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Abstract—We consider a large class of bidirectional relaying
scenarios with physical layer network coding, and analytically
characterize the relay’s error performance in decoding the
network-coded combination at high signal-to-noise ratio (SNR).
Our analysis applies to scenarios with (1) binary or higher order
real/complex modulation, (2) real or complex channel coefficients,
and (3) linear or non-linear network maps for network coding at
the relay. We consider block fading and allow the relay to choose
from a set of network maps based on the channel coefficients of
the source to relay links in every block. We derive expressions
for pairwise error probability and approximate expected overall
error probability. We also derive lower bounds for these error
probabilities. We validate these expressions using simulations and
show that our approximations are tight in the high SNR regime.

I. INTRODUCTION

The bidirectional relaying setting is shown in Fig. 1. Nodes

A and C wish to exchange messages. The relay node B

facilitates this exchange of information. We assume that we do

not have a direct link between the two communication nodes A

and C. All the nodes are half-duplex with single antenna, and

average power limited with receiver Additive White Gaussian

Noise (AWGN) of variance σ2
N . Channels AB (also, BA) and

CB (also, BC) have coefficients which are denoted h1 and h2,

respectively. The pair (h1, h2) is referred to as the channel

fading state.

BA Ch1 h2

Fig. 1: Bidirectional relaying problem.

Bidirectional relaying was initially proposed in [1] [2] [3]

and summarized in the surveys [4] [5]. Schemes based on

lattice coding have been shown to achieve rates within a small

gap of the capacity region [6], [7]. Practical codes based on

finite alphabet constellations have been proposed in [8]–[14].

Most of the initial work in physical layer network coding

for bidirectional relaying used binary modulation schemes and

XOR decoding at the relay [8]. However, higher-order modula-

tion schemes are required to achieve higher spectral efficiency.

Bidirectional relaying with higher-order constellations were

considered in [9]–[14]. Network coding maps for uncoded

transmission were studied in [11]–[13]. Field-based network

maps were used in [9], [10]. In [14], ring-based designs using

Low-Density Parity-Check (LDPC) codes were proposed for

standard M -PAM and M2-QAM constellations. Both linear

and non-linear network maps were used in [14]. Simulations

were used to show the effectiveness of ring-based schemes

over field-based schemes in [14].

The main goal of this work is to analytically compare

different physical layer network coding strategies in terms

of error performance at the relay. Specifically, we consider

M -PAM or M2-QAM constellations at transmit nodes A,

C, and assume block fading with the channel coefficients

h1, h2 following a real Gaussian distribution for M -PAM

constellation and complex Gaussian distribution for M2-QAM

constellation. Depending on (h1, h2), the relay has a choice

to decode one of many possible network maps (linear or non-

linear). Under these assumptions, we derive the following in

the limit SNR → ∞:

1) Expected pairwise probability of error in decoding the

network-coded combination.

2) Lower bound for the expected pairwise probability of

error.

3) Approximate expected overall probability of error in

decoding the network-coded combination.

4) Lower bound for the expected overall probability of

error.

The computation of asymptotic expected error probabilities

is done through the computation of the probability density

function (PDF) of the minimum cluster distance in the relay’s

received constellation at 0 [15]. The minimum cluster distance

is a function of the network map and channel coefficients

h1, h2, and can become zero at some specific ratios of channel

coefficients. We characterize the regions of (h1, h2) at which

minimum cluster distance becomes zero, and use it to derive

an analytical expression for the PDF at 0.

Error performance in bidirectional relaying has been studied

before in [1], [16]–[20]. All of these works study specific

strategies and are restricted in the modulation alphabet or

network coding map, which are typically binary. Other related

works from the compute-and-forward literature includes [21],

[22], [23], [24], [16]. In [22] the authors use multilevel codes

with XOR based network map, and also derive an upper

bound on the decoding error probability. In [24], integer-linear

network maps are considered, and bounds on decoding error

probability are derived. In [16], the authors study the optimal

methods of selecting coefficients of a linear network map, and

also derive an upper bound for the probability of error. In most
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of the above, linear network maps were considered.

In comparison with the earlier works relating to error per-

formance characterization in bidirectional relaying, our work

differs in the following ways:

1) The method of analysis using the PDF of minimum clus-

ter distance at zero is new in the context of bidirectional

relaying.

2) Our analysis applies to both linear and non-linear net-

work maps for decoding at the relay, and higher-order

M -PAM and M2-QAM transmit constellations.

3) In our earlier work [14], we studied nonlinear network

maps that maximized minimum cluster distance at the

relay. The analysis in this work applies to [14] and

justifies the use of minimum cluster distance as a metric.

II. DEFINITIONS AND NOTATION

We consider bidirectional relaying with two phases - Multi-

ple Access and Broadcast. In the multiple access phase, node

A transmits x1 ∈ A, and node C transmits x2 ∈ A, where A
is the constellation used at nodes A and C. The received value

at the relay is given as

yB = h1x1 + h2x2 + zB ,
where (h1, h2) are channel coefficients and zB denotes addi-

tive Gaussian noise. We will assume Gaussian block fading,

and that (h1, h2) are known to all nodes. The distribution of

(h1, h2) will be assumed to be iid real Gaussian if A is real,

and complex Gaussian if A is complex.

At the relay B, the received symbol h1x1 + h2x2 belongs

to the constellation

MB = {s(u, v) = h1u+ h2v : u, v ∈ A}, (1)

where s : A2 → MB is a many-to-one map, in general. That

is, based on the values of h1, h2 and the constellation A, some

of the transmit symbol pairs in A2 may map to the same point

in MB . We define a network map f : A2 → ABC , where

ABC is the constellation used by the relay in the broadcast

phase. We consider the scenario where the network map f is

chosen in a specific manner, to be described later, based on h1,

h2. For any given transmit symbol pair (x1, x2) ∈ A2 from

nodes A and C, the relay attempts to decode xB = f(x1, x2) ∈
ABC . Let the relay’s decoded symbol be denoted x̂B ∈ ABC .

The symbol x̂B ∈ ABC is broadcast by the relay B in the

broadcast phase. The received values at the end nodes A and

C are given as

yA = h1x̂B + zA,

yC = h2x̂B + zC ,
where zA and zC denote additive Gaussian noise. Using

the received value yA, node A decodes x2 ∈ A using the

knowledge of its own transmitted symbol x1 ∈ A and the

map f . Node C decodes x1 in a similar fashion using yC .

A. Singular fading states and choice of network map

For a given constellation A, a pair of non-zero channel

coefficients (h1, h2) is said to be singular if there exist distinct

pairs (x1, x2), (x
′
1, x

′
2) ∈ A2 such that h1x1 + h2x2 =

h1x
′
1 + h2x

′
2. For singular channel coefficients (h1, h2), the

ratio h2

h1
is referred to as a singular fading state of A [13].

Clearly, the set of singular fading states is finite in number,

and are given as the set of all distinct ratios of differences of

constellation points. Let the set of singular fading states of A
be denoted S = {α1, α2, . . . , αL}, where L is the number of

singular fading states.

We consider the scenario where the choice of network map

f is done as follows. We partition the (h1, h2)-space into L+2
non-overlapping (except at (0, 0)) regions Λ1,Λ2, . . . ,ΛL+2

such that

1) the i-th singular fading states are contained in Λi, i.e.,

{(h1, h2) :
h2

h1
= αi} ⊂ Λi, i = 1, 2, . . . , L,

2) the axis h1 = 0 is contained in ΛL+1, i.e.,

{(h1, h2) : h1 = 0} ⊂ ΛL+1,

3) the axis h2 = 0 is contained in ΛL+2, i.e.,

{(h1, h2) : h2 = 0} ⊂ ΛL+2.

