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Abstract: Finite impulse response (FIR) models are very popular in process industries because
of their simple model structure, flexibility to explain arbitrary complex stable linear dynamics
and finally their ease of implementation in on-line applications. In general, identification of
FIR models requires large number of parameters to be estimated. In case of systems with
multiple time scales, the length of FIR model structure under conventional uniform sampling
becomes arbitrarily high due to simultaneous presence of fast and slow dynamics. This results in
more variability in the estimated parameters when the conventional methods such as ordinary
least squares are used. In this work, the FIR model estimation problem is formulated as a
sparse optimization problem, where the sparse representation of impulse response coefficients
for linear-time invariant multiscale systems in the time-frequency domain is exploited in order
to explain the overall FIR model effectively with fewer number of coefficients and thereby
incurring less variability in the estimated parameters. The effectiveness of proposed methodology
is demonstrated by means of simulation case studies.
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1. INTRODUCTION

Identification of linear-time-invariant (LTT) systems from
input-output data is an important problem in several pro-
cess operations such as control. There are several linear
model structures which can explain LTT systems. These are
comprehensively described in Ljung (1999). Among these
model structures, FIR models are very popular because of
their simple model structures and their flexibility to model
linear systems with any complexity. Despite their several
advantages, they are non-parsimonious and require large
number of parameters to be estimated. Under uniform
sampling, this problem becomes very acute in the case of
systems with multiple time scales as the model structure
becomes quite large in order to simultaneously accommo-
date both fast and slow dynamics of the process. Existing
methods such as ordinary least squares yield large errors in
the parameter estimates because of large parameter size.
In this work, we exploit the sparse representations of IR
coefficients (of multiscale systems) in time-frequency do-
main and formulate a sparse optimization problem in order
to improve the overall estimates of the FIR coefficients for
multiscale processes.

One of the widely known method for estimating the
FIR coefficients is ordinary least squares (OLS). The
estimates of OLS can be further improved by invoking
additional constraints on parameters. This is generally
known as regularized least squares (RLS). If the constraint
is minimization of magnitude of IR coefficients, it is known

as ridge regression (RR). The smoothness of the estimated
coefficients can be achieved by imposing a constraint
that minimizes the distance between the consecutive IR
coefficients (RRD). Further, one can incorporate weights
for the rate of decay of the change in coefficients. The
details of all these methods and their robustness issues are
discussed in Dayal and MacGregor (1996). Some of the
works utilized the filter bank aspects of wavelets in order
to improve the estimates of FIR coefficients (Nikolaou and
Vuthandam, 1998; Nounou, 2006).

In Nikolaou and Vuthandam (1998), discrete wavelet
transform on FIR model coefficients is performed and a
suitable threshold is used in order to discard the insignifi-
cant coefficients and finally a few coefficients are retained
after compression. By applying inverse DWT, the FIR
model coeflicients are recovered. The method is shown to
provide superior results when compared to the existing
methods but only issue seems to be that the parameter
estimation and parsimony are not achieved jointly. In
Nounou (2006), scaling and wavelet filters are used for
decomposing the input-output data at different scales.
The FIR models are built between the approximation
projections of input-output data at different scales and
the optimal scale is chosen where the signal-to-noise ratio
(SNR) of the predicted model output is maximum. Despite
the advantages of this method such as joint parameter
estimation and reduction in effective length of FIR model
coefficients, the method considers only the scaled approxi-
mations of input-output data at various dyadic levels while
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the details are completely neglected. In case of systems
with multiple time scales, the fast dynamics features are
generally present in the detail space of input-output de-
composition and application of this method captures only
the steady state information of fast subsystem while the
dynamic features are completely neglected as they are
present in the detail projections of the signal.

In the present work, the FIR model parameter estimation
and parsimony are simultaneously obtained by resorting
to spare optimization techniques. This is achieved by
exploiting the sparse nature of FIR coefficients in the
time-frequency domain. The main contributions of present
work include recognizing the sparse representation of FIR
coefficients in an appropriate domain and formulation of
the sparse optimization problem. The paper is organized
as follows. The problem of FIR identification is mathemat-
ically described in Section 2. The preliminaries required
for the work and some background on existing methods for
FIR identification are provided in Section 3. The proposed
methodology is formulated in Section 4 and is implemented
on two simulation case studies, the results of which are dis-
cussed in Section 5. Finally, the paper ends with conclusive
remarks in Section 6.

