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Many bodies of biological and engineering interest have a fibrous and layered structure. Hence, it is
believed that these bodies are inhomogeneous and made up of anisotropic material. Classical mechanical
experiments used to find the required material symmetry in the constitutive relation cannot distinguish
inhomogeneous bodies made of isotropic material and homogeneous bodies made of anisotropic mate-
rial. Therefore, it is of interest to find an alternative hypothesis so that inhomogeneity and anisotropy
can be determined independent of the other. This study finds that the principal (or eigen) direction of
the left Cauchy–Green deformation tensor, B does not vary with the magnitude of the applied uniaxial
load at a given location whenever the body – homogeneous or inhomogeneous – is made of isotropic
and hyperelastic material and the deformations are measured from a stress free reference configuration.
In general, the principal direction of the left Cauchy–Green deformation tensor varies with the magnitude
of the uniaxial load when the body is made up of anisotropic material. Thus, it is concluded that if the
variation in the principal direction of B with the magnitude of the applied uniaxial load is experimentally
investigated then one could ascertain whether the body is made up of isotropic or anisotropic material.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Many engineering materials have a fibrous microstructure. It is
also known that (Fung, 1990, 1993; Holzapfel, 2000) many biologi-
cal tissues have a layered and a fibrous structure. Hence, it is
believed that these materials have to be modeled as inhomoge-
neous bodies made of anisotropic material (Holzapfel, 2000).
However, a systematic methodology using experimental observa-
tions from mechanical experiments to decide whether these bodies
need to be approximated as homogeneous bodies made of
anisotropic material or inhomogeneous bodies made of isotropic
material1 or inhomogeneous bodies made of anisotropic material
is absent in the literature.
Traditionally to identify anisotropy from mechanical experi-
ments one examines whether the response of the body under
investigation changes with the direction of the applied uniaxial
load or by how much the ratio of the applied normal stress in
the (say) x and y directions in the equal biaxial experiment differ
from 1 (Strumpf et al., 1993). Following Saravanan and Rajagopal
(2005), it is known that the change in the response with the direc-
tion of the applied load would happen even in case of inhomoge-
neous bodies made of isotropic material. Also, we show that in
case of inhomogeneous bodies made of isotropic material sub-
jected to equal biaxial experiment, the ratio of the nominal stress
in the x and y direction would differ from 1, provided the material
parameters vary along two directions. Only in case of homoge-
neous bodies whose deformations are measured from a stress free
reference configuration would a change in response with the direc-
tion of the applied uniaxial load imply that the body is made of ani-
sotropic material. Thus, the classical mechanical experiment to
identify material symmetry assumes that the tested body is
homogeneous. While it may be possible to make homogeneous
bodies out of man made materials and test them for material sym-
metry, in case of naturally occurring bodies one can test only what
is available. Therefore, it would be of value if experimental
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observations can reveal the material symmetry during mechanical
testing independent of whether the body being tested is homoge-
neous or inhomogeneous.

It is known (Truesdell and Noll, 1965) that the symmetry group
of the material that a homogeneous body is made up of depends on
the configuration in which the body is in. For simple materials
Noll’s rule (Noll, 1958) tells how the symmetry group changes with
the configuration of the homogeneous body. Consistent with the
prevalent usage, a material is said to be isotropic if its symmetry
group in a configuration of the homogeneous body, probably the
undistorted (unstressed) state, coincides with the proper orthogo-
nal group. Similarly, it also known that (Truesdell and Noll, 1965) if
there exist a configuration for the entire body such that the
mechanical response of any arbitrary subpart from this config-
uration is identical, then the body is said to be homogeneous. A
body that is not homogeneous is said to be inhomogeneous. This
definition for homogeneous body allows two distinct classes of
inhomogeneous body. Different subparts of a body having different
chemical composition and hence mechanical response is one class
of inhomogeneous bodies. In another class, all subparts of the body
have the same chemical composition but there exist no config-
uration in which the state of stress in the body would be uniform;
in other words, in this case the internal structure variation causes a
change in the mechanical response. Example of this class of
inhomogeneous bodies where the state of stress is non-uniform
in any configuration is residually stressed bodies; bodies which
have stresses in the interior even though there is no boundary trac-
tion. Of course, a body could be inhomogeneous for both the above
reasons, variation in the chemical composition and internal
structure.

As discussed above, even though in mechanics the material
symmetry and inhomogeneity have a precise meaning, there is a
lot of ambiguity in application of these definitions to obtain con-
stitutive relations for engineered and naturally occurring bodies.
While some issues related to identifying whether a given body is
homogeneous or inhomogeneous is discussed in Saravanan
(2014), this article addresses the problems in finding material
symmetry.

When one talks about material symmetry in continuum
mechanics, one refers to the symmetry that the constitutive rela-
tion should have. It is customary to require that the set of rotations
of the reference configuration that leaves the mechanical response
unchanged should not alter the functional form of the constitutive
relation also. There is a conundrum here. While the constitutive
relation is for a material point, symmetry restriction on this con-
stitutive relation at a point depends on the unidentifiable rotations
of a set of points, the configuration. It is tacitly assumed that the set
of points under consideration is materially uniform. Otherwise, a
set of rotations would become identifiable due to just the arrange-
ment of the set of points under consideration. Because material
symmetry, in continuum mechanics, is the inherent material prop-
erty of the point under consideration and not the arrangement or
the nature of the neighboring points, the requirement of the mate-
rial uniformity arises. Further, the framework of continuum
mechanics allows one to have homogeneous body made of aniso-
tropic material or inhomogeneous body made of isotropic material.

Alternatively for some, material symmetry is related to the
materials internal structure. Material symmetry, in this point of
view, is the set of rotations of the body that leave its internal struc-
ture unaltered. In this definition of material symmetry based on its
internal structure, homogeneous body made of anisotropic mate-
rial or inhomogeneous body made of isotropic material is not pos-
sible. Also, in this case, the material symmetry is not a concept
associated with a material point in the body.