Each region Λi, i ∈ {1, 2, · · ·L+2} is associated to a network

map fi. If the channel coefficients (h1, h2) ∈ Λi, the relay sets

f = fi. No other constraint is placed on the regions Λi and

the network maps fi. Note that the fi need not be unique, and

two regions Λi,Λj , i 6= j may be assigned the same map.

This scenario is generic and covers the strategies consid-

ered in [13], [14], [25]. As an example, we choose a 4-

PAM transmit constellation with singular fading states S =
{±1,±2,±3,± 1

3 ,± 2
3 ,± 1

2 ,± 3
2} and illustrate in Figure 2, the

partitioning of (h1, h2)-space into the regions Λ1,Λ2, · · ·Λ16

(labeled 1, 2, · · · 16, respectively). Here, the adjacent regions

are differentiated with different shades of gray, and the dashed

lines correspond to h2 = αih1.
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Fig. 2: Partitioning of (h1, h2)-space into different regions.
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(b) Clustering for h1 = 1.12, h2 = 1.
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Fig. 3: Relay constellation and clustering for 4-PAM.
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Fig. 4: Illustration of minimum cluster distance, left

minimum cluster distance and right minimum cluster

distance.

B. Minimum cluster distance and non-resolvable states

For r ∈ ABC , the set of pairs f−1(r) , {(x1, x2) ∈
A2 : f(x1, x2) = r} is referred to as a cluster mapped to

r with respect to the network map f . One possible clustering

is illustrated in Figure 3 for some channel coefficients, with A
and ABC set as 4-PAM. Here, the values in MB are shown

below the axis, while the cluster-mapped values f(·) of the

symbol pairs corresponding to points in MB are shown on

top.

Since we are interested in characterizing the error perfor-

mance in decoding the clusters at the relay, we define some

distance metrics relating to distances between points in MB

corresponding to transmit pairs from different clusters.

The minimum cluster distance of the network map f at

channel coefficients (h1, h2) is defined as the least distance

between points (could be identical points) in MB correspond-

ing to transmit pairs from different clusters. That is,

d(f, h1, h2) , min
(x1,x2),(x

′

1,x
′

2)∈A2

f(x1,x2) 6=f(x′

1,x
′

2)

|h1(x1 − x′
1) + h2(x2 − x′

2)|.

(2)
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Fig. 5: Plots of d = |w1(h1, h2)h1 + w2(h1, h2)h2|, w1 and

w2 versus h2 with A being 4-PAM and h1 = 1.

To reduce clutter, we will denote d(f, h1, h2) as simply d
some times. Minimum cluster distance in MB with A set

as 4-PAM and channel coefficients h1 = 1.12, h2 = 1 is

illustrated in Figure 4. In this case, d = 1.52 corresponds to

the distance between the points r1 = −1.88 and r2 = −0.36 in

MB corresponding to the transmit pairs (1,−3) and (−3, 3),
respectively. We note that there are also other pairs of points

in MB whose distance between is d = 1.52.

From (2) we note that the minimum cluster distance is

of the form d = |w1(h1, h2)h1 + w2(h1, h2)h2|, where the

coefficients w1 and w2 depend on h1, h2. Additionally, we

impose the constraint w1 ≥ 0 so that the relative sign

between w1 and w2 is taken care by the sign of w2. For

illustration, in Figure 5, we plot d, w1 and w2 versus h2, with

A = {−3,−1, 1, 3} and h1 = 1. Values of h2 corresponding

to the singular fading states of A are marked with ∗. The

network map for a given h2 is chosen based on the method

described earlier, with each map fi being a linear map over

the field F4. From the plot of d we note that, at certain values

of h2 corresponding to some of the singular fading states, d
is zero. Also, for regions around these singular fading states,

w1 and w2 assume a constant value.

In general, for a given set of network maps, d can be

zero at some singular fading states. If the transmitted pair

(x1, x2) ∈ A2 is from a cluster whose distance from some

other cluster is zero, a decoding error is likely to occur. A

singular fading state αi ∈ S is said to be non-resolvable under

the set of network maps {f1, f2, . . . , fL+2} if the minimum

cluster distance d(fi, 1, αi) = 0. From the plot of d in Figure

5 we note that, in this case, the set of non-resolvable singular

fading states is {±1,±2,±3,± 1
3 ,± 1

2}. Let

NRI = {i : αi is non-resolvable} (3)

be the set of indices of all non-resolvable singular fading

states. This is useful for computing the pairwise error prob-

ability (to be defined later in this section) in decoding the

clusters at the relay in the limit SNR tends to infinity.

Let us index the elements of A2 using j = 1, 2, · · · |A|2.

Let us consider the pair (x1j , x2j) ∈ A2. Next, we define the

left and right minimum cluster distances with reference to the

transmit pair (x1j , x2j). These are useful in computing the

overall error probability in decoding at the relay, given that

the transmitted pair is (x1j , x2j). The left minimum cluster

distance of the network map f with reference to (x1j , x2j)
at real channel coefficients (h1, h2),

h2

h1
/∈ S is defined as the

least difference between h1x1j + h2x2j ∈ MB and points

{h1u + h2v : (u, v) ∈ A2} such that (i) h1u + h2v is to the

left of h1x1j + h2x2j , and (ii) (u, v) and (x1j , x2j) are from

different clusters. That is,

djL(f, h1, h2) , min
(u,v)∈A2

s(u,v)<s(x1j ,x2j)
f(x1j ,x2j) 6=f(u,v)

|h1(u−x1j)+h2(v−x2j)|.

If there exists no such h1u + h2v ∈ MB satisfying the

constraints mentioned above, we define djL(f, h1, h2) = ∞.

We note that djL can be discontinuous at singular channel

coefficients (h1, h2),
h2

h1
∈ S , and is therefore not defined

at these values. As an example, the left minimum cluster

distance in MB with reference to the transmit pair (−3, 1)
is shown in Figure 4. In this case, djL = 1.76 corresponds to

the distance between the points r1 = −2.36 (marked in Red)

and r2 = −4.12 in MB corresponding to the transmit pairs

(−3, 1) and (−1,−3), respectively.

A singular fading state αi ∈ S is said to be

left-non-resolvable with reference to (x1j , x2j) ∈ A2

under the set of network maps {f1, f2, . . . , fL+2} if

for every h1, limh2→(αih1)+ djL (fi, h1, h2) = 0 or

limh2→(αih1)− djL (fi, h1, h2) = 0. Let

NRIL(j) = {i : αi is left-non-resolvable with reference to

(x1j , x2j)}
be the set of indices of all left-non-resolvable singular fading

states with reference to (x1j , x2j) ∈ A2.
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The right minimum cluster distance of the network map

f with reference to (x1j , x2j) at real channel coefficients

(h1, h2),
h2

h1
/∈ S is defined as

djR(f, h1, h2) , min
(u,v)∈A2

s(u,v)>s(x1j ,x2j)
f(x1j ,x2j) 6=f(u,v)

|h1(u−x1j)+h2(v−x2j)|.

