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Abstract
Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson's dis-

ease (PD) patients who are treated with dopamine precursors or dopamine receptor agonists.

In this study, we combine clinical investigations with computational modeling to explore

whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk,

reward and punishment learning. In order to empirically assess learning outcomes involving

risk, reward and punishment, four subject groups were examined: healthy controls, ONmedi-

cation PD patients with impulse control disorder (PD-ON ICD) or without ICD (PD-ON non-

ICD), and OFFmedication PD patients (PD-OFF). A neural network model of the Basal Gan-

glia (BG) that has the capacity to predict the dysfunction of both the dopaminergic (DA) and

the serotonergic (5HT) neuromodulator systems was developed and used to facilitate the in-

terpretation of experimental results. In the model, the BG action selection dynamics were

mimicked using a utility function based decision making framework, with DA controlling re-

ward prediction and 5HT controlling punishment and risk predictions. The striatal model in-

cluded three pools of Medium Spiny Neurons (MSNs), with D1 receptor (R) alone, D2R alone

and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased

in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Em-

pirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT) com-

pared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-

OFF patients have higher punishment sensitivity, while healthy controls showed comparative-

ly higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was cru-

cial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight

the power of computational modelling for identifying neuronal circuitry implicated in learning,

and its impairment in PD. The results presented here not only show that computational model-

ling can be used as a valuable tool for understanding and interpreting clinical data, but they

also show that computational modeling has the potential to become an invaluable tool to pre-

dict the onset of behavioral changes during disease progression.
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Introduction
Impulsivity is a multi-factorial problem that is assessed based on the capacity of an individual
to accurately perform a goal directed action, and their ability to inhibit action impulses from
interfering with the execution of the goal directed action [1–3]. It is also defined as the tenden-
cy to act prematurely, and has been linked to motor and cognitive disorders [4]. Some tests for
impulsiveness include action selection paradigms such as Go / NoGo tasks, activities assessing
response alternation due to delays, contingency degradation, or devaluation [4,5]. All of the
above tests measure the subject's capacity to optimise the trade-off between speed and accura-
cy. Impulsive behaviors are exhibited in these tasks in the form of shorter reaction times, lesser
behavioral inhibition over the non-optimal actions, less perseveration, and higher delay dis-
counting [6–8]. Impulsivity is also the hallmark of several other psychiatric disorders such as
attention deficit hyperactive disorder, aggression, substance abuse, and obsessive compulsive
disorder [6].

Impulsivity in Parkinson's disease
Parkinson's disease (PD) is characterised by the loss of dopaminergic (DA) neurons in substan-
tia nigra pars compacta (SNc) [9,10]. The key motor symptoms that mark PD are tremor, rigid-
ity, akinesia, and advanced cases may exhibit freezing of gait [11,12]. However non-motor
symptoms such as cognitive dysfunction, behavioral and sleep disorders, dysautonomia, psy-
chiatric disorders such as depression and anxiety, are also common in these patients [13]. A
class of people suffers from an inability to resist an inappropriate hedonic drive, eventually re-
sulting in performance of unfavorable actions with harmful consequences. This inability is
termed as impulse control disorder (ICD), and is displayed in around 14% of ON medication
PD (PD-ON) patients who are mostly treated with DA agonists [14]. ICDs include pathological
gambling, compulsive shopping, binge eating, punding, overuse of dopaminergic medication,
and over-engaging in meaningless hobby-like activities. The reduction of the medication can
induce withdrawal symptoms, thus demanding an optimal therapy to ameliorate both the
motor and the non-motor symptoms in PD [15].

Neural substrates identified for impulsivity
Reported neural substrates of impulsivity include cortical structures such as the prefrontal cor-
tex and orbito-frontal cortex, as well as subcortical structures such as the striatum, subthalamic
nucleus (STN), globus pallidum externa and interna (GPe and GPi) of the basal ganglia (BG)
[8,16]. In-vivo neurochemical analysis in rats performing a serial reaction time task revealed
that dysfunction in neuromodulators such as DA and serotonin (5HT) in the fronto-striatal
circuitry is associated with impulsivity [8]. Specifically receptors such as DA D2, and 5HT 1,2,6
are shown to significantly contribute to the impulse control disorder [14,17,18]. Computational
modelling can be used for a better understanding of the contribution of the above mentioned
structures and neurochemicals to impulsive decision making, as is described below.

Computational modelling of neural substrates of impulsivity
Since PD-ON ICD is primarily linked to impairment in DA signalling and the BG function,
several contemporary models of PD-ON ICD have focused on the role of the BG, often by
using a reinforcement learning (RL) framework [19,20]. In this framework, learning is driven
by rewards and punishments obtained as a result of executing actions [21,22]. The prediction
error which is the difference between expected and received rewards is signalled by DA. There
is evidence supporting that mesencephalic DA signalling codes for the temporal prediction
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error in reinforcement learning framework [23–25]. Such a prediction error facilitates the com-
putation of some "goodness" measures such as the value function associated with an action.
The value function refers to the expected sum of the future rewards obtained on executing ac-
tions. Functional imaging studies suggest that value is computed in striatum of the BG [26,27].
This computation is thought to be achieved by combining the reward prediction error informa-
tion from the SNc to striatum along with the cortical state conveyed to the striatum by corticos-
triatal projections [20,26–29].

PD-ON ICD patients are reported to display exaggerated reward learning and attenuated
punishment learning [20]. This is in contrast to the OFF- medication PD patients (PD-OFF)
who are more sensitive to punishments than rewards [30]. Evidence suggest that phasic DA
signals are necessary for reward punishment learning. While positive phasic DA signals are
necessary for reward learning, negative phasic DA signals (and the duration of phasic dip) are
needed for punishment learning [25]. The loss of dopaminergic neurons and decreased levels
of DA [31] is known to amplify phasic dips of DA and hence promote punishment learning.
On the contrary, medication increases the basal firing of the dopaminergic neurons and the
availability of tonic DA, thereby promoting reward learning. The opponency between the di-
rect and indirect pathways of the BG, mediated by the available DA for a particular subject
type, is utilized by several models to explain the ICD behavior [20,32–34].

