
EURASIP Journal on Applied Signal Processing 2002:9, 893–907

c© 2002 Hindawi Publishing Corporation

High-Level Synthesis of DSP Applications
Using Adaptive Negative Cycle Detection

Nitin Chandrachoodan

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
Email: nitin@eng.umd.edu

Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
Email: ssb@eng.umd.edu

K. J. Ray Liu

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
Email: kjrliu@eng.umd.edu

Received 31 August 2001 and in revised form 15 May 2002

The problem of detecting negative weight cycles in a graph is examined in the context of the dynamic graph structures that arise
in the process of high level synthesis (HLS). The concept of adaptive negative cycle detection is introduced, in which a graph
changes over time and negative cycle detection needs to be done periodically, but not necessarily after every individual change.
We present an algorithm for this problem, based on a novel extension of the well-known Bellman-Ford algorithm that allows us
to adapt existing cycle information to the modified graph, and show by experiments that our algorithm significantly outperforms
previous incremental approaches for dynamic graphs. In terms of applications, the adaptive technique leads to a very fast imple-
mentation of Lawlers algorithm for the computation of the maximum cycle mean (MCM) of a graph, especially for a certain form
of sparse graph. Such sparseness often occurs in practical circuits and systems, as demonstrated, for example, by the ISCAS 89/93
benchmarks. The application of the adaptive technique to design-space exploration (synthesis) is also demonstrated by developing
automated search techniques for scheduling iterative data-flow graphs.

Keywords and phrases: negative cycle detection, dynamic graphs, maximum cycle mean, adaptive performance estimation.

1. INTRODUCTION

High-level synthesis of circuits for digital signal processing
(DSP) applications is an area of considerable interest due to
the rapid increase in the number of devices requiring multi-
media and DSP algorithms. High-level synthesis (HLS) plays
an important role in the overall system synthesis process be-
cause it speeds up the process of converting an algorithm
into an implementation in hardware, software, or a mixture
of both. In HLS, the algorithm is represented in an abstract
form (usually a dataflow graph), and this representation is
transformed and mapped onto architectural elements from a
library of resources. These resources could be pure hardware
elements like adders or logic gates, or they could be general
purpose processors with the appropriate software to execute
the required operations. The architecture could also involve
a combination of both the above, in which case the problem
becomes one of hardware-software cosynthesis.

HLS involves several stages and requires computation of

several parameters. In particular, performance estimation is
one very important part of the HLS process, and the actual
design space exploration (synthesis of architecture) is an-
other. Performance estimation involves using timing infor-
mation about the library elements to obtain an estimate of
the throughput that can be obtained from the synthesized
implementation. A particularly important estimate for iter-
ative dataflow graphs is known as the maximum cycle mean
(MCM) [1, 2]. This quantity provides a bound on the max-
imum throughput attainable by the system. A fast method
for computing the MCM would therefore enable this metric
to be computed for a large number of system configurations
easily.

The other important problem in HLS is the problem of
design space exploration. This requires the selection of an ap-
propriate set of elements from the resource library and map-
ping of the dataflow graph functions onto these resources.
This problem is known to be NP-complete, and there exist
several heuristic approaches that attempt to provide suffi-

mailto:nitin@eng.umd.edu
mailto:ssb@eng.umd.edu
mailto:kjrliu@eng.umd.edu

894 EURASIP Journal on Applied Signal Processing

ciently good solutions. An important feature of HLS of DSP
applications is that the mapping to hardware needs to be
done only once for a given design, which is then produced in
large quantities for a consumer market. As a result, for these
applications (such as modems, wireless phones, multimedia
terminals, etc.), it makes sense to consider the possibility of
investing large amounts of computational power at compile
time, so that a more optimal result can be used at run time.

The problems in HLS described above both have the
common feature of requiring a fast solution to the problem
of detecting negative cycles in a graph. This is because the
execution times of the various resources combine with the
graph structure to impose a set of constraints on the system,
and checking the feasibility of this set of constraints is equiv-
alent to checking for the presence of negative cycles in the
corresponding constraint graph.