2. PROBLEM STATEMENT

Consider a general discrete (discretized based on ZOH)
linear time-invariant SISO system as follows:

ylk] = Go(q™"ulk] + e[k] (1)

where u[k],y[k] are the input and output measurements
respectively at time instant k; Go(q~!) is the transfer
function operator and the output is corrupted by the white
noise e[k] which is independent of u[k]. For stable systems,
the transfer function can be equivalently described as

Go(a™") =Y golnlg™" (2)

In case of stable systems, the impulse response decays
to zero in a finite length of time and hence it is enough
to truncate the infinite impulse response to certain order
M and estimate those finite number of impulse response
coefficients. The approximated system’s transfer function
and the corresponding FIR model are described below. A
unit delay is inherently assumed in the transfer function
by virtue of ZOH discretization.

GlgH)=> glnlg™, g=1[g[1] g2] - g[M]] (3)

ylk] =) glnjulk —n] + e[k] (4)

When a uniform sampling scheme is adopted, the sampling
time has to be chosen based on the fast subsystem. In
such a case, the discrete-time slow subsystem poles are
very close to the unit circle. This results in large number
of IR coeflicients as the poles of the slower subsystem
requires larger number of time samples in order to decay to
zero. As a result, a very large number of impulse response
coefficients are required to be estimated in case of systems

with multiple time scales unlike the single scale systems
where the number of coefficients are relatively very small.

It is well known that larger the parameter size, larger
will be the variability in the estimated parameters. Model
predictions obtained from such parameters are likely to
be very poor. The overall objective of this paper is to
simultaneously achieve good parameter estimates and par-
simonious representations of FIR models in the case of LTI
systems with multiple time scales.

3. PRELIMINARIES
8.1 LTI Multiple-time scale systems

A continuous-time LTT system is said to posses two-time
scale behaviour when some of the poles of the transfer
function are much smaller compared to the remaining. If
the real part of the poles of a continuous-time transfer
function are arranged in a descending order as Ay > ... >
Ai > X1 > ... > A, and if there exist Re()\;) >>
Re(Ai+1), then the subsystem corresponding to first ¢ set of
poles evolves much faster than the remaining poles. The
equivalence in the case of discrete-time systems is that
some set of poles are far from the unit circle in z—plane
while others are very close to the unit circle.

8.2 Sparse representation of MS FIR coefficients

The impulse response of multiscale systems in general
requires very large number of samples in order to decay to
zero. The slow evolution of the slow subsystem dynamics
is responsible for the large number of FIR coefficients.
Despite the large lengths in time domain, the slow subsys-
tem can be sparsely represented in the frequency-domain
because of its relatively small bandwidth in comparison
to the overall bandwidth. On the other hand, the fast
subsystem has sparse representation of FIR coefficients in
the time domain as they decay to zero within small time
scales but has has very large bandwidths in the frequency
domain. FIR coefficients of the overall system which is
combination of both slow and fast subsystems is neither
sparse in time nor in frequency domain. But the sparsity
can be achieved in time-frequency domain or a time-scale
domain. For instance, by using time-frequency tools such
as wavelets it is possible to represent the FIR coefficients of
multi-time scale systems sparsely in the time-scale domain.
In order to demonstrate this, we consider the following
continuous-time two-time scale system where the fast sub-
system evolves 20 times faster than the slower subsystem.

10(90s + 1)
(2005 + 1)(10s + 1) (5)

When a sampling interval of Ts = 1 sec is used, the ZOH
based discretized system is obtained as follows:

271(0.4296 — 0.4248271) ©)
1—1.92—1 + 0.90032~2

The discrete wavelet transform of impulse response of the
above system is shown in Figure 1.