This is similar to the left minimum cluster distance, except

that we consider points in MB to the right of h1x1j + h2x2j

to compute the minimum distance. In Figure 4, the right min-

imum cluster distance in MB with reference to the transmit

pair (3,−1) is shown. A singular fading state αi ∈ S is

said to be right-non-resolvable with reference to (x1j , x2j) ∈
A2 under the set of network maps {f1, f2, . . . , fL+2}
if for every h1, limh2→(αih1)+ djR (fi, h1, h2) = 0 or

limh2→(αih1)− djR (fi, h1, h2) = 0. Let

NRIR(j) = {i : αi is right-non-resolvable with reference to

(x1j , x2j)}
be the set of indices of all right-non-resolvable singular

fading states with reference to (x1j , x2j). The sets of indices

NRIL and NRIR are useful for computing the overall error

probability in decoding at the relay in the limit SNR tends to

infinity.

In Figure 6, we plot djL and djR with reference to

(x1j , x2j) = (−3,−1) versus h2 with A being 4-PAM and

h1 = 1. We select the network map for a given h2 from a

set of linear maps over F4. From the plot we note that djL
and djR can be discontinuous at certain values of h2, which

includes values of h2 corresponding to some of the singular

fading states of 4-PAM. Also, we note that, the set of left and

right non-resolvable singular fading states with reference to

(x1j , x2j) = (−3,−1) is {−2,−1, 1, 3}.

For complex channel coefficients h1, h2, minimum cluster

distance d = |d′R + id′I |, where d′R and d′I are the real and

imaginary components of the difference h1(u1−v1)+h2(u2−
v2). Here, the transmit symbol pairs

(u1, v1),(u2, v2) =

arg min
(x1,x2),(x

′

1,x
′

2)∈A2

f(x1,x2) 6=f(x′

1,x
′

2)

|h1(x1 − x′
1) + h2(x2 − x′

2)|

may not be unique for a given value of h1, h2, and network

map f . We define the minimum cluster distance vector of the

network map f at complex channel coefficients (h1, h2) as

D , [|d′R| |d′I |].

C. Pairwise probability of errror

For given channel coefficients (h1, h2) ∈ Λi, we define the

pairwise probability of error in decoding the clusters at the

relay as

Pe(Λi) , Q

(

d(fi, h1, h2)

2σN

)

,

where σ2
N is the noise variance per dimension. We note that, in

general, pairwise probability of error can be defined between

any pair of clusters. In our case, we restrict ourselves to

the clusters corresponding to the minimum cluster distance.

We shall denote Pe(Λi) as simply Pe. Later, we compute

the expected pairwise probability of error (E[Pe]) when the

channels are fading.
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Fig. 6: Plots of djL and djR versus h2 with

(x1j , x2j) = (−3,−1), A being 4-PAM and h1 = 1.

III. M -PAM

In this section we consider the case of A being real M -

PAM, and channel coefficients (h1, h2) being iid N (0, σ2
h).

We compute the expected pairwise probability of error and

the expected overall probability of error at high SNR, and

lower bounds for these. As SNR tends to infinity, the expected

probability of error can be computed using the value of the

density of minimum distance at zero [15]. Specifically, the

expected pairwise probability of error can be computed from

the PDF of minimum cluster distance at zero. To compute the

PDF at zero, we consider ǫ-small regions in (h1, h2)-space

around regions where minimum cluster distance is zero. In

these regions, the minimum cluster distance is d = |uh1 +
vh2|, where u and v are constants specific to each region and

independent of h1, h2. The PDF at zero can be computed

separately for these regions, which can be used to compute

the overall PDF of minimum cluster distance at zero. In the

case of expected overall probability of error, we use the same

method, except that we consider the PDF of left and right

minimum cluster distances instead of the PDF of minimum

cluster distance.

h1

h2

h2 = αih1
Region Bǫ

H(h2 = αih1)

Region Bǫ
H(h2 = 0)

Region Bǫ
H(h1 = 0)

Fig. 7: Regions around h2 = αih1, h2 = 0 and h1 = 0.
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A. Distribution of minimum cluster distance

Consider the standard M -PAM constellation A = {−(M −
1),−(M−3), · · · (M−1)} with M being a power of 2. We as-

sume that the regions Λi and the corresponding network maps

fi are given. Let D be the random variable corresponding to

the minimum cluster distance d(f, h1, h2), and fD(·) denote

its PDF. To compute limd→0 fD(d), we consider the following

method.

Minimum cluster distance d(f, h1, h2) can be 0 in the

following three cases: (i) h2

h1
= αi, i ∈ NRI, h1, h2 6= 0,

(ii) h2 = 0, and (iii) h1 = 0. We consider the regions (i)

Bǫ
H(h2 = αih1) around h2 = αih1, i ∈ NRI, (ii) Bǫ

H(h1 = 0)
around h1 = 0, and (iii) Bǫ

H(h2 = 0) around h2 = 0, in R
2

such that the following properties are satisfied:

1) {(h1, h2) : h2 = αih1} ⊂ Bǫ
H(h2 = αih1) ⊂ Λi, i ∈

NRI,

2) {(h1, h2) : h1 = 0} ⊂ Bǫ
H(h1 = 0) ⊂ ΛL+1,

3) {(h1, h2) : h2 = 0} ⊂ Bǫ
H(h2 = 0) ⊂ ΛL+2.

4) Bǫ
H(h2 = αih1) is symmetric with respect to h2 =

αih1,

5) Bǫ
H(h1 = 0) is symmetric with respect to h1 = 0,

6) Bǫ
H(h2 = 0) is symmetric with respect to h2 = 0.

As a consequence of the first three conditions, the

minimum cluster distance for each of these regions is of the

form |uh1 + vh2| where the constants u, v ∈ Z are specific

to each region. So, we find the PDF of minimum cluster

distance at zero, separately for these regions, and use it to

compute the overall PDF of minimum cluster distance at

zero. The last three conditions based on symmetry are useful

for computing the PDF of minimum cluster distance at zero

for each region. Next, we consider each region separately,

and compute the PDF at zero.

1) Region Bǫ
H(h2 = αih1), i ∈ NRI: Consider the singular

fading state αi, i ∈ NRI. For values of (h1, h2) such that
h2

h1
= αi, we have αih1 − h2 = 0. So, to the singular fading

state αi, i ∈ NRI, we associate the region SHi = {(h1, h2) :
αih1 − h2 = 0}. Let us define

Bǫ
H(h2 = αih1) =

{

(h1, h2) : αi − ǫ ≤ h2

h1
≤ αi + ǫ

}

,

where ǫ > 0 is small enough such that Bǫ
H(h2 = αih1) ⊂

Λi. We see that Bǫ
H(h2 = αih1) satisfies the conditions that

were stated earlier. The minimum cluster distance in the region

Bǫ
H(h2 = αih1) is given by the expression

d(fi, h1, h2) = |w1ih1 + w2ih2|,
where w1i, w2i 6= 0 are of the form

w1i = x1i − x′
1i, (4)

w2i = x2i − x′
2i. (5)

for some (x1i, x2i), (x
′
1i, x

′
2i) ∈ A2, x1i 6= x′

1i, x2i 6= x′
2i. Let

EHi be the event that (h1, h2) ∈ Bǫ
H(h2 = αih1), and let

PHi = Pr(EHi). The PDF of minimum cluster distance in

this region, at zero, is given as (derived in VI-A)

lim
d→0

fD(d|EHi) =
1

σhPHi

√

2

π

1
√

w2
1i + w2

2i

, i ∈ NRI. (6)

2) Region Bǫ
H(h2 = 0): Let us define

Bǫ
H(h2 = 0) =

{

(h1, h2) : −ǫ ≤ h2

h1
≤ ǫ

}

,

where ǫ < 1
M

. The minimum cluster distance in this region

for a given (h1, h2) is of the form 2|h2| (derived in III-D1).