As articulated by Lekhnitskii (1981), it is necessary to distin-
guish the symmetry in the constitutive relation versus the
symmetry of the material based on its internal structure.
Lekhnitskii (1981) sights Neumann (1885) for the assumption that
the symmetry in the constitutive relation to be not inferior to that
of the symmetry in the crystallographic structure. That is the set of
rotations that form the symmetry group for a given crys-
tallographic structure should always be contained in the set of
rotations for which the constitutive relation remains invariant.
Lekhnitskii (1981) then states that this assumption is extended
to bodies that are not made of crystals but still have an internal
structure like wood, glass fiber reinforced plastics. However, to
the knowledge of the authors there has been no experimental val-
idation of this assumption of the symmetry in the constitutive rela-
tion be not inferior to the symmetry in the internal structure.
Hence, here an hypothesis using which the symmetry requirement
of the constitutive relation could be established is sought.

It is found that when a body is made of isotropic material and is
deforming from its undistorted state in a non-dissipative manner,
then the principal direction of the left Cauchy–Green deformation
tensor does not change with the magnitude of the applied uniaxial
load. Further, it is also inferred that if any of the principal direc-
tions of the stress tensor does not coincide with the fiber direction
then the principal direction of the left Cauchy–Green deformation
tensor changes with the magnitude of the applied uniaxial stress.
Therefore, if the principal direction of the left Cauchy–Green defor-
mation tensor does not change with the magnitude of the applied
uniaxial load while the body is being subjected to a non-dissipative
process, for two different directions of the applied uniaxial load
which are not orthogonal to each other, then the tested material
could be inferred as being isotropic.

Homogenization procedures used to generate homogeneous
constitutive relations for inhomogeneous bodies made of isotropic
materials result in anisotropic constitutive relations (Nemat-
Nasser and Hori, 1993). Therefore, it would be of interest to exam-
ine the quality of approximating inhomogeneous bodies made of
isotropic materials with homogeneous but anisotropic constitutive
relations. This study shows that the way in which the principal
direction of the left Cauchy–Green deformation tensor vary with
the magnitude of the applied uniaxial load depends on the material
symmetry of the constitutive relation. Thus, if the direction in
which the maximum stress and/or change in length occurs could
not be predicted by these homogeneous anisotropic models for
inhomogeneous bodies made of isotropic material, the engineering
usefulness of these homogenization procedures is limited.

This article is organized in four sections including this introduc-
tion. In Section 2 the notations and well established relationships
are documented for further reference. Then, in Section 3, it is estab-
lished that the principal direction of left Cauchy–Green deforma-
tion tensor measured in an inhomogeneous body made of
isotropic material would not change with the magnitude of the
applied uniaxial load as long as it deforms in a non-dissipative
manner and the deformation is measured from a stress free refer-
ence configuration. On the other hand, a body made of transversely
anisotropic material the principal direction of left Cauchy–Green
deformation tensor does change with the magnitude of uniaxial
stress, provided that any of the principal directions of the stress
does not coincide with the fiber direction. Finally, issues in testing
this hypothesis experimentally is discussed.
2. Preliminaries

Let X denote the position vector of a typical particle belonging
to the reference configuration of the body. Similarly, let x denote
the position vector of the same particle in the current config-
uration. The deformation field of the body is defined through a
one to one mapping v that tells the current position of the particle
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that occupied the point whose position vector is X in the reference
configuration,

x ¼ vðXÞ: ð1Þ

Then, the deformation gradient, F is defined as

F ¼ @x
@X

: ð2Þ

The left and right Cauchy–Green deformation tensor, B and C
respectively, is defined as:

B ¼ FFt; C ¼ FtF; ð3Þ

where the superscript t denotes the transpose operator. C being
positive definite, we find that using the following set of invariants

J1 ¼ trðCÞ; J2 ¼ trðC�1Þ; J3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ

q
¼ detðFÞ; ð4Þ

minimizes the complexity of the ensuing analysis.
Here we study the case wherein the constitutive relation for

Cauchy stress, r in an isotropic material deforming from a stress
free reference configuration is given by (see for example
Truesdell and Noll, 1965):

r ¼ a01þ a1Bþ a2B�1; for compressible materials
�p1þ b1Bþ b2B�1; for incompressible materials

(
; ð5Þ

where ai ¼ âiðJ1; J2; J3Þ and bi ¼ b̂iðJ1; J2Þ are material response func-
tions and p is the Lagrange multiplier used to enforce the incom-
pressibility condition that needs to be found such that the
equilibrium equations and boundary conditions are satisfied.

In case of transversely isotropic materials with fibers running
along the direction M in the stress free reference configuration,
the constitutive relation for Cauchy stress takes a form (see for
example Holzapfel, 2000):

r ¼ aa
01þ aa

1Bþ aa
2B�1 þ aa

3FM�MFt

þ aa
4F CM�MþM� CM½ �Ft; ð6Þ

for compressible materials and

r ¼ �p1þ ba
1Bþ ba

2B�1 þ ba
3FM�MFt

þ ba
4F CM�MþM� CM½ �Ft; ð7Þ

for incompressible materials, where aa
i ¼ âa

i ðJ1; J2; J3; J4; J5Þ and

ba
i ¼ b̂a

i ðJ1; J2; J4; J5Þ are material response functions,

J4 ¼ M � CM; J5 ¼M � C2M; ð8Þ

and p as before is the Lagrange multiplier. Note that, the con-
stitutive relations (6) and (7) assumes that the deformation gradi-
ent is computed from a stress free reference configuration.

