Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

for Adv. Electron. Mater., DOI: 10.1002/aelm.201800863

Hole Injection and Rectifying Heterojunction Photodiodes through Vacancy Engineering in MoS_2

Shubhadeep Bhattacharjee,* Ritwik Vatsyayan, Kolla Lakshmi Ganapathi, Pramod Ravindra, Sangeneni Mohan, and Navakanta Bhat*

Hole injection and Rectifying Heterojunction Photodiodes through Vacancy Engineering in MoS₂

Shubhadeep Bhattacharjee¹, Ritwik Vatsyayan², Kolla Lakshmi Ganapathi³, Pramod, Ravindra¹, Sangeneni Mohan¹, Navakanta Bhat¹.

¹ Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore ²Electrical Engineering, Indian Institute of Technology, Guwahati ³Dept. of Physics, Indian Institute of Technology, Madras

S1 Ultra-violet photoeletron spectroscopy measurements

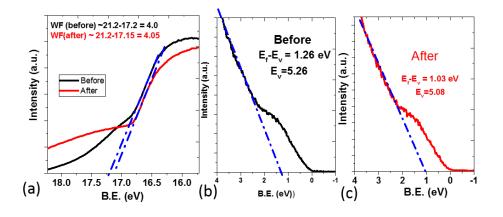


Fig. S1: UPS measurements on MoS₂ before and after vacancy engineering.

To understand the change in valence band position, UPS measurements before and after vacancy engineering were performed on the MoS_2 samples. We make two primary observations. First we observe that there is not much change in the Work function of the MoS_2 (Fig. S1 (a)). However, the difference between the fermi level and valence band maxima $[E_f - E_v]$ has reduced significantly (Fig. S1(b,c) below) indicating a shift towards more p-type doping. Therefore there is an upward movement of valence band maxima of 0.18eV which closely matches the DFT calculations (~0.21 eV) for 7.4 % vacancy engineering. Furthermore it is important to note that this value is close to the activation energy of 0.17 eV (value of acceptor level above the valence band maximum) obtained using temperature dependent measurements. Hence the reduction in the VBM due to new oxygen acceptor levels along with use of high work function metal is responsible for effective p-type conduction.

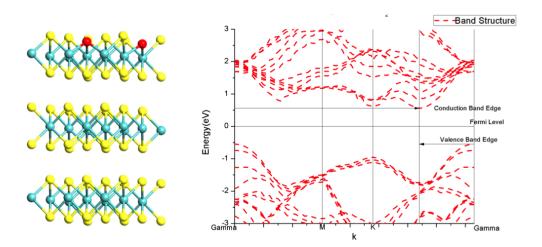


Figure S2: MoS₂ doped with 3.3% oxygen in the top layer and the change in bandstructure.

The Density Functional Theory calculations were performed using the open source SIESTA simulation package [1]–[2]. The electron-electron interaction energies are estimated within Generalized Gradient Approximation (GGA) with Perdew, Burke, and Ernzerhof (PBE) as exchange and correlation functional [3]. The Troullier-Martins pseudopotential is used to calculate interaction energies between ions and electrons [4]. Atomic orbitals are realized with Double Zeta basis plus the polarization orbital (DZP) basis set. The optimized Mesh Cutoff and the k-point grid is found to be 360 Rydberg and 6x6x1 respectively. For the modeling of oxygen doping within the MoS₂ crystal, we considered a $3\times$ trilayer 2H-MoS2 supercells. The concentration of oxygen was varied in the top layer from 0% to 11%. Before performing the energy calculations and atomic structure calculation the structures was relaxed using Conjugate Gradients (CG) algorithm with the force tolerance per atom to be less than 0.01 eV/Ang. The bandstructures calculated from the SIESTA code are folded onto each other. An approximate unfolding was performed by comparing the bandstructure for a 3x3 supercell with the unit cell of pristine MoS₂. This was extended to the other cases with oxygen incorporation.

S3 Ambipolar behavior

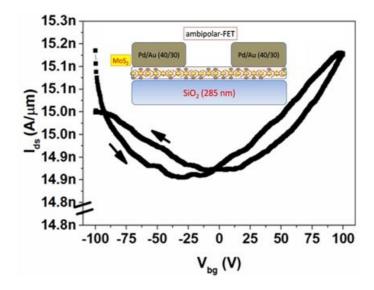


Figure S3: Ambipolar behavior is observed in very thin flakes after the vacancy engineering.

S4 ON current and On/Off ratio with time of argon ion exposure

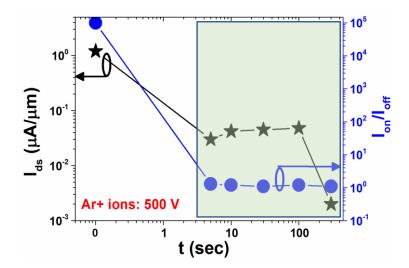


Figure S4: The On currents start increasing with time of exposure due to increased doping density, followed by a drop after 100 sec because of increased damage to the lattice structure.

S5 Calculation of doping density and depletion width

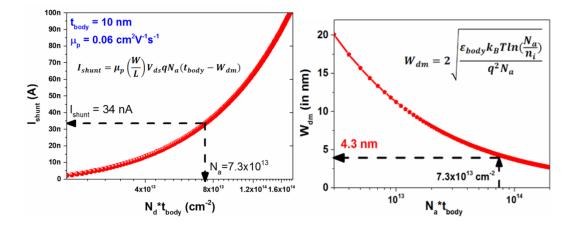


Figure S5: The doping density of 7.3×10^{13} cm⁻² is extracted for the devices with vacancy engineering for t=100 sec of exposure using the model described in [1]

S6 Raman map on p/n heterojunction

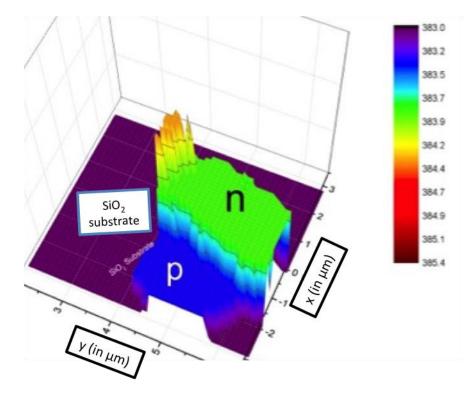


Figure S6: The spatial E_{2g}^{1} peak position reveals abrupt p/n junction

References:

[1] P. Ordej´on, E. Artacho, J. M. Soler, Self-consistent order-n density functional calculations for very large systems, Physical Review B53 (16) (1996) R10441. 200.

[2] J. M. Soler, E. Artacho, J. D. Gale, A. Garc'ıa, J. Junquera, P. Ordej'on, D. S'anchez-Portal, The siesta method for ab initio order-n materials simulation, Journal of Physics: Condensed Matter 14 (11) (2002) 2745

[3] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (18) (1996) 3865. 205

[4] N. Troullier, J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Physical review B 43 (3) (1991) 1993.

[5] Das, S., Demarteau, M., & Roelofs, A. (2015). Applied Physics Letters, 106(17), 173506.