DSP applications, more than other embedded applica-
tions considered in HLS, have the property that they are
cyclic in nature. As explained in Section 2, this means that
the problem of negative cycle detection in constraint analy-
sis is more relevant to such systems. In order to make use of
the increased computational power that is available, one pos-
sibility is to conduct more extensive searches of the design
space than is performed by a single heuristic. One possible
approach to this problem involves an iterative improvement
system based on generating modified versions of an existing
implementation and verifying their correctness. The incre-
mental improvements can then be used to guide a search of
the design space that can be tailored to fit in the maximum
time allotted to the exploration problem. In this process, the
most computationally intensive part is the process of verify-
ing correctness of the modified systems, and therefore speed-
ing up this process would have a direct impact on the size of
the explored region of the design space.

In addition to these problems from HLS, several other
problems in circuits and systems theory require the solv-
ing of constraint equations [2, 3, 4, 5, 6]. Examples include
very large scale integrated circuit (VLSI) layout compaction,
interactive (reactive) systems, graphic layout heuristics, and
timing analysis and retiming of circuits for performance or
area considerations. Though a general system of constraints
would require a linear programming (LP) approach to solve
it, several problems of interest actually consist of the special
case of difference constraints (each constraint expresses the
minimum or maximum value that the difference of two vari-
ables in the system can take). These problems can be attacked
by faster techniques than the general LP, mostly involving the
solution of a shortest path problem on a weighted directed
graph. Detection of negative cycles in the graph is therefore a
closely related problem, as it would indicate the infeasibility
of the constraint system.

Because of the above reasons, detecting the presence of
negative cycles in a weighted directed graph is a very im-
portant problem in systems theory. This problem is also
important in the computation of network flows. Consider-
able effort has been spent on finding efficient algorithms for
this purpose. Cherkassky and Goldberg [3] have performed
a comprehensive survey of existing techniques. Their study

shows some interesting features of the available algorithms,
such as the fact that for a large class of random graphs, the
worst case performance bound is far more pessimistic than
the observed performance.

There are also situations in which it is useful or neces-
sary to maintain a feasible solution to a set of difference con-
straints as a system evolves. Typical examples of this would be
real-time or interactive systems, where constraints are added
or removed one (or several) at a time, and after each such
modification it is required to determine whether the result-
ing system has a feasible solution and if so, to find it. In these
situations, it is often more efficient to adapt existing infor-
mation to aid the solution of the constraint system. In the
example from HLS that was mentioned previously, it is pos-
sible to cast the problem of design space exploration in a way
that benefits from this approach.

Several researchers [5, 7, 8] have worked on the area of
incremental computation. They have presented analyses of al-
gorithms for the shortest path problem and negative cycle
detection in dynamic graphs. Most of the approaches try to
apply the modifications of Dijkstra’s algorithm to the prob-
lem. The obvious reason for this is that this is the fastest
known algorithm for the problem when only positive weights
are allowed on edges. However, the use of Dijkstra’s algo-
rithm as the basis for incremental computation requires the
changes to be handled one at a time. While this may often
be efficient enough, there are many cases where the ability
to handle multiple changes simultaneously would be more
advantageous. For example, it is possible that in a sequence
of changes, one reverses the effect of another: in this case, a
normal incremental approach would perform the same com-
putation twice, while a delayed adaptive computation would
not waste any effort.

In this paper, we present an approach that generalizes
the adaptive approach beyond single increments: we address
multiple changes to the graph simultaneously. Our approach
can be applied to cases where it is possible to collect several
changes to the graph structure before updating the solution
to the constraint set. As mentioned previously, this can re-
sult in increased efficiency in several important problems. We
present simulation results comparing our method against the
single-increment algorithm proposed in [4]. For larger num-
bers of changes, our algorithm performs considerably better
than this incremental algorithm.

To illustrate the advantages of our adaptive approach, we
present two applications from the area of HLS, requiring the
solution of difference constraint problems, which therefore
benefit from the application of our technique. For the prob-
lem of performance estimation, we show how the new tech-
nique can be used to derive a fast implementation of Lawler’s
algorithm [9] for the problem of computing the MCM of
a weighted directed graph. We present experimental results
comparing this against Howard’s algorithm [2, 10], which
appears to be the fastest algorithm available in practice. We
find that for graph sizes and node-degrees similar to those of
real circuits, our algorithm often outperforms even Howard’s
algorithm.