Some models account for these differences in reward / punishment learning between the
PD-ON and PD-OFF patients by invoking differential learning rates for positive and negative
feedback learning [20]. According to one model, ICD is an effect of automaticity of the stimu-
lus-response relationship that becomes insensitive to the outcome; thus ICD is thought to be a
form of habitual action [14]. Another model that belongs to the actor-critic family of BG mod-
els localizes the critic module (which evaluates the rewards associated with an action) to ventral
striatum, and the actor module (which provides an executable plan for performing actions) to
dorsal striatum. A dysfunction in the critic module has been proposed to explain the impaired
stimulus-response relationship in PD-ON ICD cases [30]. Some other models use matching
law to relate the probability of selecting a choice among two given alternatives to both the rela-
tive magnitudes and relative delays of the reinforcers associated with the alternatives [6]. The
preference to choices increased with the magnitude of the associated reinforcer, but decreased
with the delay associated with the reinforcer. Increased sensitivity to delays was predicted to in-
crease impulsive behavior in that study [6].

Our modeling approach
In the case of medication-induced impulsivity in PD patients, there are many experiments re-
porting a non-significant role of DA in medication-induced forms of impulsivity, for example,
delay discounting task [35–38]. And some experiments suggest that an impaired balance be-
tween 5HT and DA is the root of impulsivity [39–42]. Additionally, there are several instances
of experimental studies that relate central 5HT and functional polymorphisms of the 5HT
transporter gene to impulsivity [7]. Thus the ætiology of ICD in PD should involve dysfunction
in both 5HT and DA systems [7,8]. Therefore a modeling approach that is based solely on DA
mediated dynamics in the BG [20] should ideally be expanded to include the 5HT system for
better representation of the experimentally observed behavior. Most of the models reviewed
above consider only DA dysfunction to explain impulsivity behavior. There is clearly a need
for a model that unifies the contributions of other neuromodulators such as 5HT in addition to
DA, in order to gain a comprehensive understanding of impulsivity.

In this study, we propose a unified computational network model of the BG that can mimic
impulsivity disorder. The model is cast in the RL framework. It explicitly includes the
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anatomical modules such as the striatum, GPe, GPi and STN [43–45]. In addition to these ana-
tomical components, the model also incorporates the roles of two key neuromodulators impli-
cated in ICD–DA and 5HT. In line with classical RL-based models of the BG, the DA signal
corresponds to reward prediction error in the present model. Invoking the natural relationship
between impulsivity and risk-seeking [46,47], we borrow elements from a recent model [28]
that links 5HT and risk-based decision making, and incorporate them in the proposed model.

The paper is outlined as follows: Section 2 deals with the materials and methods along with
the model approach. Section 3 is concerned with the experimental and the modelling results,
which are then discussed in Section 4.

Materials and Methods

Participants
This study was part of a larger project conducted at Ain Shams University Hospital, Cairo,
Egypt. Seventy six participants were recruited for the project containing 160 trials of a probabi-
listic learning task. The subjects include (1) PD patients tested OFF medication (PD-OFF,
n = 26, 6 females); (2) PD patients without ICD tested ON medication (PD-ON non-ICD,
n = 14, 3 females); (3) PD patients with ICD tested ON medication (PD-ON ICD, n = 16, 2 fe-
males); and (4) healthy controls (n = 20, 3 females). The healthy control participants did not
have any history of neurological or psychiatric disorders. The PD-OFF group was withdrawn
from medications for a period of at least 18 hours. The majority of ON-medication patients
were taking dopamine precursors (levodopa-containing medications) and D2 receptor ago-
nists, specifically, Requip, Mirapex, Stalevo, Kepra, and C-Dopa. The mean disease duration
was 8.35, 9.56, and 9.8 years for PD-ON non-ICD, PD-ON ICD, and PD-OFF patients, respec-
tively. The OFF medicated PD patients had 9.8 years of mean disease duration. All participants
gave written informed consent and the study was approved by the ethical board of Ain Shams
University.

The Unified Parkinson’s Disease Rating Scale (UPDRS) was used to measure the severity of
PD [48]. The UPDRS for all patients were measured ON medication. There was no significant
difference among the patient groups in their UPDRS scores (F(2,63) = 0.5432, p = 0.5836) and
their MMSE scores (F(2,63) = 0.5432, p = 0.5836). All participants were also tested for intact
cognitive function and absence of dementia with the Mini-Mental Status Exam- MMSE [49].
Furthermore, there were no significant difference between the patient groups on the North
American Adult Reading Test [50], the Beck Depression Inventory [51], and the forward and
backward digit span tasks (p> 0.05 in each case using one-factor ANOVA analysis). The
scores of all patient groups in Barratt impulsiveness scale were significantly different from each
other (F(2,63) = 9.3264, p = 0.0003). A post hoc t- test with two tail analysis showed that ICD
patients contributed mostly to the differences observed in the scores.

Task
The experimental paradigm encompasses probabilistic reward and punishment learning.
There were 160 trials wherein each trial, one of four different stimuli (I1, I2, I3, and I4) was pre-
sented in a pseudorandomized manner. The participants were asked to categorise them to re-
sponse A or B. Two stimuli (I1 and I2) were used for testing the reward learning, and the other
two stimuli (I3 and I4) were used for testing the punishment learning. An outcome follows
every response, and an optimal response is the one maximising the observed outcome. In re-
ward trials, an optimal response leads to +25 points 80% of the time and no reward for 20% of
trials. In contrast, a non-optimal response resulted in +25 points only 20% of the time. In pun-
ishment trials, an optimal response resulted in no reward 80% of the time, and -25 points 20%
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of the time. Whereas a non-optimal response resulted in -25 points 80% of the time (Table 1,
Fig 1). This experiment has been previously performed with PD patients and healthy control
subjects as described in [30] but the present study extends the same experimental setup to ana-
lyse the subject's reaction times.