G(s) =

Ga=
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DWT of impulse response coefficients for System in Eq. 6
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Fig. 1. Sparse FIR coeflicients representation using DWT

It can be observed from Figure 1 that the impulse response
coefficients can be sparsely represented in the wavelet
domain. In this work, this characteristic of impulse re-
sponse is exploited and a sparse optimization problem is
formulated in order to estimate the FIR model parameters
of LTI multiscale systems. The wavelet transformation
matrix which computes the discrete wavelet transform is
briefly described in Section 3.3.

3.8 Wawvelet Transform Matrix

The matrix representation of discrete wavelet transform of
any signal z is as follows:

AT e
‘] ec
= WoW i W)z =Wz (7)
d;
where,
N2kt
W, = | Wi 0 (8)
0 IN*N/QIC*I
and,
SR
Ry
wh/2 [Wia] _ | BN k-2
! [Wip| P

Ry

_RN/2’“—2¢_ N/2k=1x N/2k-1

9)
Here W is the wavelet transformation matrix for maxi-
mum level of decomposition Jge.; ¢ and 1 are scaling and
wavelet filters respectively. The operator R, generates the
time shifted versions of wavelet and scaling filters. a,__
is the approximation coefficient at the maximum level of
decomposition while d,, denotes the detail coefficients at
different levels of decomposition.

3.4 FIR model Identification

The FIR model as shown in (4) is expressed in the
regression matrix form (10) as shown below:

WM + 1] ulM] WM —1] - ul] )
y[M + 2] ulM+1]  w[M] - u[2] 911l
g[2]

(N — 1] WN =2 e e u[N—M-—1] :
yy[N] WN =1 u[N—2] --- u[N— M] g1M]

y U &

(10)
Some of the well known methods for estimation of FIR
model parameters are briefly discussed below.

Ordinary Least Squares:  The FIR coefficients, g can be
estimated by solving the standard least squares problem
as given below:

min (y - Ug)” (y - Ug)
The solution to the above problem is as follows:
gors = (UTU)'U"y

(11)

(12)

Ridge Regression: A constraint on the magnitude of FIR
coefficients is imposed along with minimization of the sum
square of the residuals in the case of ridge regression. The
objective function for this case is as follows:

min (y — Ug)"(y — Ug) + aug’g (13)

where « is the non-negative parameter which may be
optimally tuned based on cross validation. The ridge
regression coeflicient estimates are given by,

grp = (U"U+ D)™ 'Uy (14)
Unlike ordinary least squares, the rigde regression results

in biased estimates for the FIR coefficients but with a lower
variability.

Regularization with constraints on change in coefficients:

In most of the processes, the IR coefficients change in
a smooth manner. This can be achieved by penalizing
the distance between the consecutive FIR coefficients. The
objective function for this case is given below:

min (y - Ug)"(y — Ug) + aug”Hg (15)

The solution for the above formulation is as follows:
where, H= AT A with

(16)

1 00... 00
-1 10... 00
A= 0 —-11... 00 (17)
0 00..-11
FIR coefficients estimated from ARX models: Instead

of identifying the FIR coefficients directly, they can be
indirectly estimated by first constructing suitable ARX
models and then estimating the FIR coefficients. This indi-
rect identification leads to an advantage such as parsimony
and hence a lower variability in the estimated parameters.

Unfortunately, in the case of systems with multiple-time
scales, identification of parametric models such as ARX
results in ill-conditioning at the stage of parameter esti-
mation (Vana and Preisig, 2012) due to presence of slow
subsystem poles very close to the unit circle and hence
it is advisable not to estimate FIR coefficients using this
method.
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4. PROBLEM FORMULATION

As discussed in Section 3.2, the FIR coefficients, g have
a sparse representation in the time-frequency domain.
Let W be the discrete wavelet transform matrix that
transforms the discrete signal from time domain to time-
frequency domain, then the sparse representation of the
FIR coefficients can be obtained as follows:

x =Wg (18)
Here x is a sparse vector with few non-zero coefficients.
Now g can be written in terms of x as follows:

g=W'x (19)