We see that the region Bǫ
H(h2 = 0) satisfies the conditions

that were stated earlier. Let Eh2
be the event that (h1, h2) ∈

Bǫ
H(h2 = 0), and let Ph2 = Pr(Eh2). The PDF of minimum

cluster distance in this region, at zero, is given as (derived in

VI-B)

lim
d→0

fD(d|Eh2
) =

1

σh

√
2πPh2

. (7)

3) Region Bǫ
H(h1 = 0): Let us define

Bǫ
H(h1 = 0) =

{

(h1, h2) : −ǫ ≤ h1

h2
≤ ǫ

}

,

where ǫ < 1
M

. The minimum cluster distance in this region

for a given (h1, h2) is of the form 2|h1| (refer section III-D1).

Let Eh1 be the event that (h1, h2) ∈ Bǫ
H(h1 = 0), and let

Ph1
= Pr(Eh1

). Similar to the previous case, we can derive

the following.

lim
d→0

fD(d|Eh1
) =

1

σh

√
2πPh1

. (8)

The overall PDF of the minimum cluster distance is given by

the expression

fD(d) =
∑

i∈NRI

PHifD(d|EHi) + Ph1
fD(d|Eh1

)

+ Ph2
fD(d|Eh2

) + P ′fD(d|Ec
H),

where P ′ = 1 −∑i∈NRI PHi − Ph1
− Ph2

, and Ec
H is the

event (h1, h2) /∈ B′ =
(
⋃

i∈NRI B
ǫ
H(h2 = αih1)

)

∪Bǫ
H(h1 =

0) ∪Bǫ
H(h2 = 0). Applying the limit d → 0, we have

lim
d→0

fD(d) =
∑

i∈NRI

lim
d→0

PHifD(d|EHi) + lim
d→0

Ph1
fD(d|Eh1

)

+ lim
d→0

Ph2
fD(d|Eh2

) + lim
d→0

P ′fD(d|Ec
H).

Since the minimum cluster distance is non-zero for all

(h1, h2) /∈ B′, the last term of the right-hand side expression

reduces to 0. We have

lim
d→0

fD(d) =
1

σh

√

2

π

(

∑

i∈NRI

1
√

w2
1i + w2

2i

+ 1

)

.

Let DjL be the random variable corresponding to the left

minimum cluster distance djL(f, h1, h2), and fDjL
(·) denote

its PDF. Similar to the computation of the distribution of

minimum cluster distance fD at zero in the region Bǫ
H(h2 =

αih1), i ∈ NRI, we can compute the distribution of left

minimum cluster distance fDjL
at zero in this region. We

assume that the left minimum cluster distance with reference

to (x1j , x2j) in the region Bǫ
H(h2 = αih1), i ∈ NRIL(j) is of

the form djL(fi, h1, h2) = |w(1i,jL)h1 + w(2i,jL)h2|, where

the constants w(1i,jL) = x1i − x′
1i > 0, x1i, x

′
1i,∈ A and

w(2i,jL) = x2i − x′
2i > 0, x2i, x

′
2i ∈ A are specific to this

region. We have,

lim
d→0

fDjL
(d|EHi) =

1

σhPHi

√

2

π

1
√

w2
(1i,jL) + w2

(2i,jL)

,

i ∈ NRIL(j). (9)

Similarly, let DjR be the random variable corresponding to the

right minimum cluster distance djR(f, h1, h2), and fDjR
(·)
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denote its PDF. We have,

lim
d→0

fDjR
(d|EHi) =

1

σhPHi

√

2

π

1
√

w2
(1i,jR) + w2

(2i,jR)

,

i ∈ NRIR(j).
(10)

B. Expected Pairwise Probability of Error

Theorem 1. If nodes A and C use a M -PAM constellation

A = {−(M −1),−(M −3), · · · (M −1)}, with channel coef-

ficients h1, h2 ∼ N (0, σ2
h), the expected pairwise probability

of error in decoding any network-coded combination at the

relay in the limit SNR → ∞ is given as

lim
SNR→∞

E[Pe] =
FP

√
Es√

SNR

∫ ∞

0

Q

(

t

2

)

dt, (11)

where Es is the average energy in A, FP depends on the set

of network maps chosen, and is given as

FP =

√

2

π

(

∑

i∈NRI

1
√

w2
1i + w2

2i

+ 1

)

. (12)

The expected pairwise probability of error is given as

E[Pe] =

∫ ∞

0

Q

(

x

2σN

)

fD(x)dx,

where σ2
N is the noise-variance at the relay. Let t = x

σN
. We

have dx = σNdt. Then,

E[Pe] =

∫ ∞

0

Q

(

t

2

)

fD(σN t)σNdt.

Dividing both sides by σN , and applying the limit σN → 0,

we have

lim
σN→0

E[Pe]

σN

= lim
σN→0

∫ ∞

0

Q

(

t

2

)

fD(σN t)dt,

=

∫ ∞

0

Q

(

t

2

)

lim
σN→0

fD(σN t)dt,

=
FP

σh

∫ ∞

0

Q

(

t

2

)

dt,

where FP is given by (12). We have

lim
σN→0

E[Pe] =
FPσN

σh

∫ ∞

0

Q

(

t

2

)

dt.

We define SNR =
Esσ

2
h

σ2
N

, where Es is the average energy of

the constellation A. The limit σN → 0 is equivalent to the

limit SNR → ∞. Therefore, we get (11). Since the expected

pairwise error probability scales with 1√
SNR

, the diversity

order is 0.5.

Remark: Performance of two different network mapping

strategies can be compared by computing the constants F
(1)
P

and F
(2)
P in (11). The SNR gain of network map 1 over

network map 2 is seen to be 20 log10
F

(1)
P

F
(2)
P

dB.

C. Approximate expected overall probability of error

Theorem 2. If nodes A and C use a M -PAM constellation

A = {−(M −1),−(M −3), · · · (M −1)}, with channel coef-

ficients h1, h2 ∼ N (0, σ2
h), the expected overall probability of

error in decoding any network-coded combination at the relay

in the limit SNR → ∞ can be approximated as

lim
SNR→∞

E[P ′
e] ≈

F ′
P

√
Es√

SNR

∫ ∞

0

Q
(u

2

)

du, (13)

where Es is the average energy in A, F ′
P depends on the set

of network maps chosen, and is given as

F ′
P =

1

M2

√

2

π

(

M2
∑

j=1

(

∑

i∈NRIL(j)

1
√

w2
(1i,jL) + w2

(2i,jL)

+
∑

i∈NRIR(j)

1
√

w2
(1i,jR) + w2

(2i,jR)

)

+ 2M(M − 1)

)

.