Model framework
Our earlier modeling study [28] showed that the role of the BG in risk-based decision making
can be efficiently modeled using utility-based learning, rather than just the value-based learn-
ing [19,20,52]. In utility-based learning, the utility of a state and an action pair is a combination
of its value function and risk function. The state referred to here is the cortical state that forms
the input of the BG, and the action refers to the behavioral response. The striatum of the BG re-
ceives input from a wider area of cortex including the pre-frontal cortex, orbito-frontal cortex,
and sensory-motor cortices [8]. These nuclei also receive numerous 5HT and DA projections
that are proposed to control the perception of value and variance / risk associated with the
sampled rewards, respectively [28]. The striatal projections then project to the GPe, STN and
GPi through the direct or indirect pathways; which together contribute to the action selection
dynamics [43]. The framework used in this study is adapted from classical BG models as pro-
posed in [53–56]. A detailed schematic representation of the current model is provided in Fig
2.

While the value function represents expected reward, risk function tracks reward and re-
ward prediction error's variance over time [28,45,57,58]. Using a utility-based approach [28],
that combines value and risk, it was possible to model experiments on reward-punishment
learning [59], time scale of the reward prediction [60] and risk-based learning [61]. Moreover,
the study also reconciles the multifarious roles of 5HT in the BG, as instantiated in these exper-
iments [59–61], within a single framework. The seemingly unrelated roles in controlling behav-
ioral inhibition, time scale of reward / punishment predictions that control sensitivity to delays
in receiving outcomes, and risk learning were captured in our model of utility based decision
making—where 5HT is modeled as a parameter affecting the risk prediction error [28]. Hence
the current study models 5HT to control the risk function, and uses the classical representation
of DA in controlling the reward prediction error. We borrow the above mentioned key ideas
from Balasubramani et al. (2014) [28] and present here a detailed network model of the BG
(Fig 2) to understand the behavioral data collected from PD patients and healthy controls.

The utility function proposed in (Balasubramani et al 2014) is given below:

Utðst; atÞ ¼ Qtðst; atÞ � a signðQtðst; atÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
htðst; atÞ

p
ð1Þ

where U, Q, and h are respectively the utility, action value and the risk functions associated

Table 1. Experimental setup and a schematic of the task.

Learning Reward Punishment

Image presented I1 I2 I3 I4
Optimal type A B A B

Probability(points) 0.8(+25) 0.8(+25) 0.8(0) 0.8(0)

For optimal type 0.2(0) 0.2(0) 0.2(-25) 0.2(-25)

Non-optimal type B A B A

Probability(points) 0.2(+25) 0.2(+25) 0.2(0) 0.2(0)

For non-optimal type 0.8(0) 0.8(0) 0.8(-25) 0.8(-25)

doi:10.1371/journal.pone.0127542.t001
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with a state, 's' and action, 'a' at time, 't'. Risk sensitivity is controlled by the parameter α in the
above Eq (1) and is proposed to represent the neuromodulator 5HT.

This lumped model has been extended to the BG network model with the value and the risk
functions computed by the medium spiny neurons (MSNs) in the striatum [45]. Our earlier
study proposed that striatal DA receptor (D1R) expressing MSNs code for value function,
while the MSNs co-expressing both D1R and D2R (D1R-D2R) code the risk function. Whereas
the D1R MSNs project via the direct pathway (DP) to GPi, the D2R and the D1R-D2R co-ex-
pressing MSNs project to the GPe in the indirect pathway (IP) [45] (Fig 2).

The outputs of the different kinds of MSNs—D1R expressing, D2R expressing and the
D1R-D2R co- expressing neurons–are represented by variables yD1, yD2, and yD1D2, respective-
ly in Eq (2). The subscript t denotes the time of response.

yD1;tðst; atÞ ¼ wD1ðst; atÞ xðstÞ
yD2;tðst; atÞ ¼ wD2ðst; atÞ xðstÞ
yD1D2;tðst; atÞ ¼ wD1D2ðst; atÞ xðstÞ

ð2Þ

In the above equations, 'x' is a logical variable modeled to be equal to 1 for the current state,
st, i.e., x(si) = 1 if si = st (see Fig 2 inset). The Utility, U, is then obtained from the network

Fig 1. Experimental setup and a schematic of the task. The highlighted circles denote instances of the
response selected for receiving an outcome. The images are represented by I1, I2, I3, I4 whose details are
provided in Table 1. And the outcomes are presented to the subjects as "You Lose 25 Points", "YouWin 25
Points", or none.

doi:10.1371/journal.pone.0127542.g001
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model as described in the following Eq (3) [45].

Utðst; atÞ ¼ Qtðst; atÞ � aD1D2 signðQtðst; atÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
htðst; atÞ

p
ð3Þ

where

Qtðst; atÞ ¼ yD1;tðst; atÞ
htðst; atÞ ¼ yD1D2;tðst; atÞ

Here in Eq (3), the risk sensitivity parameter is defined by αD1D2 which denotes the specific
modulation of 5HT on the D1R-D2R co-expressing MSNs coding the risk function. The model
DA parameter is used for the updating of cortico-striatal weights, and also controlling the
switching at GPi [43]. Thereby the model postulates multiple forms of DA and 5HT signals,
each of which has a differential action on D1R, D2R, and the D1R-D2R MSNs, as detailed later
in this section. The bi-directional connectivity in the STN-GPe system that facilitates complex
oscillations and "exploratory" behavior is also captured in this model [62]. We now present

Fig 2. The complete network model of the BG used for the task setup. The BGmodel components
shown are striatum, GPe, GPi, and STN along with SNc, DRN, and Thalamus. The schematic also denotes
various DA and 5HTmodel correlates, as described in the Section: Model framework. The inset details the
notations used in model section for representing cortico-striatal weights (w) and responses (y) of various
kinds of MSNs (D1R expressing, D2R expressing, and D1R-D2R co-expressing) in the striatum, with a
sample cortical state size of 4, and maximum number of action choices available for performing selection in
every state as 2.

doi:10.1371/journal.pone.0127542.g002
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equations for the individual modules of the proposed network model of the BG. The reader
refer our earlier studies for more details [43,45].