If the constitutive relation for Cauchy stress in an isotropic
material deforming from a stress free reference configuration is
given by (5), then the constitutive relation for the same material
deforming from a stressed reference configuration can be written
as (see Saravanan, 2011 for details):

r¼
ar

01þar
1FBoFtþar

2F�tB�1
o F�1; for compressible materials

�p1þbr
1F�BoFtþbr

2F�t �B�1
o F�1; for incompressible materials

(
;

ð9Þ

where as before p is the Lagrange multiplier used to
enforce the incompressibility condition, ar

i ¼ âr
i ðJm1; Jm2; Jm3Þ and

br
i ¼ b̂r

i ðJm1; Jm2Þ,

Bo ¼ d01þ d1r
o þ d2ðroÞ2; B�1

o ¼ j01þ j1r
o þ j2ðroÞ2; ð10Þ

�Bo ¼ �d01þ �d1r
o þ �d2ðroÞ2; �B�1

o ¼ �j01þ �j1r
o þ �j2ðroÞ2; ð11Þ
ro is the Cauchy stress in the reference configuration,

Jm1 ¼ d0J1 þ d1C � ro þ d2C � ðroÞ2; ð12Þ

Jm2 ¼ j0J2 þ j1C�1 � ro þ j2C�1 � ðroÞ2; ð13Þ

Jm3 ¼ Jr
3J3; ð14Þ

Jm1 ¼ �d0J1 þ �d1C � ro þ �d2C � ðroÞ2; ð15Þ

Jm2 ¼ �j0J2 þ �j1C�1 � ro þ �j2C�1 � ðroÞ2; ð16Þ

and Jr
3; di; �di;ji and �ji are functions of the principal invariants of ro

obtained from the requirements that BoB�1
o ¼ 1 and that

rð1;roÞ ¼ ro refer to Saravanan (2011) for details.

3. Theoretical observations

Theoretically the following could be observed when a body is
tested in static conditions in the absence of body forces:

1. The principal direction of left Cauchy Green deformation tensor
in a homogeneous body deforming from a stress free reference
configuration and made of transversely isotropic material varies
with the magnitude of the applied uniaxial load when the direc-
tion of the applied uniaxial load is not along or perpendicular to
the direction of the fibers.

2. The principal direction of left Cauchy Green deformation tensor
in an inhomogeneous body deforming from a stress free refer-
ence configuration and made of isotropic material does not vary
with the magnitude of the applied uniaxial load.

3. The principal direction of left Cauchy Green deformation tensor
in a body deforming from a stressed reference configuration
and made of isotropic material varies with the magnitude of
the applied uniaxial load.

4. In an inhomogeneous body made of isotropic material, the ratio
of the effective stress along the x and y direction in equal biaxial
experiment would differ from 1 as long as the material func-
tions depend on the loading directions coordinates apart from
the invariants of C, right Cauchy Green deformation tensor.

Now, we provide evidence for the above statements.

3.1. Response of homogeneous body made of transversely isotropic
material

The response of homogeneous cuboid made of transversely iso-
tropic and incompressible material subjected to uniaxial load is
studied. Here we note that a general constitutive relation for this
class of materials (7) can be written as,

r ¼ �p1þ ba
1FAFt þ ba

2B�1; ð17Þ

where,

A ¼ 1þ ba
3

ba
1

M�Mþ ba
4

ba
1

CM�MþM� CM½ �: ð18Þ

Towards studying the variation in the principal direction of left
Cauchy–Green deformation tensor as a function of the fiber direc-
tion and magnitude of the uniaxial load, it is assumed that the uni-
axial loading is along ex, as shown in Fig. 1. Without loss of
generality, the fibers are assumed to be oriented in the plane of
loading such that the fiber direction is given as:

M ¼ cosðhÞex þ sinðhÞey; ð19Þ

where h is a constant taking values between 0 and 90 degrees.



Fig. 1. Schematic of uniaxial loading of a thin sheet.
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Due to this applied uniaxial load, the deformation of the
homogeneous, transversely isotropic cuboid is given by

x ¼ k1X þ j1Y; y ¼ k2Y; z ¼ k3Z; ð20Þ

where ðX; Y; ZÞ are the Cartesian coordinates of a typical material
particle before the application of the load, ðx; y; zÞ the Cartesian
coordinates of the same material particle after the application of
the load, j1 and ki’s are constants. The deformation gradient, F
corresponding to the deformation field (20) is computed to be

F ¼
k1 j1 0
0 k2 0
0 0 k3

0
B@

1
CA: ð21Þ

The incompressibility condition would require that k3 ¼ 1=ðk1k2Þ.
Substituting (21) and (19) in (18) we find the Cartesian components
of A as,

A¼
1 0 0
0 1 0
0 0 1

0
B@

1
CAþba

3

ba
1

cos2ðhÞ cosðhÞsinðhÞ 0

cosðhÞsinðhÞ sin2ðhÞ 0
0 0 1

0
B@

1
CA

þba
4

ba
1

2k2
1 cos2ðhÞþk1j1 sinð2hÞ k2

1þk2
2þj2

1

h i
sinð2hÞ=2þk1j1 0

k2
1þk2

2þj2
1

h i
sinð2hÞ=2þk1j1 k1j1 sinð2hÞþ2sin2ðhÞ½k2

2þj2
1� 0

0 0 0

0
BBB@

1
CCCA:
ð22Þ

The Cartesian components of the Cauchy stress corresponding to
the applied uniaxial load along the x direction is

r ¼
r 0 0
0 0 0
0 0 0

0
B@

1
CA: ð23Þ

Substituting (22) and (21) in (17) and equating the resulting state of
stress to be as given in (23), the following equations have to hold:

r ¼ �pþ k2
1 ba

1 þ ba
3 cos2ðhÞ þ ba

4½2k2
1 cos2ðhÞ þ k1j1 sinð2hÞ�

� �
þ j2

1 ba
3 sinð2hÞ þ ba

4½k1j1 þ ðk2
1 þ k2

2 þ j2
1Þ sinð2hÞ�

� �
þ ba

2

k2
1

; ð24Þ

0¼ j1k2 ba
1 þ ba

3 sin2ðhÞ þ ba
4½2ðk

2
2 þj2

1Þsin2ðhÞ þ k1j1 sinð2hÞ�
n o

þ k1k2 ba
3 sinð2hÞ þ ba

4½k1j1 þ ðk2
1 þ k2

2 þj2
1Þsinð2hÞ�

� �
þ ba

2
j1

k2
1k2

;