(14)

Let us denote the overall probability of error in decoding the

cluster at the relay at the given channel coefficients h1, h2 as

P ′
e(h1, h2) (or simply P ′

e). We can write the expected overall

probability of error as

E[P ′
e] =

L
∑

i=1

PHiE[P ′
e|EHi] + Ph1

E[P ′
e|Eh1

] + Ph2
E[P ′

e|Eh2
]

+ P ′E[P ′
e|Ec

H ],
where the events EHi, Eh1 , Eh2 , E

c
H and probabilities

PHi, Ph1 , Ph2 , P
′ are as defined earlier. Dividing both sides

by σN , and applying the limit σN → 0, we have

lim
σN→0

E[P ′
e]

σN

= lim
σN→0

1

σN

(

L
∑

i=1

PHiE[P ′
e|EHi] + Ph1E[P ′

e|Eh1 ]

+ Ph2
E[P ′

e|Eh2
]
)

. (15)

Next, we compute limσN→0
E[P ′

e|EHi]
σN

. We can write

P ′
e =

M2
∑

j=1

P ′
e|x1j ,x2j

Pr(x1j , x2j),

where P ′
e|x1j ,x2j

is the error probability given the symbol pair

(x1j , x2j) is transmitted from nodes A and C, and Pr(x1j , x2j)
is the probability that the pair (x1j , x2j) is transmitted. Let us

assume that every pair (x1j , x2j) ∈ A2 is equally likely with

probability 1
M2 . We can approximate P ′

e|x1j ,x2j
≈ Q

(

djL

2σN

)

+

Q
(

djR

2σN

)

, where djL and djR are the left minimum cluster

distance and right minimum cluster distance, respectively, with

reference to (x1j , x2j). We have

P ′
e ≈

1

M2

M2
∑

j=1

Q

(

djL
2σN

)

+Q

(

djR
2σN

)

.

Taking expectation conditioned on EHi both the sides, we

have

E[P ′
e|EHi] ≈

1

M2

M2
∑

j=1

E

[

Q

(

djL
2σN

)∣

∣

∣

∣

EHi

]

+ E

[

Q

(

djR
2σN

)∣

∣

∣

∣

EHi

]

.

Dividing both sides by σN , and applying the limit σN → 0,

we have

lim
σN→0

E[P ′
e|EHi]

σN

≈

lim
σN→0

1

M2σN

M2
∑

j=1

E

[

Q

(

djL
2σN

)
∣

∣

∣

∣

EHi

]

+E

[

Q

(

djR
2σN

)∣

∣

∣

∣

EHi

]

,
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=
1

M2

∫ ∞

0

Q

(

t

2

)( M2
∑

j=1

lim
σN→0

fDjL
(σN t|EHi)

+ lim
σN→0

fDjR
(σN t|EHi)

)

dt.

The other conditional expectations in (15) can be derived using

results from III-D2. Using these in (15), we have

lim
σN→0

E[P ′
e]

σN

≈ F ′
P

σh

∫ ∞

0

Q

(

t

2

)

,

where F ′
P is given by (14). Writing in terms of SNR =

Esσ
2
h

σ2
N

,

we have (13).

Remark: From (11) and (13), we see that the expected error

probabilities depend on the constants FP and F ′
P . In order to

minimize the error probabilities, it is desirable to use network

maps that can minimize these constants. Specifically, using

network maps that have a large minimum cluster distance

implies a smaller value for these constants, and thus minimize

the error probabilities. It is optimal to use network maps that

have |NRI| = 0. Even though we can construct ring-linear

network maps to ensure |NRI| = 0, not all such maps are

guaranteed to be valid. For this purpose, non-linear network

maps could be considered, whose construction we discuss in

our earlier work [14].

D. Lower bounds

In this section, we derive lower bounds on pairwise and

overall error probabilities for any network map.

1) Pairwise error probability:

Theorem 3. If nodes A and C use a M -PAM constellation

A = {−(M −1),−(M −3), · · · (M −1)}, with channel coef-

ficients h1, h2 ∼ N (0, σ2
h), the expected pairwise probability

of error in decoding any network-coded combination at the

relay in the limit SNR → ∞ can be lower bounded as

lim
SNR→∞

E[Pe] ≥
√
Es√

SNR

√

2

π

∫ ∞

0

Q

(

t

2

)

dt. (16)

The constant FP in the expected pairwise probability of

error is given as

FP = lim
d→0

fD(d)σh,

=σh

∑

i∈NRI

lim
d→0

PHifD(d|EHi)

+ lim
d→0

Ph1fD(d|Eh1) + lim
d→0

Ph2fD(d|Eh2). (17)

The expected pairwise probability of error can be minimized

by minimizing FP , which depends on the set of network

maps {f1, f2, · · · , fL+2} chosen. Specifically, if we choose

the network maps such that NRI = {φ}, the summation term

in (17) reduces to zero, which minimizes FP . The other two

terms are non-zero irrespective of the set of network maps

chosen. Hence, the minimum value of FP is

F
(min)
P = lim

d→0
Ph1

fD(d|Eh1
)σh + lim

d→0
Ph2

fD(d|Eh2
)σh.

Next, we characterize the minimum cluster distance in the

regions Bǫ
H(h2 = 0) and Bǫ

H(h1 = 0), which are used

to derive F
(min)
P . Let us consider the region Bǫ

H(h2 = 0)
in the neighborhood of h2 = 0. Assume that the region is

small enough that |h2

h1
| < 1

M
∀ (h1, h2) ∈ Bǫ

H(h2 = 0).
Let us consider the ordered subsets of transmit symbol pairs,

λ1, λ2, · · ·λM ⊂ A2, where λl = {(2l − M − 1, v1), (2l −
M − 1, v2), · · · (2l − M − 1, vM )}. Here, v1, v2 · · · vM ∈
A, vi 6= vj are ordered such that v1h2 ≤ v2h2 · · · ≤ vMh2. Let

T1, T2 · · ·TM ⊂ MB be ordered subsets of points in the relay

constellation MB , where Tl = {(2l−M −1)h1+v1h2, (2l−
M − 1)h1 + v2h2, · · · (2l−M − 1)h1 + vMh2}. We note that

the points in Tl collapse to the point (2l−M−1)h1 ∈ MB at

h2 = 0. Also, the points in Tl are ordered according to their

positions in MB from left to right. It can be proved that, for a

given (h1, h2) ∈ Bǫ
H(h2 = 0), the minimum distance between

points in MB is the distance between any two adjacent points

in Tl, which is µmin = 2|h2|. This corresponds to transmit

pairs of the form (x1, x2), (x1, x2 ± 2) ∈ A2. The network

map fL+2 associated with the region Bǫ
H(h2 = 0) ⊂ ΛL+2

needs to satisfy the Exclusive law as follows.

fL+2(a, b) 6= fL+2(a, b
′) ∀ b 6= b′, a, b, b′ ∈ A. (18)

So, we have fL+2(x1, x2) 6= fL+2(x1, x2±2) ∀ x1, x2, (x2±
2) ∈ A. Since the pairs (x1, x2) and (x1, x2±2) are network-

mapped to different values, the minimum cluster distance

in MB in the region (h1, h2) ∈ Bǫ
H(h2 = 0) is 2|h2|,

corresponding to transmit pairs of the form (x1, x2), (x1, x2±
2) ∈ A2.

Similarly, we can prove that the minimum cluster distance in

MB in the region Bǫ
H(h1 = 0) is 2|h1|, and the corresponding

transmit pairs are of the form (x1, x2), (x1 ± 2, x2) ∈ A2.

Let fD be the PDF of the random variable D corre-

sponding to the minimum cluster distance d = 2|h1| (in

the region Bǫ
H(h1 = 0)), and d = 2|h2| (in the region

Bǫ
H(h2 = 0)). Substituting for limd→0 fD(d|Eh1

) (refer VI-B)

and limd→0 fD(d|Eh2), we have

F
(min)
P =

√

2

π
.