Model components: Striatum. The Striatum is proposed to have three types of MSNs,
D1R expressing MSNs, D2R expressing MSNs, and D1R-D2R co-expressing MSNs, all of
which have their gain functions (λ) as described below in Eq (4). The c1, c2, c3 are constants that
vary with the receptor type. The value function (Q) requires a continuously increasing gain as a
function of DA in the MSNs, which is shown to occur in the DA D1R containing MSNs. The
risk function (h) [28,45,57,58] would simply require an increasing gain with increasing magni-
tude of DA, i.e. a 'U' shaped gain function which gives increased response with increasing δ2. It
is plausible that these risk-type of gain functions would then probably be exhibited by the neu-
rons that co-express both the D1R-like gain function that increases as a function of DA, and
D2R-like gain function that decreases as a function of DA [63–66], as identified in a recent ex-
perimental study [67]. The D2R MSN's gain function whose activity decreases as a function of
DA makes them suitable for punishment computation, in opposition to that of the D1R MSNs
responding positively to the reward prediction error (DA).

lD1ðdÞ ¼
2c1

1þ expðc2ðdþ c3ÞÞ
� 1

lD2ðdÞ ¼
2c1

1þ expðc2ðdþ c3ÞÞ
� 1

lh�D1ðdÞ ¼
c1

1þ expðc2ðdþ c3ÞÞ
lh�D2ðdÞ ¼

c1
1þ expðc2ðdþ c3ÞÞ

lD1D2ðdÞ ¼ lh�D1ðdÞ þ lh�D1ðdÞ

ð4Þ

The weight update equations for a given (state, action) pair in the different kinds of MSNs
are provided in Eq (5).

DwD1ðst; atÞ ¼ ZD1lD1ðdðtÞÞ xðstÞ
DwD2ðst; atÞ ¼ ZD2lD2ðdðtÞÞ xðstÞ
DwD1D2ðst; atÞ ¼ ZD1D2lD1D2ðdðtÞÞ xðstÞ

ð5Þ

The δ's in the weight update equations are computed for the immediate reward condition as
provided in Eq (6). It represents the DA form of activity that updates the cortico-striatal
weights and is the classical temporal difference (TD) error [21,68].

dðtÞ ¼ r � Qðst; atÞ ð6Þ

STN-GPe system. In the network model of the STN-GPe system, STN and GPe layers
have equal number of neurons, with each neuron in STN uniquely connected bidirectionally to
a neuron in GPe. Both STN and GPe layers are assumed to have weak lateral connections with-
in the layer. The number of neurons in the STN (or GPe) (Fig 2) is taken to be equal to the
number of possible actions for any given state, n [69,70]. The dynamics of the STN-GPe
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network is given below.

ts
dxSTNi

dt
¼ �xSTNi þ

Xn

j¼1

WSTN
ij ySTNi � xGPei

ySTNi ¼ tanhðlSTNxSTNi Þ

tg
dxGPei

dt
¼ �xGPei þ

Xn

j¼1

WGPe
ij xGPei þ ySTNi � xIPi

ð7Þ

xGPei - internal state (same as the output) representation of ith neuron in GPe;
xSTNi - internal state representation of ith neuron in STN, with the output represented by

ySTNi ;
WGPe - lateral connections within GPe, equated to a small negative number �g for both the

self (i = j) and non-self (i 6¼ j) connections for every GPe neuron i.
WSTN - lateral connections within STN, equated to a small positive number �s for all non-

self (i 6¼ j) lateral connections, while the weight of self-connection (i = j) is equal to 1+ �s, for
each STN neuron i.

Both STN and GPe are modeled to have complete internal connectivity with every neuron
in a layer connected to every other neuron in that layer with the same connection strength.
That common lateral connection strength is �s for STN, and �g for GPe. Likewise, STN and
GPe neurons are connected in a one-to-one fashion–ith neuron in STN is connected to ith neu-
ron in GPe and vice-versa. For all the simulations presented below, we set �g = -�s; the learning
rates 1 / τS = 0.1; 1 / τg = 0.033; and the slope λSTN = 3; �s = 0.12.

The DP and IP projections to GPi. The outputs of D1R expressing MSNs, transmitted
over the direct pathway are computed as:

xDPt ¼ aD1 lD1ðdUðtÞÞ yD1;tðst; atÞ ð8Þ

The outputs of the D2R and D1R-D2R expressing MSNs, transmitted to GPe via the indirect
pathway, are computed as,

xIPt ¼ aD2 lD2ðdUðtÞÞ yD2;tðst; atÞ þ
aD1D2 signðyD1;tðst; atÞÞ lD1D2ðdUðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yD1D2;tðst; atÞ

q ð9Þ

Description for the parameters αD1, αD2, αD1D2 in the Eqs (8 and 9): The neuromodulator
5HT's specificity in expression along with a particular type of MSN is not known [71–74]. In
the present model, 5HT is thought to modulate the activity of all three kinds of MSNs (D1R ex-
pressing, D2R expressing and the D1R-D2R co-expressing). Hence the modeling correlates of
5HT are the parameters αD1 (Eq (8)), αD2, αD1D2 (Eq (9)) for modulating the output of the
D1R, D2R and the D1R-D2R MSNs respectively, and they represent the tonic-5HT modulation
exerted by dorsal raphe nucleus (DRN) [75–77]. The utility function described in Eq (3) in-
volves specifically the 5HT parameter, αD1D2, to represent the selective modulation on 5HT on
the risk-coding D1R-D2R MSNs; it does not involve the αD2 parameter which represents the
effect of 5HT on D2R MSNs in the striatum.