In the case of orthonormal wavelets, T = W~ = W7,
Now, (10) can be written as,

y=U(Tx) = Ax (20)
The objective is to simultaneously minimize the prediction
error along with the sparse constraint on x. The sparsity of
x can be achieved by minimizing ||x||o but unfortunately
lp—norm minimization is regarded as NP-hard problem
which is too complex and impossible to solve. The [p—norm
minimization can be relaxed to [{ —norm minimization in
order to simplify the optimization under certain condi-
tions. The least absolute shrinkage and selection operator
(LASSO) method proposed by Tibshirani (1996) is used
in order to achieve sparsity along with the minimization
of prediction error. The formulation is given below:

min [[y — Ax[[3 + x| (21)

The sparse vector x is determined by minimizing the
objective function given in (21). An algorithm based on
Alternating Direction Method of Multipliers (ADMM) is
used for solving the LASSO problem (Boyd et al., 2011).
The impulse response coefficients are finally recovered
using the following expression:

g=W'x (22)
Now, the effectiveness of proposed methodology is demon-
strated by means of case studies in Section 5.

5. SIMULATION EXAMPLES:

In this section, two case studies are considered in order to
demonstrate the effectiveness of proposed methodology in
identification of FIR models for LTI multiscale systems. In
this work, the wavelet transformation matrix is generated
using Haar wavelet. The scaling and wavelet filters in the
case of Haar are as follows:

T

The wavelet transformation matrix is generated using the
equations (7), (8) and (9). The sparse optimization prob-
lem is formulated as given in (21). The results obtained
using the proposed sparse optimization (SPOPT) are com-
pared with existing methods namely ordinary least squares
(OLS), ridge regression (RR) and regularized least squares
with smoothness constraint on IR coefficients (RRD). The

comparison is based on mean square error (MSE) of es-
timated FIR coefficients with respect to their true values
(obtained from noise free case),

g0l

MSE
5 M

(24)
The steady state gain estimates for different methods are
computed from the estimated FIR coefficients as follows:

R M
K=3 4

In practice, it is not possible to compare the estimates
of FIR coefficients and steady state gain with the true
values but are included here in an academic setting in
order to assess the goodness of FIR estimates. The penalty
parameters for the case of ridge regression (1), regular-
ized least squares with constraint on distance between
consecutive coefficients (aq) and the proposed sparse op-
timization method () are determined based on cross vali-
dation minimum mean square error (MMSE). The optimal
penalty parameter determination is shown in Figure 3 for
the case of SPOPT for a particular noise realization with
SNR of 1. The penalty parameters a; and as for other
methods are also determined in a similar manner. 100
Monte Carlo (MC) simulations are performed for different
SNRs (1000, 100, 10 and 1) and the average MSE values are
reported for each of the methods in Table I(a) and II(a).
The average steady state gains are reported in Table I(b)
and II(b).

(25)

5.1 Case study 1:

The system in (6) is again considered to demonstrate the
effectiveness of proposed methodology. A full band PRBS
is given as an input to the system. The sampling interval
is chosen as 1 sec and the time of simulation is 8000 sec.
Initial 6000 samples are used for training purpose while
the remaining 2000 are used for validation. The length of
FIR model used for this case study is 1024.

Table I(a): MSE values for Case study 1

MSE (x10~%)
Method / SNR |—5q5 100 10 1
OLS 0.002675 | 0.02674 | 0.2676 | 2.6720
RR 0.002675 | 0.02670 | 0.2615 | 2.1600
RRD 0.002661 | 0.02549 | 0.2013 | 1.1030
SPOPT 0.000877 | 0.00613 | 0.0414 | 0.2600

Table I(b): Steady-state gain values for Case study 1

Steady state gain (True value = 10)
Method / SNR | —555 100 10 I
OLS 9.9670 | 9.9663 | 9.9733 9.9701
RR 9.9638 | 9.9463 | 9.7761 8.3702
RRD 9.9662 | 9.9588 | 9.9241 9.7650
SPOPT 9.9486 | 9.9016 | 9.7410 9.1296

5.2 Case study 2:

The proposed algorithm is implemented and tested on
a simulation example considered in Vana and Preisig
(2012). Unlike case study 1, here the system also contains
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oscillatory behaviour along with presence of two time
scales.
G( 0.0068(s + 100)(s + 1)3
) = T O002(2 + 45 1 69)
The poles of the considered system are {—0.1,—0.1} for
slow dynamics and {—2 — 8i,—2 + 8i} for fast dynamics.
The system is discretized using a sampling time of 0.1 sec.
A PRBS input of length 4500 is used to excite the system.
The first 3000 observations are used for training purpose
while the remaining are used for validation. The length of
FIR model used for this case study is 512.