Irrespective of the network maps assigned to the regions

Bǫ
H(h1 = 0) and Bǫ

H(h2 = 0), we have limd→0 fD > 0
for these regions. Thus, we have the lower bound (16) for the

expected pairwise probability of error.

2) Overall error probability:

Theorem 4. If nodes A and C use a M -PAM constellation

A = {−(M −1),−(M −3), · · · (M −1)}, with channel coef-

ficients h1, h2 ∼ N (0, σ2
h), the expected overall probability of

error in decoding any network-coded combination at the relay

in the limit SNR → ∞ can be lower bounded as

lim
SNR→∞

E[P ′
e] ≥

4(M − 1)
√
Es√

2πM
√
SNR

∫ ∞

0

Q
(u

2

)

du. (19)

Similar to the case of pairwise error, the expected overall

error probability can be minimized by choosing a set of

network maps {f1.f2, · · · fL+2} such that NRI = {φ}. Then,

we have

lim
σN→0

E[P ′
e]

σN

(min)

= lim
σN→0

Ph1

E[P ′
e|Eh1

]

σN

+ Ph2

E[P ′
e|Eh2

]

σN

.

(20)

We first compute limσN→0
1

σN
E[P ′

e|Eh2 ] in the right-hand

side expression. Let P ′
e|(l,p) denote the overall probability of

error in decoding at the relay, given the transmit symbol pair

(2l−M − 1, vp) ∈ Λl. We can write P ′
e|(l,p) = Q

(

dL(l,p)

2σN

)

+

Q
(

dR(l,p)

2σN

)

, where dL(l,p) and dR(l,p) are the left and right
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minimum cluster distances, respectively, with reference to

(2l−M − 1, vp). Let DL(l,p) and DR(l,p) denote the random

variables corresponding to dL(l,p) and dR(l,p), respectively. We

have

E[P ′
e|Eh2

] =
1

M2

M
∑

l=1

M
∑

p=1

E[P ′
e|(l,p)|Eh2

],

=
1

M2

M
∑

l=1

M
∑

p=1

∫ ∞

0

Q

(

t

2σN

)

fDL(l,p)
(t|Eh2)dt

+

∫ ∞

0

Q

(

t

2σN

)

fDR(l,p)
(t|Eh2

)dt,

where fDL(l,p)
and fDR(l,p)

denote the PDFs of DL(l,p) and

DR(l,p), respectively. Dividing both sides by σ2
N , and applying

the limit σN → 0, we have

lim
σN→0

E[P ′
e|Eh2

]

σN

=

1

M2

∫ ∞

0

Q
(u

2

)

(

lim
σN→0

M
∑

l=1

M
∑

p=1

fDL(l,p)
(σNu|Eh2

)

+ fDR(l,p)
(σNu|Eh2

)

)

du.

The expressions for limd→0 fDL(l,p)
(d|Eh2

) and

limd→0 fDR(l,p)
(d|Eh2

) are derived in VI-C. Using them, we

get

lim
σN→0

E[P ′
e|Eh2 ]

σN

=
M − 1

σhPh2M

√

2

π

∫ ∞

0

Q
(u

2

)

du.

Similarly, deriving limσN→0
E[P ′

e|Eh1
]

σN
and substituting in

(20), we get

lim
σN→0

E[P ′
e]

σN

(min)

=
4(M − 1)

σhM
√
2π

∫ ∞

0

Q
(u

2

)

du.

In terms of SNR =
Esσ

2
h

σ2
N

, we have the lower bound (19).

IV. M2-QAM

In this section we consider the case of A being M2-QAM,

and channel coefficients (h1, h2) being iid CN (0, σ2
h). We

compute the expected pairwise probability of error at high

SNR, and a lower bounds for this. The expected pairwise

probability of error in the limit SNR tends to infinity can be

computed from the PDF of minimum cluster distance vector at

zero. For this, we consider regions as in the case of M -PAM,

and compute the PDF at zero separately for each region. This

can be used to compute the overall PDF of minimum cluster

distance vector at zero. Since the analysis is mostly similar to

the case of M -PAM, we only outline the method, and provide

the final expressions.

A. Distribution of minimum cluster distance

Consider the standard M2-QAM constellation

A = {u+iv : u, v ∈ {−(M−1),−(M−3), · · · (M−1)}} with

M being a power of 2. Let h1 = hR1+ihI1, h2 = hR2+ihI2,

where the variances of hR1, hI1, hR2, hI2 are
σ2
h

2 each. Let

D be the random vector corresponding to the minimum

cluster distance vector D = [dR dI ]. Let fD(·) denote

the PDF of D. As in the case of M -PAM, to compute

limdR→0
dI→0

fD(dR, dI), we consider the following method.

Minimum cluster distance d(f, h1, h2) can be 0 in the

following three cases: (1) h2

h1
= αi, i ∈ NRI, h1, h2 6= 0,

(2) h2 = 0, and (3) h1 = 0. As in the case of M -PAM,

we consider the regions (i) Bǫ
H(h2 = αih1), i ∈ NRI, (ii)

Bǫ
H(h1 = 0), and (iii) Bǫ

H(h2 = 0) in R
4 that satisfy the

following properties.

1) {(hR1, hI1, hR2, hI2) ∈ R
4 : hR2+ihI2

hR1+ihI1
= αi} ⊂

Bǫ
H(h2 = αih1) ⊂ Λi, i ∈ NRI,

2) {(hR1, hI1, hR2, hI2) ∈ R
4 : hR1, hI1 = 0} ⊂

Bǫ
H(h1 = 0) ⊂ ΛL+1,

3) {(hR1, hI1, hR2, hI2) ∈ R
4 : hR2, hI2 = 0} ⊂

Bǫ
H(h2 = 0) ⊂ ΛL+2.

The minimum cluster distance vector in these regions are

of the form D = [|ℜ{c1h1 + c2h2}| |ℑ{c1h1 + c2h2}|] where

the constants c1, c2 ∈ C are specific to each region. So,

PDF of minimum cluster distance vector at zero can be found

separately for these regions, and used to compute the overall

PDF of minimum cluster distance vector at zero. We can show

that

lim
dR→0
dI→0

fD(dR, dI) =
4

πσ2
h

(

∑

i∈NRI

1

|w1i|2 + |w2i|2
+

1

2

)

.

B. Expected pairwise Probability of Error

Theorem 5. If nodes A and C use a M2-QAM constellation

A = {u+ iv : u, v ∈ {−(M − 1),−(M − 3), · · · (M − 1)}},

with channel coefficients h1, h2 ∼ CN (0, σ2
h), the expected

pairwise probability of error in decoding any network-coded

combination at the relay in the limit SNR → ∞ is given as

lim
SNR→∞

E[Pe] =
π

4

FQEs

SNR

∫ ∞

0

rQ
(r

2

)

dr, (21)

where Es is the average energy in A, FQ depends on the set

of network maps chosen, and is given by (22)

The expected pairwise probability of error is given by the

expression

E[Pe] =

∫ ∞

0

∫ ∞

0

Q

(

√

x2 + y2

2σN

)

fD(x, y)dxdy.

Let x = σNr cos θ and y = σNr sin θ. Then, we have

E[Pe] = σ2
N

∫ ∞

0

∫ π
2

0

Q
(r

2

)

fD(σNr cos θ, σNr sin θ)rdθdr.

Dividing both sides by σ2
N , and applying the limit σN → 0,

we can show that

lim
σN→0

E[Pe] =
π

2

FQσ
2
N

σ2
h

∫ ∞

0

rQ
(r

2

)

dr.