The variables yD1,t, yD2,t, yD1D2,t as a function of state (s) and action (a) at time, t, are ob-
tained from Eq (2).

Description for the parameters λD1, λD2, λD1D2 in the Eqs (8 and 9): The D2R and the
D1R-D2R MSNs form part of the striatal matrisomes known to project to the IP, while the
D1RMSNs project to the DP [69,71,72,78,79]. It should also be noted that λs used as a gain fac-
tor in Eqs (8 and 9) have different parameters from λs used in Eq (5). And the gain functions
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in Eq (8 and 9) are a function of the DA form [80] which represents the temporal difference in
utility function, δU (Eq (10)). This is different from the DA form, δ, described in Eq (6).

dUðtÞ ¼ Utðst; atÞ � Ut�1ðst; at�1Þ ð10Þ

Another correlate of DA (Fig 2) affecting the model is the sign(Q) term in the Eqs (3 and 9),
that is a form of value function, Q [22,24]. This term ensures the non-linear risk sensitivity ob-
served in subjects based on the nature of the outcomes: risk aversive for rewards and risk-seek-
ing for punishments [28,46]. The utility difference form of DA (Eq (10)) is proposed to be
computed in SNc using the value inputs from D1R MSNs, and the risk inputs from the
D1R-D2R MSNs, for a particular (state, action) pair. Hence, both the D1R and the D1R-D2R
MSNs form a part of the striatal striosomes that contribute to the computation of DA error sig-
nal in SNc [69,71,72,78,79]. A summary of different mathematical forms of DA and 5HT used
in the present model are listed in Table 2. Utility is thought to be computed in the SNc where
the projections from D1R and D1R-D2R MSNs converge; D2 MSNs are not modeled to project
to SNc [69,71,72,78,79] (Fig 2). Therefore the utility in Eq (3) is constructed as a summation of
the value function computed by the D1R MSNs and the risk function computed by the
D1R-D2R MSNs. But the action selection dynamics at GPi involve all the three types of MSNs
(D1R, D2R and the D1R-D2R MSNs) through Eqs (8 and 9).

Action Selection at GPi. Action selection at GPi is implemented using the combination of
the DP and IP contributions as follows:

xGPii ¼ �xDPi þ wSTN�Gpi
i ySTNi ð11Þ

Since D1R is activated at increased dopamine levels, higher dopamine levels favour activat-
ing DP (constituted by the projections of D1R MSNs) over IP. This is consistent with the na-
ture of switching facilitated by DA in the striatum [81–84]. The relative weightage of the STN
projections to GPi is represented by wSTN-GPi, and is set to 1 for all the GPi neurons in the
current study.

Action Selection at Thalamus. GPi neurons project to thalamus through inhibitory con-
nections. Hence the thalamic afferents can be simply expressed as a modified form of Eq (11).

xThalamusi
i ¼ xDPi � wSTN�Gpi

i ySTNi ð12Þ

These afferents in Eq (12) activate thalamic neurons as follows,

dyThalamus
i

dt
¼ �yThalamus

i þ xThalamus
i ð13Þ

where yThalamus
i is the state of the ith thalamic neuron. Action selected is simply the 'i' (i = 1,2,..,n)

whose yThalamus
i first crosses the threshold on integration. In the case of many actions crossing

the threshold at the same time, the action with maximum yThalamus
i at that time is selected. The

reaction times (RT) associated with the trial is the number of iterations required for yThalamus
i of

Table 2. Summary of different DA and 5HTmodel correlates.

DA δ [21,68] Eq (6)

δU [43,45,80] Eq (10)

sign(Q) [22,24] Eqs (3 and 9)

5HT αD1 Eq (8)

αD2 Eq (9)

αD1D2 Eq (9)

doi:10.1371/journal.pone.0127542.t002
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the selected action to reach the threshold [85–87]. The threshold value used in the current sim-
ulation is 1.815.

Modeling Parkinson’s disease. The PD version of the proposed model has the following
features (Eq (14)) for OFF and ONmedication. PD pathology is associated with a huge loss in
SNc dopaminergic neurons [88]. Since DA levels are lower in PD than in healthy controls, the
δ (Eq (6)) is clamped to an upper bound (δLim), and this marks the PD-OFF case. In the
PD-ON case, there is a higher level of tonic DA available due to medication. This is modeled
by a simple addition of a fixed constant (δMed denoting the medication levels) to the clamped δ
[89–93].

dðtÞ ¼

(
½a; b� for controls

½a; dLim� for PD� OFF

½a; dLim þ dMed� for PD� ON

Clamping the availability of DAðPD� OFFÞ :
if d > dLim; d ¼ dLim
Increase in the availability of DA due to medication :

d :¼ d þ dMed

ð14Þ

Results

Experimental results
Behavioural performance was assessed by analysing the optimality of participant responses and
their reaction times. First, proportions of optimal responding to reward and punishment sti-
muli were calculated for each participant. A one-way ANOVA revealed significant group dif-
ferences between optimizing rewards (F(3,72) = 12.12, p = 1.64X10-6) and punishments (F
(3,72) = 3.76, p = 0.01) (Table 3). Post hoc analysis showed increased differences existing in the
distributions of PD-OFF and PD-ON ICD patients responses (p = 2.23x10-7) for having opti-
mality in reward learning (Stimuli I1 and I2) as the factor of analysis, and (p = 0.003) while
having optimality in punishment learning (Stimuli I3 and I4) as the factor of analysis. That is,
PD-ON ICD patients showed increased reward optimisation and decreased punishment

Table 3. One way Analysis of Variance (ANOVA) for outcome valences (a) reward (b) punishment, and (c) subject's reaction time, taken as the fac-
tor of analysis.