For the problem of design space exploration, we present a

High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection 895

search technique for finding schedules for iterative dataflow
graphs that uses the adaptive negative cycle detection al-
gorithm as a subroutine. We illustrate the use of this local
search technique by applying it to the problem of resource-
constrained scheduling for minimum power in the presence
of functional units that can operate at multiple voltages. The
method we develop is quite general and can therefore easily
be extended to the case of optimization where we are inter-
ested in optimizing other criteria rather than the power con-
sumption.

This paper is organized as follows. Section 2 surveys
previous work on shortest path algorithms and incremen-
tal algorithms. In Section 3, we describe the adaptive algo-
rithm that works on multiple changes to a graph efficiently.
Section 4 compares our algorithm against the existing ap-
proach, as well as against another possible candidate for
adaptive operation. Section 5 then gives details of the appli-
cations mentioned above, and presents some experimental
results. Finally, we present our conclusions and examine ar-
eas that would be suitable for further investigation.

A preliminary version of the results presented in this pa-
per were published in [11].

2. BACKGROUND AND PROBLEM FORMULATION

Cherkassky and Goldberg [3] have conducted an extensive
survey of algorithms for detecting negative cycles in graphs.
They have also performed a similar study on the problem
of shortest path computations. They present several prob-
lem families that can be used to test the effectiveness of
a cycle-detection algorithm. One surprising fact is that the
best known theoretical bound (O(|V ||E|), where |V | is the
number of vertices and |E| is the number of edges in the
graph) for solving the shortest path problem (with arbitrary
weights) is also the best known time bound for the negative
cycle problem. But examining the experimental results from
their work reveals the interesting fact that in almost all of the
studied samples, the performance is considerably less costly
than would be suggested by the product |V |× |E|. It appears
that the worst case is rarely encountered in random exam-
ples, and an average case analysis of the algorithms might be
more useful.

Recently, there has been increased interest in the sub-
ject of dynamic or incremental algorithms for solving prob-
lems [5, 7, 8]. This uses the fact that in several problems
where a graph algorithm such as shortest paths or transi-
tive closure needs to be solved, it is often the case that we
need to repeatedly solve the problem on variants of the origi-
nal graph. The algorithms therefore store information about
the problem that was obtained during a previous iteration
and use this as an efficient starting point for the new prob-
lem instance corresponding to the slightly altered graph. The
concept of bounded incremental computation introduced in
[7] provides a framework within which the improvement af-
forded by this approach can be quantified and analyzed.

In this paper, the problem we are most interested in is
that of maintaining a solution to a set of difference con-
straints. This is equivalent to maintaining a shortest path

tree in a dynamic graph [4]. Frigioni et al. [5] present an al-
gorithm for maintaining shortest paths in arbitrary graphs
that performs better than starting from scratch, while Rama-
lingam and Reps [12] present a generalization of the short-
est path problem, and show how it can be used to handle
the case where there are few negative weight edges. In both
of these cases, they have considered one change at a time
(not multiple changes), and the emphasis has been on the
theoretical time bound, rather than experimental analysis. In
[13], the authors present an experimental study, but only for
the case of positive weight edges, which restricts the study to
computation of shortest paths and does not consider nega-
tive weight cycles.

The most significant work along the lines we propose is
described in [4]. In this, the authors use the observation that
in order to detect negative cycles, it is not necessary to main-
tain a tree of the shortest paths to each vertex. They suggest
an improved algorithm based on Dijkstra’s algorithm, which
is able to recompute a feasible solution (or detect a negative
cycle) in timeO(E+V logV), or in terms of output complexity
(defined and motivated in [4]) O(‖∆‖ + |∆| log |∆|), where
|∆| is the number of variables whose values are changed
and ‖∆‖ is the number of constraints involving the variables
whose values have changed.

The above problem can be generalized to allow multiple
changes to the graph between calls to the negative cycle de-
tection algorithm. In this case, the above algorithms would
require the changes to be handled one at a time, and therefore
would take time proportional to the total number of changes.
On the other hand, it would be preferable if we could obtain
a solution whose complexity depends on the number of up-
dates requested, rather than the total number of changes ap-
plied to the graph. Multiple changes between updates to the
negative cycle computation arise naturally in many interac-
tive environments (e.g., if we prefer to accumulate changes
between refreshes of the state, using the idea of lazy evalua-
tion) or in design space-exploration, as can be seen, for ex-
ample, in Section 5.2. By accumulating changes and process-
ing them in large batches, we remove a large overhead from
the computation, which may result in considerably faster al-
gorithms.