FQ = lim
dR→0
dI→0

fD(dR, dI)σ
2
h,

=
4

π

(

∑

i∈NRI

1

|w1i|2 + |w2i|2
+

1

2

)

. (22)

In terms of SNR =
Esσ

2
h

2σ2
N

, we have (21).

C. Lower bound on expected pairwise error probability

In this section, we derive a lower bound on pairwise error

probability for any network map.
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Theorem 6. If nodes A and C use a M2-QAM constellation

A = {u+ iv : u, v ∈ {−(M − 1),−(M − 3), · · · (M − 1)}},

with channel coefficients h1, h2 ∼ CN (0, σ2
h), the expected

pairwise probability of error in decoding any network-coded

combination at the relay in the limit SNR → ∞ can be lower

bounded as

E[Pe] ≥
Es

2SNR

∫ ∞

0

rQ
(r

2

)

dr. (23)

The expected pairwise probability of error is given by the

expression (from (21))

lim
SNR→∞

E[Pe] =
π

4

FQEs

SNR

∫ ∞

0

rQ
(r

2

)

dr,

where

FQ = σ2
h

∑

i∈NRI

lim
dR→0
dI→0

PHifD(dR, dI |EHi)

+ lim
dR→0
dI→0

Ph1
fD(dR, dI |Eh1

) + lim
dR→0
dI→0

Ph2
fD(dR, dI |Eh2

).

(24)
The expected pairwise probability of error can be minimized

by minimizing FQ, which depends on the set of network

maps {f1, f2, · · · , fL+2} chosen. Specifically, if we choose

the network maps such that NRI = {φ}, the summation term

in (24) reduces to zero, which minimizes FQ. The other two

terms are non-zero irrespective of the set of network maps

chosen. Hence, the minimum value of FQ is

F
(min)
Q = lim

dR→0
dI→0

Ph1fD(dR, dI |Eh1)σ
2
h

+ lim
dR→0
dI→0

Ph2fD(dR, dI |Eh2)σ
2
h.

The corresponding minimum expected pairwise probability of

error is

lim
SNR→∞

E[Pe]
(min) =

π

4

F
(min)
Q Es

SNR

∫ ∞

0

rQ
(r

2

)

dr. (25)

This also gives us a lower bound for the expected pairwise

probability of error. We can show that FQ = 2
π

. This can be

derived using a method similar to that used for deriving FP in

section III-D1. Substituting for FQ in (25), we have the lower

bound (23).
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Fig. 8: Overall error probability- 4-PAM.
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V. SIMULATION RESULTS

A. Comparison with other schemes

In this section, we compare error performance of ring-based

non-linear network mapping strategy with some of the earlier

strategies: (i) Integer-sum based linear network mapping strat-

egy [17] (ii) Field based linear network mapping strategy [16]

(iii) Bitwise-XOR based network mapping strategy [11].

In the ring based network mapping strategy, we consider

a set of network maps FR = {fR
1 , fR

2 , · · · fR
L+2}, of which

each map fR
i is a linear or non-linear network map over the

ring Z4 = {0, 1, 2, 3} for 4-PAM and over the ring Z4[i] =
{u + iv : u, v ∈ Z4} for 16-QAM. The set of network maps

FR is chosen such that NRI = {φ}. In the Integer-sum based

network mapping strategy [17], we consider a set of network

maps FI = {f I
1 , f

I
2 , · · · f I

L+2}, of which each map f I
i is a

linear network map over Z4 = {0, 1, 2, 3} for 4-PAM and over

Z16 = {0, 1, · · · 15} for 16-QAM. In the field based network
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mapping strategy [16], we consider a set of network maps

FF = {fF
1 , fF

2 , · · · fF
L+2}, of which each map fF

i is a linear

network map over the field F4 for 4-PAM and over the field

F16 for 16-QAM. In the XOR based clustering strategy [11],

we consider a single network map fXOR that corresponds to

decoding the bit-wise XOR of the transmit symbols. For the

ring-based strategy, network maps from FR are assigned to

different regions in (h1, h2)-space, as described in section II.

For the other strategies, the network map for a given h1, h2 is

chosen based on a distance criterion as suggested in [11].

We consider a block fading channel with channel coeffi-

cients h1, h2 ∼ N (0, σ2
h) for 4-PAM transmit constellation

and h1, h2 ∼ CN (0, σ2
h) for 16-QAM transmit constellation.

In Figure 8, we consider a 4-PAM transmit constellation and

plot the expected overall error probabilities for ring-based

strategy at different SNRs. These are based on the expression

(13). For comparison, we plot the overall symbol error rates

at the relay for integer-sum based, field based and bitwise-

XOR based strategies, obtained using simulation as follows.

We transmit blocks of N symbols form nodes A and C, and

determine the number of symbol errors after estimating the

network-mapped symbols at the relay. A block is considered

to be in error if there is at least one symbol error. We count up

to 100 block errors to compute the symbol error rate. As seen

from the Figure, we note that the error performance of ring-

based non-linear strategy is better than that for all the other

strategies. This is because, the ring-based strategy considers

both linear and non-linear maps unlike the other strategies,

which results in larger distances between points from different

clusters in the relay constellation.

In Figure 9, we consider a 16-PAM transmit constellation

and plot the expected pairwise error probabilities for ring-

based strategy at different SNRs. These are based on the

expression (21). For comparison, we plot the pairwise symbol

error rates at the relay for integer-sum based, field based and

bitwise-XOR based strategies, obtained using simulation as

follows. We transmit blocks of N symbols from nodes A

and C. For each block, the minimum cluster distance dCmin is

computed using (1) from the values of h1, h2 and the network

map chosen. For determining the pairwise symbol error rate,

we consider a binary-input additive white Gaussian channel:

y = x + n, where x ∈
{

−dC
min

2 ,
dC
min

2

}

, n ∼ CN (0, 2σ2
N ) for

16-QAM. For each transmit block we determine the number

of symbol errors after estimating these transmitted symbols

from the received values of the channel. We count up to 500
block errors for to compute the pairwise symbol error rate.

As seen from the Figure, we note that the error performance

of ring-based non-linear network mapping strategy is better

than that of all the other strategies. The ring-based non-linear

network mapping strategy requires the construction of non-

linear network maps, which results in additional complexity.

However, this may be done off-line using methods proposed

in our earlier work [14].

B. Comparison of results from analysis with simulated results

In this section, we consider a M -PAM transmit constel-

lation and compare the error performance results obtained

from analysis and simulation for the each of the following

network mapping strategies: (i) Ring-based non-linear network

mapping strategy (ii) Field based linear network mapping

strategy (iii) Bitwise-XOR based network mapping strategy.

Specifically, we plot in Figure 10 expected pairwise error prob-

abilities (using (11)) and pairwise symbol error rates (based

on simulation) at different SNRs. The expected pairwise error

probability plot for the ring-based network mapping strategy

also forms the lower bound, since in this case |NRI| = 0.

For the ring based, field based and XOR based strategies, we

consider sets of network maps denoted FR, FF and FXOR,

respectively, and choose a map for a given h1, h2 from these

sets based on the method described in section II. From the

plots we see that for SNR > 30 dB, the results obtained

using analysis are close to the simulated results.