ð25Þ

0 ¼ �pþ k2
2 ba

1 þ ba
3 sin2ðhÞ þ ba

4½2ðk
2
2 þ j2

1Þ sin2ðhÞ þ k1j1 sinð2hÞ�
n o

þ ba
2

k2
2

; ð26Þ

where

p ¼ ba
1

ðk1k2Þ2
þ ba

2ðk1k2Þ2; ð27Þ

obtained from the requirement that the out of plane normal stress,
rzz ¼ 0 and ba

i ¼ b̂a
i ðJ1; J2; J4; J5Þ,
J1 ¼ k2
1 þ k2

2 þ j2
1 þ

1
k1k2

� �2

; J2 ¼
1
k2

1

þ 1
k2

2

þ ðk1k2Þ2 þ
j1

k1k2

� �2

;

J4 ¼ ðk1 cosðhÞÞ2 þ ðk2 sinðhÞÞ2 þ k1j1 sinð2hÞ þ ðj1 sinðhÞÞ2;

J5¼k4
1 cos2ðhÞþðk2

2þj2
1Þ

2
sin2ðhÞþk1j1ðk2

1þk2
2þj2

1Þsinð2hÞþðk1j1Þ2:
ð28Þ

For a given value of k1 Eqs. (25) and (26) are solved simultaneously
to obtain j1 and k2 respectively. Then, the uniaxial stress required
to realize the given value of k1 is determined using Eq. (24). In this
work, fsolve, a built-in function in MATLAB is used to simultane-
ously solve the Eqs. (25) and (26). Then, using this determined value
of k2 and j1 for a given value of k1, the principal direction of the left
Cauchy–Green deformation tensor, /, is computed as,

/ ¼ 1
2

tan�1 2Bxy

Bxx � Byy

� �
¼ 1

2
tan�1 2k2j1

k2
1 þ j2

1 � k2
2

 !
: ð29Þ

Here it is pertinent to note that in this work the principal
direction of a tensor is defined as the angle made by the
direction along which the maximum principal value occurs with
respect to the x direction along which the components of the tensor
is written.

First, let us consider the case wherein the fibers are oriented
along the loading direction, that is, when h ¼ 0 degrees. Eqs. (25)
and (26) simplifies to

0 ¼ j1k2 ba
1 þ

ba
2

k2
1k

2
2

" #
; 0 ¼ ðk1k2Þ2 �

1
k2

2

" #
ba

1

k2
1

� ba
2

" #
; ð30Þ

when h ¼ 0. j1 ¼ 0 and k2 ¼ 1=
ffiffiffiffiffi
k1
p

is a possible solution to the
above Eq. (30) irrespective of the choice of the material response
functions. Substituting this solution in (29), / ¼ 0. Thus, when
h ¼ 0;/ does not change with the magnitude of the uniaxial load.
It should be noted that, depending on the choice of the material
response function, bi, there might be other solutions to Eq. (30) than
that studied here for which the principal direction of B vary with
the magnitude of the applied uniaxial load. But this is not of interest
here.

Next, we study the case wherein the fibers are oriented perpen-
dicular to the loading direction, that is h ¼ 90 degrees. For this
case, Eqs. (24)–(26) simplifies to

r ¼ ðk1k2Þ2 �
1
k2

1

" #
ba

1

k2
2

� ba
2

" #
; ð31Þ

0 ¼ j1k2 ba
1 þ ba

3 þ 2ba
4ðk

2
2 þ j2

1Þ þ
ba

2

k2
1k

2
2

( )
; ð32Þ

0 ¼ ðk1k2Þ2 �
1
k2

2

" #
ba

1

k2
1

� ba
2

" #
þ k2

2fb
a
3 þ 2ba

4ðk
2
2 þ j2

1Þg: ð33Þ

In this case too, j1 ¼ 0 is a possible solution to the above set of
equations irrespective of the choice of the material response func-
tions. Consequently, the principal direction of left Cauchy–Green
deformation tensor does not change with the magnitude of the uni-
axial load for this case too.

For values of h other than 0 and 90 degrees, it can be seen from
Eq. (25) that j1 cannot be zero whenever ba

3 or ba
4 is nonzero.

Moreover, the value of j1 that satisfies (25) depends on the value
of k1. Thus, for homogeneous bodies made of transversely isotropic
material with the fiber direction not coinciding or being perpen-
dicular to the direction of the applied uniaxial load, the principal
direction of the left Cauchy–Green deformation tensor changes
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with the magnitude of the applied uniaxial load. Towards illustrat-
ing this, we pick the constitutive relation proposed by May-
Newman and Yin (1998) and Prot et al. (2007) for porcine mitral
valve. In the present notation, the May-Newman and Yin (1998)
constitutive relation requires,

ba
1 ¼ 4c0c1ðJ1 � 3Þ exp c1ðJ1 � 3Þ2 þ c2ð

ffiffiffiffi
J4

p
� 1Þ

4� �
; ba

2 ¼ 0;

ba
3¼2c0c2

ð
ffiffiffiffi
J4

p
�1Þ3ffiffiffiffi
J4

p exp c1ðJ1�3Þ2þc2ð
ffiffiffiffi
J4

p
�1Þ

4� �
; ba

4¼0; ð34Þ

where ci’s are constants. An alternative constitutive relation pro-
posed by Prot et al. (2007) for the same porcine mitral valve, in
the present notation requires that

ba
1 ¼ 4�c0�c1ðJ1 � 3Þ exp �c1ðJ1 � 3Þ2 þ �c2ðJ4 � 1Þ2

� �
; ba

2 ¼ 0;

ba
3¼2�c0�c2ðJ4�1Þexp �c1ðJ1�3Þ2þ�c2ðJ4�1Þ2

� �
; ba

4¼0; ð35Þ

where �ci’s are constants.
Following May-Newman and Yin (1998) and Prot et al. (2007),

we assume that the value of constants ci; �ci to be as given in
Table 1. This choice of material parameters ensures that the
Table 1
Value of the constants in May-Newman and Yin (1998) and Prot et al. (2007)
constitutive model.