Note that the work in [4] also considers the addition/
deletion of constraints only one at a time. It needs to be
emphasized that this limitation is basic to the design of the
algorithm: Dijkstra’s algorithm can be applied only when
the changes are considered one at a time. This is accept-
able in many contexts since Dijkstra’s algorithm is the fastest
algorithm for the case where edge weights are positive. If we
try using another shortest paths algorithm we would incur a
performance penalty. However, as we show, this loss in per-
formance in the case of unit changes may be offset by im-
proved performance when we consider multiple changes.

The approach we present for the solution is to extend
the classical Bellman-Ford algorithm for shortest paths in
such a way that the solution obtained in one problem in-
stance can be used to reduce the complexity of the solution
in modified versions of the graph. In the incremental case
(single change to the graph) this problem is related to the

896 EURASIP Journal on Applied Signal Processing

problem of analyzing the sensitivity of the algorithm [14].
The sensitivity analysis tries to study the performance of an
algorithm when its inputs are slightly perturbed. Note that
there do not appear to be any average case sensitivity anal-
yses of the Bellman-Ford algorithm, and the approach pre-
sented in [14] has a quadratic running time in the size of
the graph. This analysis is performed for a general graph
without regard to any special properties it may have. But as
explained in Section 5.1.1, graphs corresponding to circuits
and systems in HLS for DSP are typically very sparse—most
benchmark graphs tend to have a ratio of about 2 edges per
vertex, and the number of delay elements is also small rel-
ative to the total number of vertices. Our experiments have
shown that in these cases, the adaptive approach is able to
do much better than a quadratic approach. We also pro-
vide application examples to show other potential uses of the
approach.

In the following sections, we show that our approach
performs almost as well as the approach in [4] (experimen-
tally) for changes made one at a time, and significantly out-
performs their approach under the general case of multi-
ple changes (this is true even for relatively small batches of
changes, as will be seen from the results). Also, when the
number of changes between updates is very large, our algo-
rithm reduces to the normal Bellman-Ford algorithm (start-
ing from scratch), so we do not lose in performance. This is
important since when a large number of changes are made,
the problem can be viewed as one of solving the shortest-
path problem for a new graph instance, and we should not
perform worse than the standard available technique for that.

Our interest in adaptive negative cycle detection stems
primarily from its application in the problems of HLS that
we outlined in the introduction. To demonstrate its useful-
ness in these areas, we have used this technique to obtain
improved implementations of the performance estimation
problem (computation of the MCM) and to implement an it-
erative improvement technique for design space exploration.
Dasdan et al. [2] present an extensive study of existing al-
gorithms for computing the MCM. They conclude that the
most efficient algorithm in practice is Howard’s algorithm
[10]. We show that the well-known Lawler’s algorithm [9],
when implemented using an efficient negative cycle detec-
tion technique and with the added benefit of our adaptive
negative cycle detection approach, actually outperforms this
algorithm for several test cases, including several of the IS-
CAS benchmarks, which represent reasonable sized circuits.

As mentioned previously, the relevance of negative cycle
detection to design space exploration is because of the cyclic
nature of the graphs for DSP applications. That is, there is of-
ten a dependence between the computation in one iteration
and the values computed in previous iterations. Such graphs
are referred to as iterative dataflow graphs [15]. Traditional
scheduling techniques tend to consider only the latency of
the system, converting it to an acyclic graph if necessary. This
can result in loss of the ability to exploit inter-iteration par-
allelism effectively. Methods such as optimum unfolding [16]
and range-chart guided scheduling [15] are techniques that try
to avoid this loss in potential parallelism by working directly

on the cyclic graph. However, they suffer from some disad-
vantages of their own. Optimum unfolding can potentially
lead to a large increase in the size of the resulting graph to
be scheduled. Range chart guided scheduling is a determin-
istic heuristic that could miss potential solutions. In addi-
tion, the process of scanning through all possible time inter-
vals for scheduling an operation can work only when the run
times of operations are small integers. This is more suited to
a software implementation than a general hardware design.
These techniques also work only after a function to resource
binding is known, as they require timing information for the
functions in order to schedule them. For the general architec-
ture synthesis problem, this binding itself needs to be found
through a search procedure, so it is reasonable to consider
alternate search schemes that combine the search for archi-
tecture with the search for a schedule.