VI. CONCLUSION

In this work, we considered a bidirectional relaying setup

and characterized the error performance in decoding the

network-coded combination at the relay at high SNR. Specif-

ically, we derived expressions for the expected pairwise error

probability (with M -PAM and M2-QAM transmit constel-

lations) and approximate expected overall error probability

(with M -PAM transmit constellation). Also, we derived lower

bounds for these. Using the expressions for error probability,

we compare the error performance of ring based non-linear

network mapping strategy with other network mapping strate-

gies such as field based and bitwise-XOR based strategies.

Based on the results obtained, we find that the ring based

strategy is better than the other strategies. This is consistent

with the simulated results and also with the results from our

earlier work.

APPENDIX

A. PDF of minimum cluster distance in the region Bǫ
H(h2 =

αih1) for M -PAM

Let us consider the linear transformation

y1 = w1ih1 + w2ih2, (26)

y2 = h2. (27)

Since w1i, w2i > 0∀ i ∈ NRI, this transformation is always in-

vertible. This transformation maps the region Bǫ
H(h2 = αih1)

to the region BY i = {(y1, y2) : A−1
i Y T ∈ Bǫ

H(h2 = αih1)},

where Ai = [w1i w2i
0 1 ], and Y = [y1 y2]. Let EY i be the event

that (y1, y2) ∈ BY i. We note that the events EHi and EY i are

equivalent since there is an one-to-one mapping between the

regions Bǫ
H(h2 = αih1) and BY i (equations (26), (27)). Let

Y and H be the random vectors corresponding to Y = [y1 y2]
and H = [h1 h2], respectively. The PDF of H conditioned on

the event EHi is computed as

fH(h1, h2|EHi) =
1

2πσ2
hPHi

exp

(

−h2
1 + h2

2

2σ2
h

)

,

(h1, h2) ∈ Bǫ
H(h2 = αih1), (28)

where PHi = Pr(EHi). The PDF of Y conditioned on the

event EY i can be computed as

fY(Y |EY i) = |J(Y )|fH(A−1
i Y T |EHi),
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where |J(Y )| = 1
|w1i| is the determinant of Jacobian matrix

corresponding to the linear transformation. The PDF of the

random variable Y1 corresponding to y1 can be computed by

marginalizing the PDF of Y as follows.

fY1
(y1|EY i) =

∫

R(y1)

|J(y1, y2)|fY(y1, y2|EY i)dy2,

=
1

|w1i|

∫

R(y1)

fH

(

y1 − w2iy2
w1i

, y2

∣

∣

∣

∣

EHi

)

dy2,

where the integral is over the region R(y1) = {y2 :
fY(y1, y2|EY i) > 0}. It can be verified that the PDF of Y1 is

symmetric about 0. So, the PDF of the random variable D =
|Y1| can be computed as fD(d|EY i) = 2fY1

(d|EY i), d ≥ 0.

Applying the limit d → 0, we have

lim
d→0

fD(d|EY i) = lim
d→0

2fY1
(d|EY i),

= lim
d→0

2

|w1i|

∫

R(d)

fH

(

d− w2iy2
w1i

, y2

∣

∣

∣

∣

EHi

)

dy2,

=
2

|w1i|

∫ ∞

−∞
lim
d→0

fH

(

d− w2iy2
w1i

, y2

∣

∣

∣

∣

EHi

)

dy2,

=
2

2πσ2
h|w1i|PHi

∫ ∞

−∞
exp

(

− y22
2σ2

h

(

1 +
w2

2i

w2
1i

))

dy2,

=
1

σhPHi

√

2

π

1
√

w2
1i + w2

2i

.

In the third step, the limit d → 0 is moved inside the

integration. This can be justified based on Bounded conver-

gence theorem. According to this, if a sequence of functions

{gn(x)} converges to the function g(x), where |gn(x)| ≤ K
for all n and g(x) is integrable, then

∫

gn(x) converges

to
∫

g(x). In our case, fH ≤ 1
2πσ2

h

and limd→0 fH( ) is

integrable. Also, in the limit d → 0, the region of integration

R(d) = R(0) = {y2 : fY(0, y2|EY i) > 0} = (−∞,∞). This

can be justified as follows: At h2

h1
= αi, i ∈ NRI, we have

d(fi, h1, h2) = w1ih1+w2ih2 = 0. So, as per the transforma-

tion in (26), (27), the region SHi = {(h1, h2) : h2 = αih1}
maps to the region SY i = {y1, y2 : y1 = 0, y2 ∈ (−∞,∞)}.

From (28), we have fH(h1, h2|EHi) > 0 ∀ (h1, h2) ∈ SHi.

So, fY(y1, y2|EY i) > 0 ∀ (y1, y2) ∈ SY i. Hence, R(0) =
(−∞,∞). Since the events EY i and EHi are equivalent, we

have (6).

B. PDF of minimum cluster distance in the region Bǫ
H(h2 =

0) for M -PAM

Let H be the random vector corresponding to H = [h1 h2].
The PDF of H conditioned on the event Eh2 is computed as

fH(h1, h2|Eh2) =
1

2πσ2
hPh2

exp

(

−h2
1 + h2

2

2σ2
h

)

,

(h1, h2) ∈ Bǫ
H(h2 = 0),

where Ph2
= Pr(Eh2

). The PDF of the random variable

H2 corresponding to h2 can be computed by marginalizing

the PDF of H. The PDF of H2 is symmetric about 0. So,

the PDF of the random variable D = 2|H2| is computed

as fD(d|Eh2
) = fH2

(

d
2

∣

∣Eh2

)

, d ≥ 0. Applying the limit

d → 0, we can show that,

lim
d→0

fD(d|Eh2
) =

1

σh

√
2πPh2

.

C. PDF of left and right minimum cluster distance in the

region Bǫ
H(h2 = 0) for M -PAM

In this section, we compute limd→0 fDL(l,p)
(d|Eh2

). We

consider the cases p = 1 and p 6= 1 separately. First, let us

consider the case p = 1. Let (h1, h2) ∈ Bǫ
H(h2 = 0). Consider

the symbol pair (2l−M−1, v1) ∈ Λl. This corresponds to the

point r1 = (2l−M−1)h1+v1h2 ∈ Tl, which is the left most

point in MB among the points in Tl. So, the left minimum

cluster distance in MB with reference to (2l−M − 1, v1) is

dL(l,1) = |r1 − r2|, for some r2 ∈ Tq, q 6= l. It can be proved

that |r1 − r2| > 0 ∀ (h1, h2) ∈ Bǫ
H(h2 = 0). So, we have

lim
d→0

fDL(l,p)
(d|Eh2

) = 0, p = 1.

Next, we consider the case p 6= 1. Consider the point r1 =
(2l − M − 1)h1 + vph2 ∈ Tl. The point r2 = (2l − M −
1)h1 + vp−1h2 ∈ Tl is to the left of r1 as per the ordering

in Tl. We have |r1 − r2| = 2|h2| (refer section III-D1), which

is also the minimum cluster distance in MB in the region

Bǫ
H(h2 = 0). So, r2 is adjacent, and to the left of r2, in MB .

Also, r1 and r2 correspond to transmit pairs from different

clusters. So, the left minimum cluster distance in MB with

reference to (2l −M − 1, vp) is 2|h2|. We have

lim
d→0

fDL(l,p)
(d|Eh2) =

1

σhPh2

√
2π

, p = 2, 3, · · ·M, (29)

which follows from results in section VI-B. Similarly, we can

derive

lim
d→0

fDR(l,p)
(d|Eh2

) =

{

0, p = M,
1

σhPh1

√
2π

, p = 1, 2, · · ·M − 1.
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