Source of Variation SS df MS F P-value F crit

(a) Between Groups 12771.04 3 4257.01 12.12 1.64 x10-06 2.73

Within Groups 25286.69 72 351.20

Total 38057.73 75

(b) Between Groups 1796.26 3 598.75 3.76 0.01 2.73

Within Groups 11450.28 72 159.03

Total 13246.55 75

(c) Between Groups 45939.84 3 15313.28 11.63 2.65x10-06 2.73

Within Groups 94765.95 72 1316.19

Total 140705.8 75

This is performed to understand the significance of categorising the subjects to various sub-types for different valences.

doi:10.1371/journal.pone.0127542.t003
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optimisation relative to PD-OFF patients. The PD-ON non-ICD patients and healthy controls
showed comparatively equal reward and punishment based optimality.

A similar analysis was conducted on reaction times, revealing overall significant group dif-
ferences (F(3,72) = 11.63, p = 2.65X10-6), as shown in Table 3. The post hoc analysis showed
this difference to be driven by the RT distributions of the PD-ON non-ICD, for having signifi-
cantly larger RT distributions than the PD-OFF groups (p = 7.39x10-6), whilst PD-ON ICD
group did not differ significantly from healthy controls.

Modeling results
The network model described in the previous section is now applied to the experimental data.
The reward of 25 points is simulated as r = +1, the punishment of -25 points as r = -1, and 0
points is simulated by r = 0. The four kinds of images (I1, I2, I3, I4) are simulated as states (s),
and the two kinds of responses (choosing A or B) for a given image are simulated as actions (a)
(Figs 1 and 2).

The experimental and the simulation results showing the selection optimality in the task-
setup for different subject groups is shown in Fig 3A. Experimental reaction time analysis for
every subject group is provided in the Fig 3B. The same is matched through our proposed
model. The RT results from the simulation are shown in Fig 3C and 3D.

The modeling study suggests that optimising the parameters (Tables 4 and 5) related to
DA- δ (viz. δLim and δMed in Eq (14)), and 5HT–(αD1, αD2, αD1D2 in Eqs (3, 8 and 9)) are essen-
tial to model the ICD behavior in the PD patients. The following are the key modeling results:

1. An increased reward sensitivity in PD-ON, and increased punishment sensitivity in
PD-OFF cases, are seen (Fig 3A)

2. Decreased reaction times are seen in ICD category of the PD-ON cases compared to that of
the non-ICD PD-ON group (expt-Fig 3B, sims-Fig 3C, Fig 3D).

3. The model correlates of 5HT along with DA have to be optimized for improving the re-
ward-punishment sensitivity in PD patients. The 5HT+DAmodel (αD1D2 > 0) captures the
experiment profile better than just a DA model of the BG (αD1 = 1, αD2 = 1, αD1D2 = 0)
(Table 5, S2 File, S3 File).

4. PD-ON ICD case required significantly reduced 5HT modulation of the striatal D2R (αD2)
and the D1R-D2R (αD1D2) MSNs.

5. PD-ON non-ICD case is explained in our model by an increased 5HT modulation of D2R
MSNs (αD2), and a decreased 5HT modulation of D1R-D2R MSNs (αD1D2).

6. A significant increase in the modulation of D2R MSNs (αD2) characterizes the PD-OFF case
of the model. The above comparisons are made with respect to the healthy controls.

Details of optimization. To investigate if the model can veritably predict differences in re-
action time between the four different groups, given the selection accuracy alone, we performed
the following tests:

Step 1: First, we identified parameter sets that are optimal for the cost function based on reward
punishment action selection optimality only.

Step 2: We then selected solutions from Step 1 that can also explain the desired RT measures.
The resulting parameter set is then taken as the optimal solution to the problem for a
specific group.

Identifying the BG Network Markers for PD-ON ICD
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The parameters for each experiment are initially selected using grid search and are eventual-
ly optimized using genetic algorithm (GA) [94] (Details of the GA option set are given in S1
File). The optimized parameter set for explaining the behavioral data in various subject groups
is provided in Table 5. The procedure followed for optimizing the key parameters in the
Table 5 using grid search are as follows:

Fig 3. Analysing the action selection optimality and RT in the experiment and simulation for various
subject categories. (a) The percentage optimality is depicted for various subject categories as obtained
from the experimental data and the simulations (run for 100 instances). The reaction times (RT) in msec
through trials are also shown for (b) the experimental data, and (c) for simulation. The average RTs in msec
across the subject groups are provided for both experiment and simulation in Fig (d). The outliers are in prior
removed with p = 0.05 on the iterative Grubbs test [133]. The similarity between the experiment and the
simulation is analysed using a one way ANOVA, with reward valence, punishment valence, and RT as factors
of analysis. They showed significant differences among the subject groups as seen in the experimental data,
but no significant difference is observed between the simulation and the experiment. The subject categories
healthy controls, PD-ON ICD, PD-ON non-ICD and PD-OFF are represented as HC, ON-ICD, ON-non-ICD,
and OFF in the figures.

doi:10.1371/journal.pone.0127542.g003

Table 4. Parametric values used for the Eqs (5,8 and 9), with ηD2 = .1, ηD1D2 = 0.1, and ηD1 = .01.

Reference Eq (5) Eq (8) Eq (9)

λD1 λD2 λh-D1 λh-D2 λD1 λD2 λh-D1 λh-D2

c1 1 1 .05 .05 1 1 .05 .05

c2 -50 50 -.01 .01 -50 50 -.01 .01

c3 0 -1 -.05 .05 0.01 0.01 -.05 .05

doi:10.1371/journal.pone.0127542.t004
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1. The parameters αD1, αD2, and αD1D2 are optimized in the model of healthy controls.