Identifier c0 (kPa) c1 c2 �c0 (kPa) �c1 �c2

Anterior 0.399 4.325 1446.5 0.052 4.63 22.6
Posterior 0.414 4.848 305.4 0.171 5.28 6.46

Fig. 2. Variation of uniaxial stress, r with k1 according to Ma

Fig. 3. Variation of principal direction of the left Cauchy–Green deformation tensor, / wi
models.
stresses required to realize the 3 deformation fields – equi-biaxial,
strip biaxial fixed along the fiber direction, strip biaxial fixed per-
pendicular to the fiber direction – are the same for both the models
(see Prot et al., 2007).

Here consistent with the observation of May-Newman and Yin
(1998) the value of h is assumed to be 7 degrees in case of anterior
leaflet and 8 degrees in case of posterior leaflet.

Fig. 2 plots the variation of the uniaxial stress for different val-
ues of k1 for the two models given by Eqs. (34) and (35). Similarly,
Fig. 3 plots the variation of the principal direction of the left
Cauchy–Green deformation tensor for different values of k1 for
the same two models. It can be seen from the Fig. 2 that the uniax-
ial stress predicted for a given axial stretch, k1, by both the models
are close, as in the case of strip biaxial, equal biaxial deformation
states. However, when one examines the variation in the principal
direction of B with the axial stretch it is not close. May-Newman
and Yin (1998) model predicts less than 4 degree variation in the
principal direction when k1 is varied between 1 and 1.2. But Prot
et al. (2007) model predicts more than 20 degree variation in the
principal direction when k1 varies between 1 and 1.2. Though these
results are not presented here, the Prot et al. (2007) model predicts
higher variation in the principal direction with increasing magni-
tude of the load than the May-Newman and Yin (1998) model in
case of other deformation states like strip biaxial and equal biaxial
deformations as well.

Thus, we conclude that for transversely isotropic bodies the
principal direction of the left Cauchy–Green deformation tensor
varies with the magnitude of the applied uniaxial stress when
the direction of the uniaxial loading does not coincide with or is
perpendicular to the fiber direction. However, for some trans-
versely isotropic models this variation could be minimal, as small
as 1 to 2 degrees. We do not look at the absolute value of the prin-
cipal direction but its change with the magnitude of the applied
y-Newman and Yin (1998) and Prot et al. (2007) models.

th uniaxial stress r according to May-Newman and Yin (1998) and Prot et al. (2007)
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load because of the impossibility of orienting the laboratory coor-
dinate system consistently across specimens with errors less than
1 degree, especially in cases where the deformation field is
obtained by tracking some markers placed on the body.

Also, it could be seen that even if the models predict the same
stresses to realize a given type of deformation, the predictions on
the principal direction of the left Cauchy–Green deformation
tensor could differ.

3.2. Variation in the principal direction of B in inhomogeneous body
made of isotropic material

Here we study the variation in the principal direction of B with
the magnitude of the applied uniaxial load for two classes of bodies
made of isotropic material. In one case, the body is inhomogeneous
and is deforming from a stress free reference configuration. In the
second case, the body is deforming from a stressed reference
configuration.

For both these cases we study the response to uniaxial loading
of a body in the form of a cuboid as shown in Fig. 1. The body occu-
pies the region, B ¼ fðX;Y ; ZÞj � L 6 X 6 L;�W 6 Y 6W;�h 6
Z 6 hg, where L;W and h are constants. Without loss of
generality we assume that the uniaxial load is applied along the
x direction.

3.2.1. Case 1: stress free reference configuration
We begin by studying an inhomogeneous body deforming from

a stress free reference configuration. For illustration, we shall
assume that the body is a thin sheet, with its thickness being much
smaller than the other two dimensions, i.e., h� L and h�W. This
requirement justifies the assumption that the state of Cauchy
stress in the sheet is plane stress and can be represented in the
matrix form as,

r ¼
rxx rxy 0
rxy ryy 0
0 0 0

0
B@

1
CA: ð36Þ

Here we assume that r ¼ r̂ðX;YÞ and that rxy and ryy are not iden-
tically zero over the entire body because the body is inhomoge-
neous. If the body is not in the form of a thin sheet, there could
be out of plane stresses as well which we shall consider
subsequently.

Then, the traction boundary conditions for this problem with
the uniaxial load, P, acting along the ex direction are

rxyð�L;YÞ ¼ rxyðX;�WÞ ¼ ryyðX;�WÞ ¼ 0; ð37Þ

Z h

�h

Z W

�W
detðFÞrF�tex
	 


jð�L;YÞdYdZ ¼ P; ð38Þ

where to obtain the Eq. (38) we have appealed to the Nanson’s for-
mula (see for example Holzapfel (2000)).