If the cyclic dataflow graph is used to construct a con-
straint graph, then feasibility of the resulting system is de-
termined by the absence of negative cycles in the graph. This
can be used to obtain exact schedules capable of attaining the
performance bound for a given function to resource bind-
ing. For the problem of design space exploration, we treat the
problem of scheduling an iterative dataflow graph (IDFG) as
a problem of searching for an efficient ordering of function
vertices on processors, which can be treated as addition of
several timing constraints to an existing set of constraints.
We implement a simple search technique that uses this ap-
proach to solve a number of scheduling problems, includ-
ing scheduling for low-power on multiple-voltage resources,
and scheduling on homogeneous processors, within a single
framework. Since the feasibility analysis forms the core of the
search, speeding this up should result in a proportionate in-
crease in the number of designs evaluated (until such a point
that this is no longer the bottleneck in the overall compu-
tation). The adaptive negative cycle detection technique en-
sures that we can do such searches efficiently, by restricting
the computations required.

3. THE ADAPTIVE BELLMAN-FORD ALGORITHM

We present the basis of the adaptive approach that enables
efficient detection of negative cycles in dynamic graphs.

We first note that the problem of detecting negative cy-
cles in a weighted directed graph (digraph) is equivalent to
finding whether or not a set of difference inequality con-
straints has a feasible solution. To see this, observe that if we
have a set of difference constraints of the form

xi − x j ≤ bi j , (1)

we can construct a digraph with vertices corresponding to
the xi, and an edge (ei j) directed from the vertex correspond-
ing to xi to the vertex for x j such that weight(ei j) = bi j . This
procedure is performed for each constraint in the system and
a weighted directed graph is obtained. Solving for shortest
paths in this graph would yield a set of distances dist that sat-
isfy the constraints on xi. This graph is henceforth referred to
as the constraint graph.

High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection 897

The usual technique used to solve for dist is to introduce
an imaginary vertex s0 to act as a source, and introduce edges
of zero-weight from this vertex to each of the other vertices.
The resulting graph is referred to as the augmented graph [4].
In this way, we can use a single-source shortest paths algo-
rithm to find dist from s0, and any negative cycles (infeasible
solution) found in the augmented graph must also be present
in the original graph, since the new vertex and edges cannot
create cycles.

The basic Bellman-Ford algorithm does not provide a
standard way of detecting negative cycles in the graph. How-
ever, it is obvious from the way the algorithm operates that
if changes in the distance labels continue to occur for more
than a certain number of iterations, there must be a negative
cycle in the graph. This observation has been used to detect
negative cycles, and with this straightforward implementa-
tion, we obtain an algorithm to detect negative cycles that
takes O(|V |3) time, where |V | is the number of vertices in
the graph.

The study by Cherkassky and Goldberg [3] presents sev-
eral variants of the negative cycle detection technique. The
technique they found to be most efficient in practice is
based on the subtree disassembly technique proposed by Tar-
jan [17]. This algorithm works by constructing a shortest
path tree as it proceeds from the source of the problem, and
any negative cycle in the graph will first manifest itself as a vi-
olation of the tree order in the construction. The experimen-
tal evaluation presented in their study found this algorithm
to be a robust variant for the negative cycle detection prob-
lem. As a result of their findings, we have chosen this algo-
rithm as the basis for the adaptive algorithm. Our modified
algorithm is henceforth referred to as the “adaptive Bellman-
Ford (ABF)” algorithm.

The adaptive version of the Bellman-Ford algorithm
works on the basis of storing the distance labels that were
computed from the source vertex from one iteration to the
next. Since the negative cycle detection problem requires that
the source vertex is always the same (the augmenting vertex),
it is intuitive that as long as most edge weights do not change,
the distance labels for most of the vertices will also remain the
same. Therefore, by storing this information and using it as
a starting point for the negative cycle detection routines, we
can save a considerable amount of computation.

One possible objection to this system is that we would
need to scan all the edges each time in order to detect ver-
tices that have been affected. But in most applications involv-
ing multiple changes to a graph, it is possible to pass infor-
mation to the algorithm about which vertices have been af-
fected. This information can be generated by the higher level
application-specific process making the modifications. For
example, if we consider multiprocessor scheduling, the high-
level process would generate a new vertex ordering, and add
edges to the graph to represent the new constraints. Since any
changes to the graph can only occur at these edges, the appli-
cation can pass on to the ABF algorithm precise information
about what changes have been made to the graph, thus saving
the trouble of scanning the graph for changes.