2. For a model of PD-OFF, the parameters αD1, αD2, αD1D2, and δLim are optimized to match
the experimental results. Setting the parameter δLim is a key addition to the PD-OFF model
when compared to the healthy controls. This constraint reflects the deficit in DA availability
in the model.

3. Then to explain action selection accuracy and reaction times of ICD in PD-ONmedication
case, αD1, αD2, αD1D2 and δMed are optimized. The δLim value denoting DA deficit is kept the
same as that obtained for the OFF medication case.

4. The non-ICD category of the PD-ON patients’ behavior is finally captured in the model by
only optimising the parameters [αD1, αD2, αD1D2]. As mentioned above, δLim is set to be the
same in PD-ON (ICD and nonICD) and PD-OFF cases. Similarly, the medication level
(δMed) is maintained to be the same across the ICD and the non-ICD categories of the
PD-ON patients. Hence the parameters differentiating the PD-ON ICD and the nonICD
subjects are [αD1, αD2, αD1D2].

Discussion
The aim of this study is to understand ICD in PD patients. Our experimental results suggest
that the PD-ON ICD patients are more sensitive to rewards than to punishments. The PD-ON
non-ICD patients had no significant difference between reward and punishment learning, sim-
ilar to the healthy controls. The PD-OFF patients, on the contrary, showed significantly higher
(Fig 3A) learning for punitive outcomes compared to rewarding outcomes. Within the PD-ON
group, the ICD group showed shorter RTs than the non-ICD patients. The PD-OFF subjects
were observed to have the shortest RT. Such trends in RT and reward-punishment based action
selection accuracy have been reported previously in similar studies [20,30] on PD patients.

Application of the proposed network model to the experimental data suggests how impaired
actions of DA and 5HT in the BG contribute to ICD behavior in the PD patients.

The proposed BG model uses utility function framework to model action selection and the
associated reaction times [85,87,95–98]. This is an extended form of classical BG models as
proposed in [53–56]. The oscillatory dynamics of the STN-GPe is modeled by using a simple
Lienard oscillator model [43,62,99]. In the model, the BG system is thought to compute value
and risk functions necessary for decision making [28,43]. Specifically, the DA-D1R containing
MSNs compute the value function, whilst the co-expressing D1R-D2R containing MSNs com-
pute risk function. Anatomical studies in primates reporting that D1R-D2R co-expressing
MSNs form a significant proportion of the striatal MSNs [71,72,78,100]. The MSNs of the stria-
tum project through the direct and the indirect pathways to the BG's output nuclei, GPi. The
GPi then relays to the thalamus. Time taken for the activity of the winning thalamic neuron to
reach a threshold corresponds to RT, while the index of winning thalamic neuron corresponds
to the action selected.

Table 5. The key parameters defining different subject categories.

αD1 α D2 α D1D2 δlim δmed

Healthy controls 1 0.185 0.997 - -

PD-OFF 1 0.991 0.033 0.001 -

PD-ON-ICD 1 0.046 0.001 0.001 0.06

PD-ON-non-ICD 1 0.916 0.160 0.001 0.06

doi:10.1371/journal.pone.0127542.t005

Identifying the BG Network Markers for PD-ON ICD

PLOSONE | DOI:10.1371/journal.pone.0127542 June 4, 2015 14 / 23



The neuromodulators DA and 5HT affect BG dynamics in the model via different mecha-
nisms as mentioned in Table 2. The variables that represent DA in the model are:

• the temporal difference error, δ, that updates the cortico-striatal weights [21,68],

• the temporal difference of utility [80], δU, that aids the action selection at the GPi level
[43], and

• the sign(value function) term controlling the response of D1R-D2R MSNs [22,24,45].

Likewise, 5HT differentially affects the D1R, D2R and D1R-D2R co-expressing MSNs,
which is represented by the model parameters αD1, αD2, and αD1D2 respectively. Serotonin is
proposed to control risk sensitivity in action selection performance of the BG [28]. Particularly,
5HT is shown to affect the D2R MSNs and co-expressing D1R-D2R MSNs (S2 File).

Significance of the current study
Our previous study [28] has shown similarity between the effects of discount factor used to
controlmyopicity of reward prediction [101] and the risk sensitivity factor (α) of Eq (1), in a
delay discounting task. Some models relate impulsivity to discount factor, i.e., an increased dis-
counting and myopicity in reward prediction is related to impulsive behavior [19,60,102]. We
show that such effects can be captured in the proposed model by the risk sensitivity term
(αD1D2) of the Eq (3) [28]. Furthermore, earlier models of ICD in PD only take DA deficiency
in striatum into account [30], leaving behind other potential factors such as 5HT.

In some other models, reduced learning from the negative consequences in PD-ON ICD pa-
tients was modeled using an explicitly reduced learning rate parameter associated to negative
prediction error [30]. But the proposed model naturally takes the nonlinearity in reward-pun-
ishment learning into consideration through the sign() term in risk function computation (Eq
(3)). The nonlinearity mediated by α.sign() term towards rewards and punishments results in
the PD-ON ICD case to learn more from rewarding outcomes, and the PD-OFF case to be
more sensitive to punitive outcomes. The lower availability of DA leads to devaluation of the
reward-associated choices more than that of the punishment in the PD-OFF case (Fig 3A)
which favors punishment learning. Similarly in PD-ON cases, the punishment linked choices
are overvalued to reduce the optimality in punishment learning.

Our model finds that the modulation of both DA and 5HT in the BG model is necessary to
effectively explain the aspects of impulsive behaviour observed in our experiment. Please refer
S2 File for computations showing the necessity of optimizing αD1, αD2, αD1D2 to explain the ex-
perimental data; and refer S3 File for computations showing that just DA related parameters
cannot explain the experimental data. Using only the effect of D1R MSNs and D2RMSNs (αD1
= 1; αD2 = 1) without including the co-expressing D1R-D2R MSNs along with the 5HT effect
(αD1D2 = 0), does not explain the experimental results (S2 File). This differentiates our model
from those that invoke only the opponency between the DA mediated activity of D1R MSNs
and D2R MSNs for explaining the PD-ON ICD behavior [20,32–34]. The main results from
modeling of striatal MSNs are included in Table 6.