When the state of stress is as given by (36), the principal direc-
tion of the Cauchy stress, hr at a given location in the body is:

hr ¼
1
2

tan�1 2rxy

rxx � ryy

� �
: ð39Þ

The nonzero Cartesian components of the left Cauchy–Green defor-
mation tensor that results in the Cauchy stress being of the form
(36) is

B ¼
Bxx Bxy 0
Bxy Byy 0
0 0 Bzz

0
B@

1
CA: ð40Þ
Next, we want to express the components of the Cauchy stress in
Eq. (39) in terms of the components of the left Cauchy–Green defor-
mation tensor given in Eq. (40). For this we use the constitutive
relation for isotropic material deforming from a stress free config-
uration, (5) to obtain,

hr ¼
1
2

tan�1 2Bxy

Bxx � Byy

� �
; ð41Þ

irrespective of whether the material is compressible or incompress-
ible. Eq. (41) just says that the principal direction of the Cauchy
stress and the left Cauchy–Green deformation tensor are the same
at a given location. This is expected since the material is assumed
to be isotropic. It then follows that if the principal direction of the
Cauchy stress does not change with the magnitude of the applied
uniaxial load, then the principal direction of the left
Cauchy–Green deformation tensor also would not change with
the magnitude of the applied load.

We next show that all the components of the stress depend lin-
early on P, i.e., rij ¼ Pfijðx; yÞ, where f ij is a function of x and y only.
It then immediately follows from Eq. (39) that the principal direc-
tion of stress is independent of the magnitude of the applied uni-
axial load.

For materials that obey Hooke’s law and undergo small defor-
mations it is well known that rij ¼ Pfijðx; yÞ, since principle of
superposition holds. Now, we show that this linear dependance
of the components of the stress on the applied uniaxial load holds
even otherwise.

In the absence of body forces and the body in static equilibrium,
the equilibrium equations reduce to requiring, divðrÞ ¼ 0, where
divð�Þ denotes the divergence operator with respect to x. These
equilibrium equations for the assumed state of plane stress, (36)
can be satisfied if the stress is obtained from Airy’s potential,
/ ¼ /̂ðx; yÞ such that,

rxx ¼
@2/
@y2 ; rxy ¼ �

@2/
@x@y

; ryy ¼
@2/
@x2 ; ð42Þ

where x and y are the coordinates of a material particle in the cur-
rent configuration. Now, one has to find / such that the compatibil-
ity conditions are satisfied along with the boundary conditions (37)
and (38). First we would like to explore the property of all / which
satisfies only the boundary conditions (37) and (38). Since, the
boundary conditions (37) and (38) depend only on P, any /
satisfying the boundary condition would be a linear function of P.
Hence, the Cauchy stress determined using any of these
potential, / which satisfies the boundary condition alone would
be of the form: rij ¼ Pfijðx; yÞ. Therefore, we conclude that the prin-
cipal direction of the left Cauchy–Green deformation tensor does
not change with the magnitude of the applied uniaxial load in a thin
sheet.

If the tested body is a thick sheet, then the state of stress need
not correspond to that of a plane stress. Even when the state of
stress is not plane, but the body is in static equilibrium and there
are no body forces, the Cartesian components of the stress can be
derived from a potential, / ¼ /̂ðx; y; zÞ as

r ¼

@2/
@y2 þ @2/

@z2 � @2/
@x@y � @2/

@x@z

� @2/
@x@y

@2/
@x2 þ @2/

@z2 � @2/
@y@z

� @2/
@x@z � @2/

@y@z
@2/
@x2 þ @2/

@y2

0
BBB@

1
CCCA; ð43Þ

so that the equilibrium equations are satisfied. The stress function,
/ apart from having to satisfy the compatibility condition should
satisfy the boundary condition:

rxyð�L;Y ; ZÞ ¼ rxyðX;�W; ZÞ ¼ 0; ð44Þ
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rxzð�L;Y; ZÞ ¼ rxzðX;Y;�hÞ ¼ 0; ð45Þ

ryzðX;�W; ZÞ ¼ ryzðX;Y ;�hÞ ¼ 0; ð46Þ

ryyðX;�W; ZÞ ¼ rzzðX;Y ;�hÞ ¼ 0; ð47Þ

Z h

�h

Z W

�W
detðFÞrF�tex
	 


jð�L;Y;ZÞdYdZ ¼ P: ð48Þ

It then follows that the potential / would be a linear function of P
and hence the Cartesian components of the Cauchy stress also

would be a such that rij ¼ Pf̂ ijðx; y; zÞ.
Now, since the state of stress is not plane, the expression for the

principal direction gets complicated, but would still be a ratio of
the components of the Cauchy stress tensor. Therefore, if the
Cartesian components of the Cauchy stress are linear function of
the applied load, the principal direction of the Cauchy stress tensor
would not vary with the magnitude of the applied uniaxial load.
Further, by virtue of the material being isotropic, the principal
direction of the left Cauchy–Green deformation tensor and that
of the Cauchy stress tensor would be the same. Hence, the principal
direction of the left Cauchy–Green deformation tensor too would
not vary with the magnitude of the applied uniaxial load.

3.2.2. Case 2: stressed reference configuration
Now we investigate the deformations of a residually stressed

(or prestressed) thin sheet stretched by applying a uniaxial load.
For illustration, it suffices to assume that the Cauchy stress field
in the traction free reference configuration corresponds to that of
a plane stress given by,

ro ¼
ro

XX ro
XY 0

ro
XY ro

YY 0
0 0 0

0
B@

1
CA; ð49Þ

where

ro
XY ¼

X
p;q

�pq sin pkp
X þ L

L

� �
sin pkq

Y þW
W

� �
; ð50Þ

ro
XX ¼

X
p;q

�pq
kqL

kpW
1� cos pkp

X þ L
L

� �� �
cos pkq

Y þW
W

� �
; ð51Þ

ro
YY ¼

X
p;q

�pq
kpW
kqL

cos pkp
X þ L

L

� �
1� cos pkq

Y þW
W

� �� �
; ð52Þ

kp; kq are integers and �pq’s are constants. The above representation
for the Cartesian components of the Cauchy stress is obtained so that
it satisfies the static equilibrium equations in the absence of body
forces, DivðroÞ ¼ 0 and the traction free boundary condition, i.e.,

ro
XYð�L;YÞ ¼ ro

XYðX;�WÞ ¼ ro
YY ðX;�WÞ ¼ ro

XXð�L;YÞ ¼ 0: ð53Þ

Here it is pertinent to note that by virtue of the slab in the stressed
reference configuration being boundary traction free and in static
equilibrium, ro

XY cannot be zero identically in the interior of the
body.