Note that in the event where the high-level application

cannot pass on this information without adding significant
bookkeeping overhead, the additional work required for a
scan of the edges is proportional to the number of edges, and
hence does not affect the overall complexity, which is at least
as large as this. For example, in the case of the maximum cy-
cle mean computation examined in Section 5.1, for most cir-
cuit graphs the number of edges with delays is about 1/10 as
many as the total number of edges. With each change in the
target iteration period, most of these edges will cause con-
straint violations. In such a situation, an edge scan provides
a way of detecting violations that is very fast and easy to im-
plement, while not increasing the overall complexity of the
method.

3.1. Correctness of the method

The use of a shortest path routine to find a solution to a sys-
tem of difference constraint equations is based on the follow-
ing two theorems, which are not hard to prove (see [18]).

Theorem 1. A system of difference constraints is consistent if
and only if its augmented constraint graph has no negative cy-
cles, and the latter condition holds if and only if the original
constraint graph has no negative cycles.

Theorem 2. Let G be the augmented constraint graph of a con-
sistent system of constraints 〈V,C〉. Then D is a feasible solu-
tion for 〈V,C〉, where

D(u) = distG
(

s0, u
)

. (2)

The augmented constraint graph consists of this graph, to-
gether with an additional source vertex (s0) that has zero-
weight edges leading to all the other existing vertices, and
consistency means that a set of xi exists that satisfy all the con-
straints in the system.

In the adaptive version of the algorithm, we are effectively
setting the weights of the augmenting edges to be equal to the
labels that were computed in the previous iteration. In this
way, the initial scan from the augmenting vertex sets the dis-
tance label at each vertex equal to the previously computed
weight instead of setting it to 0. So we now need to show
that using nonzero weights on the augmenting edges does
not change the solution space in any way: that is, all possible
solutions for the zero-weight problem are also solutions for
the nonzero-weight problem, except possibly for translation
by a constant.

The new algorithm with the adaptation enhancements
can be seen to be correct if we relax the definition of the aug-
mented graph so that the augmenting edges (from s0) need
not have zero-weight. We summarize the arguments for this
in the following theorems.

Theorem 3. Consider a constraint graph augmented with a
source vertex s0, and edges from this vertex to every other ver-
tex v, such that these augmenting edges have arbitrary weight
weight(s0 → v). The associated system of constraints is consis-
tent if and only if the augmenting graph defined above has no
negative cycles, which in turn holds if and only if the original
constraint graph has no negative cycles.

898 EURASIP Journal on Applied Signal Processing

Proof. Clearly, since s0 does not have any in-edges, no cy-
cles can pass through it. So any cycles, negative or otherwise,
which are detected in the augmented graph, must have come
from the original constraint graph, which in turn would
happen only if the constraint system was inconsistent (by
Theorem 1). Also, any inconsistency in the original system
would manifest itself as a negative cycle in the constraint
graph, and the above augmentation cannot remove any such
cycle.

The following theorem establishes the validity of solu-
tions computed by the ABF algorithm.

Theorem 4. If G′ is the augmented graph with arbitrary
weights as defined above, and D(u) = distG′(s0, u) (shortest
paths from s0), then

(1) D is a solution to 〈V,C〉; and

(2) any solution to 〈V,C〉 can be converted into a solution
to the constraint system represented by G′ by adding a
constant to D(u) for each u ∈ V .

Proof. The first part is obvious, by the definition of shortest
paths.

Now we need to show that by augmenting the graph with
arbitrary weight edges, we do not prevent certain solutions
from being found. To see this, first note that any solution to a
difference constraint system remains a solution when trans-
lated by a constant. That is, we can add or subtract a constant
to all the D(u) without changing the validity of the solution.

In our case, if we have a solution to the constraint system
that does not satisfy the constraints posed by our augmented
graph, it is clear that the constraint violation can only be on
one of the augmenting edges (since the underlying constraint
graph is the same as in the case where the augmenting edges
had zero weight). Therefore, if we define

lmax = max
{

weight(e) | e ∈ Sa
}

, (3)

where Sa is the set of augmenting edges and

D′(u) = D(u)− lmax, (4)

we ensure that D′ satisfies all the constraints of the original
graph, as well as all the constraints on the augmenting edges.