Table 6. Striatal MSNs and different sensitivities of decisionmaking.

MSN SENSITIVITY

D1R Reward

D2R Punishment

D1R-D2R Risk

doi:10.1371/journal.pone.0127542.t006

Identifying the BG Network Markers for PD-ON ICD

PLOSONE | DOI:10.1371/journal.pone.0127542 June 4, 2015 15 / 23



By investigating the functioning of neuromodulators DA and 5HT in this study, we find
that there is a sub-optimal utility computation driven by the neuromodulators DA and 5HT in
the PD patients. The clamping done to the availability of DA (Eq (14)) represents reduced DA
availability or DA receptor density or dopaminergic projections to the BG in the PD-OFF case
[103,104]. In the PD-ON case, an increased tonic level of DA is modeled by the addition of a
medication constant (δMed) [89–93]. Our model also predicts a lower availability of 5HT in the
BG for both PD-OFF and PD-ON cases as previously reported by various experimental studies
[9,105–107]. Specifically based on 5HT modulation in the model, a lowered sensitivity to the
D2R MSNs and the D1R-D2RMSNs are observed in ICD. They exhibit a significantly reduced
inhibition of actions along with risk-seeking behavior. Thus extremely low αD2 and αD1D2 effi-
ciently differentiates ICD group among the PD-ON cases. The model also shows that the
PD-OFF patients would have very high sensitivity to punishment (αD2) and increased behav-
ioral inhibition, while the healthy controls have a higher sensitivity to risk (αD1D2).

Concisely, the model classifies the medication induced ICD in the PD patients to be possess-
ing limited DA and altered 5HT modulations particularly on the D2R and D1R-D2R MSNs.

Limitations of the study and future work
The co-expressing D1R-D2R MSNs are experimentally shown to significantly contribute to
both the direct and the indirect pathways of the BG [71,72,108]. These two distinct pools of
D1R-D2R MSNs—one following DP that controls exploitation, and the other following IP that
controls exploration [43,44,62], might be used for modeling the non-linearity in risk sensitivity
based on outcomes (i.e., risk aversion during gains and risk seeking during losses) [46]. The in-
herent opponency between the DP and IP [55,109] pathway would facilitate the projections of
corresponding D1R-D2RMSNs for showing contrasting risk sensitive behavior. Each of the
neuronal pools computing the risk function should then be weighed by appropriate sensitivity
coefficients (representing neuromodulators DA and 5HT [28]) to capture the non-linear risk
sensitive behavior [46] based on the valence of outcomes (Eq (3)). This is simplified in the pres-
ent modeling study by considering the projections of D1R-D2R MSNs to IP alone, multiplied
by a (α sign(Q)) term. Moreover, the increased magnitude of risk associated with an action is
experimentally found to enhance exploration in the dynamics [110–112]. This is made possible
in the model by routing the co-expressing D1R-D2R MSN activity to the IP, since in the pres-
ent model it is IP that predominantly controls levels of exploration [43,44,62]. Moreover, there
is evidence supporting the involvement of STN in controlling impulsivity [113], as their lesions
are shown to decrease RT and increase premature responding behavior [95,114–116]. Also, the
levels of synchronisation in STN-GPe contribute to the cognitive symptoms namely impulsivi-
ty [98,117], similar to its contribution to the motor symptoms in PD namely tremor, postural
instability and gait disturbances [118–120]. In PD, markedly depleted levels of DA are associat-
ed with highly synchronised firing pattern and a slight increase in firing rates in STN
[121,122]. These are the motivations behind specifically considering the projections of
D1R-D2R MSNs to IP only. Expanding the framework to include the D1R-D2R MSNs projec-
tions to GPi (in the DP) would be incorporated in our future work. We would also involve the
detailed neuronal modeling of STN-GPe system in our future work, to understand the possible
role of oscillatory activity of STN in PD-related impulsivity [98,117].

Projections from GPe to GPi are found in the primates [56,123,124]. GPe projections to GPi
are thought to be more focused, compared to the more diffuse projections of STN to GPi.
These GPe-GPi connections bypass the GPe-STN-GPi connectivity—wherein the former are
thought to perform a focused suppression of GPi response to a particular action, whereas the lat-
ter impose a Global NoGo influence [56,125]. Though the functional significance of these
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connections is not known, not accounting for this connectivity (STN-GPe-GPi) is a limitation
of the modeling study. However, since we do not differentiate a global / local NoGo in our
study, the proposed minimal model adapted from classical BG models [53–56] is demonstrated
to capture the required experimental results at the neural network level.

STN also receives extensive norepinephrine (NE) afferents from locus ceruleus (LC)
[125,126]. Furthermore since the dynamics of STN-GPe is strongly controlled by the neuromo-
dulator NE [127,128], we would like to explore the possible role of NE in the BG dynamics.
Particularly, NE is expected to control the lateral connection strengths in STN-GPe, and the
gain of cortical input [110,129,130] to striatum and STN. The control of response inhibition
through STN is thought to be established through NE activity in STN, and a dysfunction in
such control could be related to ICD [131,132]. A detailed model of STN-GPe dynamics and
the effect of NE, could help us better understand the role of the STN-GPe system in impulsivity
and design better deep brain stimulation protocols to cure ICD [20].

Although DA, 5HT and NE along with the STN-GPe dynamics figure prominently in the
experimental studies on impulsivity, computational models that closely resemble the neurobio-
logical data supporting all those factors do not exist. Our model becomes the first of its kind to
include the contributions of both DA and 5HT in the ICD pathology, and present a better
"bench to bedside" proposal.
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