(26)

Table II(a): MSE values for Case study 2
—6
Method / SNR MSE (x1077)

1000 100 10 1
OLS 0.00346 | 0.03466 | 0.3471 | 3.4720
RR 0.00419 | 0.03527 | 0.3380 | 2.7120
RRD 0.00475 | 0.03558 | 0.3220 | 2.3440
SPOPT 0.01928 | 0.02665 | 0.0878 | 0.5100

Table II(b): Steady-state gain values for Case study 2
Method / SNR Steady-state gain (True value = 1)

1000 100 10 1
OLS 0.9622 | 0.9622 | 0.9629 0.9629
RR 0.9561 | 0.9543 | 0.9331 0.7756
RRD 0.9617 | 0.9616 | 0.9606 0.9524
SPOPT 0.9539 | 0.9513 | 0.9401 0.8918

The optimal value of A for the expression shown in Eq.
(21) is determined based on cross validation minimum
mean square error as shown in Figure 3. The average mean
square error (MSE) values calculated across 100 different
noise realizations are reported in Tables I(a) and II(a). It
can be inferred from MSE values that by incorporating
additional information that the IR coefficients are sparse
in the time-frequency domain, it is possible to improve
the FIR estimates to a great extent. The estimated FIR
coefficients in the case of SNR = 10 for the case studies
1 and 2 using different methods are shown in Figures 2
and 4 respectively. From these figures, it can be observed
that the variability of the parameters in the case of
proposed methodology are much lower compared to other
methods. Any type of regularization introduces bias in
the parameter estimates and the same is observed for the
proposed methodology too. This is reflected in relatively
large bias in the steady state gain estimates as shown in
Tables I(b) and II(b). It is well known that there is always
a trade-off between bias and variance. Overall, the method
generates superior estimates and this is reflected in the
lower values of MSE values for the FIR parameters. For
the 2"¢ case study with SNR = 1, the 95% confidence
region (obtained from 100 Monte-Carlo simulations) for
the parameter estimates is shown in Figure 5. The narrow
confidence region indicates that the method yields good
estimates of FIR coefficients even when the SNRs are poor.

6. CONCLUSIONS

In this work, a sparse optimization framework for iden-
tification of FIR models has been proposed for LTI sys-
tems with multiple time scales. The proposed methodol-
ogy exploits the sparse representations of IR coefficients
in the time-frequency domain. Although, the efficacy of

Case Study 1: Estimated FIR coefficients for SNR = 10
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Fig. 2. Estimated FIR coefficients for SNR = 10 using
different methods for the case study 1
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Fig. 3. Choice of optimal A for SPOPT based on minimum
cross validation MSE for case study 2 (for SNR = 10)

the method is demonstrated on two time scale systems,
it is equally applicable for multiple time scale systems
and even for single scale band limited systems where the
observations are collected at much faster sampling rates.
In this work, for the purpose of demonstration, we have
used Haar wavelets for computing wavelet transformation
matrix. Other wavelets with higher vanishing moments
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Case Study 2: Estimated FIR coefficients for SNR = 10
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Fig. 4. Estimated FIR coefficients for SNR = 10 using
different methods for the case study 2
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Fig. 5. 95% confidence region for FIR model parameters
using SPOPT for case study 2 (SNR = 1)

can also be used in order to improve the smoothness of
parameter estimates. Issues such as edge effects caused
by DWT and the choice of length of FIR coefficients
need to be carefully considered for effective exploitation
of proposed methodology.
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