Theorem 4 tells us that an augmented constraint graph
with arbitrary weights on the augmenting edges can also be
used to find a feasible solution to a constraint system. This
means that once we have found a solution dist : V → R

(where R is the set of real numbers) to the constraint system,
we can change the augmented graph so that the weight on
each edge e : u → v is dist(v). Now even if we change the
underlying constraint graph in any way, we can use the same
augmented graph to test the consistency of the new system.

Figure 1 helps to illustrate the concepts that are explained
in the previous paragraphs. In Figure 1a, there is a change in
the weight of one edge. But as we can see from the augmented
graph, this will result in only the single update to the affected

D

−2

1

1

E

−1

1

−3
−3 C

2−1

B

−1

0

A

0

0
0 0 0

0

Augmenting vertex

(a) Augmenting graph with zero-
weight augmenting edges.

D

−2

1

1

E

−1

1

−3
−3 C

2−2

B

−2

0

A

0

0
−1 −1 −2

−3

Augmenting vertex

(b) Augmenting graph with nonzero-
weight augmenting edges.

Figure 1: Constraint graph.

vertex itself, and all the other vertices will get their constraint
satisfying values directly from the previous iteration.

Note that in general, several vertices could be affected
by the change in weight of a single edge. For example, in
Figure 1 if edge AC had not existed, then changing the weight
of AB would have resulted in a new distance label for ver-
tices C and D as well. These would be cascading effects from
the change in the distance label for vertex B. Therefore, when
we speak of affected vertices, it is not just those vertices in-
cident on an edge whose weight has changed, but could also
consist of vertices not directly on an edge that has under-
gone a change in constraint weight. The actual number of
vertices affected by a single edge-weight change cannot be
determined just by examining the graph, we would actually
need to run through the Bellman-Ford algorithm to find the
complete set of vertices that are affected.

High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection 899

In the example from Figure 1, the change in weight of
edge AB means that after an initial scan to determine changes
in distance labels, we find that vertex B is affected. However,
on examining the outgoing edges from vertex B, we find that
all other constraints are satisfied, so the Bellman-Ford al-
gorithm can terminate here without proceeding to examine
all other edges. Therefore, in this case, there is only 1 ver-
tex whose label is affected out of the 5 vertices in the graph.
Furthermore, the experiments show that even in large sparse
graphs, the effect of any single change is usually localized to a
small region of the graph, and this is the main reason that the
adaptive approach is useful, as opposed to other techniques
that are developed for more general graphs. Note that, as ex-
plained in Section 2, the initial overhead for detecting con-
straint violations still holds, but the complexity of this oper-
ation is significantly less than that of the Bellman-Ford algo-
rithm.

4. COMPARISON AGAINST OTHER INCREMENTAL
ALGORITHMS

We compare the ABF algorithm against (a) the incremental
algorithm developed in [4] for maintaining a solution to a set
of difference constraints (referred to here as the RSJM algo-
rithm), and (b) a modification of Howard’s algorithm [10],
since it appears to be the fastest known algorithm to compute
the cycle mean, and hence can also be used to check for fea-
sibility of a system. Our modification allows us to use some
of the properties of adaptation to reduce the computation in
this algorithm.

The main idea of the adaptive algorithm is that it is used
as a routine inside a loop corresponding to a larger pro-
gram. As a result, in several applications where this negative
cycle detection forms a computation bottleneck, there will
be a proportional speedup in the overall application, which
would be much larger than the speedup in a single run.

It is worth making a couple of observations at this point
regarding the algorithms we compare against.

(1) The RSJM algorithm [4] uses Dijkstra’s algorithm as
the core routine for quickly recomputing the shortest paths.
Using the Bellman-Ford algorithm here (even with Tarjan’s
implementation) would result in a loss in performance since
it cannot match the performance of Dijkstra’s algorithm
when edge weights are positive. Consequently, no benefit
would be derived from the reduced-cost concept used in [4].

(2) The code for Howard’s algorithm was obtained from
the Internet website of the authors of [10]. The modifica-
tions suggested by Dasdan et al. [19] have been taken into
account. This method of constraints checking uses Howard’s
algorithm to see if the MCM of the system yields a feasible
value, otherwise the system is deemed inconsistent.

