155 0.169 

Mean 
Squared 
Error 
(MSE) 



 

Sa predicted(µm)=0.5125 (contrast)+0.1649   (28) 

Sa predicted(µm)=9.3615 (sre)+0.238  (29) 

 

Finally, the 3-D surface roughness value (Sa) is 
predicted using contrast in GLCM and SRE in GLRLM texture 
parameters in grinding process as shown in Table 5. The 
correlation coefficient between the actual and predicted surface 
roughness value was found to be 0.677 and 0.620 with contrast 
and SRE as independent parameters respectively.  

Fig. 5. Actual vs. predicted average 3D surface roughness value in grinding. 

The 3-D surface roughness value predicted using the 
GLCM parameter, contrast in grinding process is shown in Fig. 
5. The coefficient of variation of the predicted method is 0.155 
and 0.169 using contrast and short run emphasis respectively. 
While, the actual roughness values showed a variation of 0.176. 
Thus, it is evident from the values of coefficient of variation 
that the predicted roughness values are showing less variation 
than the actual roughness values. The correlation coefficient of 
actual and predicted roughness can be improved if the size of 
training set is increased. This work is an initial step towards the 
research in the direction to estimate roughness using a 
comparison based faster approach that can be implemented in 
industries for higher productivity. Moreover, increase in 
training, testing and validation with multiple datasets could 
improve the results before practical implementation. 

7. Conclusion 

The surface characterization of ground surfaces can be 
analyzed using texture parameters. The illumination 
compensation technique proved to be effective in eliminating 
the inhomogeneity in different lighting configurations for 
different machining processes. The compensated images 
showed good correlation with 3D surface roughness parameters 
compared to uncompensated images. Therefore, it is eminent 
from the work that irregularities in illumination contribute to 
the texture pattern in an acquired image. The illumination 
compensated texture parameters showed better coefficient of 
correlation with the 3D surface roughness values in grinding 
process under halogen lighting. In this work, the second order 
statistical methods based on GLCM and GLRLM methods 
characterized the changes in the texture pattern of the images. 
The experimental results suggest an online measuring 
technique to control the surface quality of a machined part 
using these methods for a faster inspection in an industrial 
environment. This technique can be used as a comparator based 
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roughness estimation tool for faster inspection of surface 
roughness. Many other texture parameters can be used for 
texture based surface evaluation. 
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