Substituting (49) in (10) (or equivalently in (11)), we find that

Bo ¼
Bo

XX Bo
XY 0

Bo
XY Bo

YY 0
0 0 Bo

ZZ

0
B@

1
CA; B�1

o ¼

Bo
YY
D � Bo

XY
D 0

� Bo
XY
D

Bo
XX
D 0

0 0 1
Bo

ZZ

0
BB@

1
CCA; ð54Þ

where D ¼ ½Bo
XXBo

YY � ðB
o
XYÞ

2� and Bo
ij are the nonzero Cartesian com-

ponents of Bo which are related to the Cartesian components of
the stress, ro through:
Bo
XX ¼ d0 þ d1ro

XX þ d2 ðro
XXÞ

2 þ ðro
XYÞ

2
h i

; ð55Þ

Bo
XY ¼ ro

XY d1 þ ðro
XX þ ro

YYÞd2
	 


; ð56Þ

Bo
YY ¼ d0 þ d1ro

YY þ d2 ðro
YY Þ

2 þ ðro
XYÞ

2
h i

; ð57Þ

Bo
ZZ ¼ d0: ð58Þ

Since, ro
XY is not identically zero in the interior of the body, Bo

XY is
also not zero identically in the interior of the slab.

By virtue of the Cauchy stress field in the reference config-
uration being nonuniform, and Bo

XY – 0 in the interior of the slab
and the slab being thin, stretching this thin slab along the x direc-
tion results in a plane state of stress as given by (36). Without mak-
ing any simplifying assumptions on the form of the deformation
field, the nonzero Cartesian components of the Cauchy stress is
related to the Cartesian components of the deformation gradient,
FiJ through,

rxx ¼ ar
0 þ ar

1½B
o
XXF2

xX þ 2Bo
XY FxY FxX þ Bo

YY F2
xY þ Bo

ZZF2
xZ �

þ ar
2

J2
3D

Bo
YY ðFyY FzZ � FyZFzY Þ2 þ Bo

XXðFyZFzX � FyX FzZÞ2
h

�2Bo
XY ðFyY FzZ � FyZFzY ÞðFyZFzX � FyXFzZÞ þ

D
Bo

ZZ

ðFzY FyX � FyY FzXÞ2
�
; ð59Þ

ryy¼ar
0þar

1½B
o
XXF2

yXþ2Bo
XY FyY FyXþBo

YY F2
yYþBo

ZZF2
yZ �

þ ar
2

J2
3D

Bo
YYðFzY FxZ�FzZFxYÞ2þBo

XXðFzZFxX�FxZFzXÞ2
h

�2Bo
XY ðFzY FxZ�FzZFxY ÞðFzZFxX�FxZFzXÞþ

D
Bo

ZZ

ðFzXFxY�FzY FxXÞ2
�
;

ð60Þ

rxy ¼ ar
1½B

o
XXFxXFyX þ Bo

XYðFyY FxX þ FyXFxY Þ þ Bo
YY FyY FxY þ Bo

ZZFyZFxZ �

þ ar
2

J2
3D

Bo
YY ðFzY FxZ � FzZFxYÞðFzZFyY � FyZFzYÞ

	
þ Bo

XXðFzZFxX � FxZFzXÞðFyZFzX � FyXFzZÞ
� Bo

XY ½ðFyY FzZ � FzY FyZÞðFzZFxX � FxZFzXÞ
þ ðFzY FxZ � FzZFxYÞðFyZFzX � FyXFzZÞ�

þ D
Bo

ZZ

ðFzXFxY � FzY FxXÞðFzY FyX � FyY FzXÞ
�
; ð61Þ

obtained using (9). Recognize that in the above equation, (61) by
virtue of Bo

XY – 0, and rxy ¼ 0, at least on the boundary for uniaxial
state of stress, FxY and/or FyX cannot be zero. The case here is akin to
that of transversely isotropic material, except that now the
anisotropic tensor, A in (17) is replaced by Bo in (9), especially
when ar

2 ¼ 0 and aa
2 ¼ 0. Therefore, as in the case of transversely

anisotropic material, the principal direction of left Cauchy–Green
deformation tensor would vary with the loading, in general.
3.3. Response of inhomogeneous body made of isotropic,
incompressible material subjected to equal biaxial stretch

As before, the inhomogeneous body is assumed to occupy the
region, B ¼ fðX;Y; ZÞj � L 6 X 6 L;�W 6 Y 6W;�h 6 Z 6 hg,
where L;W and h are constants. However, now we study the
response of this inhomogeneous body made of isotropic material
subjected to a biaxial loading such that,R

a tðFExÞðL; y; zÞda ¼ Lxex;
R

a tðFEyÞðx;W; zÞda ¼ Lyey;

tðFEzÞðx; y;�hÞ ¼ 0:
ð62Þ
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where tðnÞ denotes the traction acting on the surface whose normal
is n in the current configuration, fEx;Ey;Ezg are coordinate basis
vectors in the reference configuration, fex; ey; ezg are coordinate
basis vectors in the current configuration, Lx and Ly are constants.
It should be noted that in the biaxial experiment only the total
applied load on the surfaces with normals initially oriented along
Ex and Ey can be measured.

Assuming the thickness of the body to be small, we approxi-
mate the stresses to be uniform along the thickness, r ¼ r̂ðX;YÞ.
The assumption made here suffices to prove our thesis.
Consequently, the traction boundary condition (62c) implies that
the state of stress is plane, i.e.,

r ¼
rxx rxy 0
rxy ryy 0
0 0 0

0
B@

1
CA: ð63Þ

Then, without making any simplifying assumptions on the form of
the deformation, the remaining two traction boundary conditions
(62) requires

Lx ¼
Z W

�W

Z h

�h
ðF�1

Xx rxx þ F�1
Yx rxyÞdZ

 !
dY; ð64Þ

0 ¼
Z W

�W

Z h

�h
ðF�1

Xx rxy þ F�1
Yx ryyÞdZ

 !
dY ; ð65Þ

0 ¼
Z L

�L

Z h

�h
ðF�1

Xy rxx þ F�1
Yy rxyÞdZ

 !
dX; ð66Þ

Ly ¼
Z L

�L

Z h

�h
ðF�1

Xy rxy þ F�1
Yy ryyÞdZ

 !
dX; ð67Þ

where F�1
Ij are the Cartesian components of the inverse of the defor-

mation gradient and we appealed to Nanson’s formula and the fact
that the detðFÞ ¼ 1, since the material is incompressible.

Then, since the deformation is inhomogeneous, the equal
stretch condition along the two directions now becomes experi-
ment dependent. It could be based on the overall stretch or that
measured over a shorter gauge length near the center region on
the top surface, in each direction. Thus,

1
2gX

Z gX

�gX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

xX þ F2
yX þ F2

zX

q 
ðX;0;hÞ

dX

¼ 1
2gY

Z gY

�gY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

xY þ F2
yY þ F2

zY

q 
ð0;Y ;hÞ

dY ; ð68Þ

where FiJ represent Cartesian components of the deformation gradi-
ent and if gX ¼ L and gY ¼W the condition would be requiring that
the overall stretch be the same, else if gX ¼ gY ¼ g it would be based
on stretch measured using a shorter gauge length near the center
region. The expression (68) is obtained from the formulae,

KEi
¼ 1
ð2giÞ

Z gi

�gi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CEi � Ei

p
dXi; ð69Þ

where we have assumed that the stretch ratio is required for a
straight line oriented along Ei, a coordinate direction and located
on the top surface of the body (i.e., Z ¼ h) and passing through
the point ð0; 0;hÞ.

Finally, the quantity of interest is R, the ratio of the nominal
stresses along the X and Y direction, where the nominal stress is
defined as the applied load per unit gross undistorted cross sec-
tional area, i.e.,
R ¼ LxL
LyW

¼ L
W

RW
�W

R h
�hðF

�1
Xx rxx þ F�1

Yx rxyÞdZ
� �

dYR L
�L

R h
�hðF

�1
Xy rxy þ F�1

Yy ryyÞdZ
� �

dX
: ð70Þ

It is clear from Eq. (70) that even if the stress is obtained from con-
stitutive relations for isotropic materials, such as (5), by virtue of
the Cauchy stress and the deformation gradient being a function
of ðX;YÞ the value of R would be different from 1 in general.
Boundary conditions (65) and (66) along with the equilibrium equa-
tions divðrÞ ¼ 0 and the equal stretch condition (68) are insufficient
to ensure R ¼ 1 for an inhomogeneous body whose constitutive
function varies over X and Y.

It can also be shown easily that for a body made of isotropic
material with constitutive function varying only along Z;R ¼ 1,
irrespective of whether the material is compressible or
incompressible.

Thus, for certain classes of inhomogeneous bodies made of iso-
tropic material, R – 1, in an equal biaxial experiment.
4. Discussion

The above theoretical study did not investigate the case
wherein some subparts of the inhomogeneous bodies are made
of anisotropic material and other subparts are made of isotropic
material. It appears that when the inhomogeneous body is made
of materials with different symmetries, in regions where the mate-
rial is isotropic, the principal direction of the left Cauchy–Green
deformation tensor would not vary with the magnitude of the
applied uniaxial load and in regions where the material is anisotro-
pic it would. However, this conjecture needs to be established by a
more detailed study.

Next, we examine experimental issues in determining the prin-
cipal direction of the left Cauchy–Green deformation tensor as a
function of the magnitude of the applied uniaxial load. It looks like
despite enormous amount of mechanical experiments being
reported on various aspects of mechanical behavior, there has been
no report on the variation of the principal direction of the left
Cauchy–Green deformation tensor with the magnitude of the
applied uniaxial load except by Paranjothi et al. (2011).

Now, the issue is in experimental determination of the spatial
variation of the left Cauchy–Green deformation tensor. All the
techniques employed to determine deformation gradient a priori
assume an underlying form for the deformation field, which in
many cases is a homogeneous deformation field. As shown in
Saravanan (2014), in general inhomogeneous bodies do not deform
homogeneously. Moreover, one cannot a priori estimate the nature
of the deformation field in an inhomogeneous body subjected to
uniaxial load; it depends on the form of the constitutive relation
which is being sought. Therefore, there would be an error in the
estimated components of the deformation gradient when the
assumed form for the deformation field is not in agreement with
the realized deformation field. This error is similar to that arises
by approximating the tangent of a function by its secant. A study
has to be undertaken to explore the influence of the error in the
estimated components of the deformation gradient on the deter-
mined principal direction of the left Cauchy–Green deformation
tensor to conclude on the usefulness of this proposed
methodology.

Experiments are underway on various fibrous bodies to find the
symmetry required in the constitutive relation by examining the
variation of the principal direction of left Cauchy–Green deforma-
tion tensor with the magnitude of the applied uniaxial load. Once
these results are available the appropriateness of requiring the
symmetry in the constitutive relation to be same as that deter-
mined based on its internal structure established.
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