Another important point is the type of graphs on which
we have tested the algorithms. We have restricted our atten-
tion to sparse graphs, or bounded degree graphs. In particular,
we have tried to keep the vertex-to-edge ratio similar to what
we may find in practice, as in, for example, the ISCAS bench-
marks. To understand why such graphs are relevant, note
the following two points about the structural elements usu-

ally found in circuits and signal processing blocks: (a) they
typically have a small, finite number of inputs and outputs
(e.g., AND gates, adders, etc. are binary elements) and (b)
the fanout that is allowed in these systems is usually limited
for reasons of signal strength preservation (buffers are used if
necessary). For these reasons, the graphs representing prac-
tical circuits can be well approximated by bounded degree
graphs. In more general DSP application graphs, constraints
such as fanout may be ignored, but the modular nature of
these systems (they are built up of simpler, small modules)
implies that they normally have small vertex degrees.

We have implemented all the algorithms under the LEDA
[20] framework for uniformity. The tests were run on ran-
dom graphs, with several random variations performed on
them thereafter. We kept the number of vertices constant and
changed only the edges. This was done for the following rea-
son: a change to a node (addition/deletion) may result in
several edges being affected. In general, due to the random
nature of the graph, we cannot know in advance the exact
number of altered edges. Therefore, in order to keep track of
the exact number of changes, we applied changes only to the
edges. Note that when node changes are allowed, the argu-
ment for an adaptive algorithm capable of handling multiple
changes naturally becomes stronger.

In the discussion that follows, we use the term batch-size
to refer to the number of changes in a multiple change up-
date. That is, when we make multiple changes to a graph be-
tween updates, the changes are treated as a single batch, and
the actual number of changes that was made is referred to as
the batch-size. This is a useful parameter to understand the
performance of the algorithms.

The changes that were applied to the graph were of 3
types.

(i) Edge insertion: an edge is inserted into the graph, en-
suring that multiple edges between vertices do not oc-
cur.

(ii) Edge deletions: an edge is chosen at random and
deleted from the graph. Note that, in general, this can-
not cause any violations of constraints.

(iii) Edge weight change: an edge is chosen at random and
its weight is changed to another random number.

Figure 2 shows a comparison of the running time of the 3
algorithms on random graphs. The graphs in question were
randomly generated, had 1000 vertices and 2000 edges each,
and a sequence of 10 000 edge change operations (as defined
above) were applied to them. The points in the plot cor-
respond to an average over 10 runs using randomly gener-
ated graphs. The X-axis shows the granularity of the changes.
That is, at one extreme, we apply the changes one at a time,
and at the other, we apply all the changes at once and then
compute the correctness of the result. Note that the delayed
update feature is not used by the RSJM algorithm, which
uses the fact that only one change occurs per test to look
for negative cycles. As can be seen, the algorithms that use
the adaptive modifications benefit greatly as the batch size is
increased, and even among these, the ABF algorithm far out-
performs the Howard algorithm, because the latter actually

900 EURASIP Journal on Applied Signal Processing

104103102101100

Batch size

10−2

10−1

100

101

102

103

R
u

n
ti

m
e

(s
)

Constant total changes

RSJM
ABF

Original BF
Howard’s

Figure 2: Comparison of algorithms as batch size varies.

10987654321

Batch size

0

5

10

15

20

25

30

35

R
u

n
ti

m
e

(s
)

Varying batch size

RSJM
ABF

Original BF
Howard’s

Figure 3: Constant number of iterations at different batch sizes.

performs most of the computation required to compute the
maximum cycle mean of the graph, which is far more than
necessary.

Figure 3 shows a plot of what happens when we apply
1000 batches of changes to the graph, but alter the number
of changes per batch, so that the total number of changes ac-
tually varies from 1000 to 100 000. As expected, RSJM takes
total time proportional to the number of changes. But the
other algorithms take nearly constant time as the batch size
varies, which provides the benefit. The reason for the almost
constant time seen here is that other bookkeeping operations
dominate over the actual computation at this stage. As the

Table 1: Relative speed of adaptive versus incremental approach for
graph of 1000 nodes, 2000 edges.

Batch size Speedup (RSJM time/ABF time)

1 0.26×

2 0.49×

5 1.23×

10 2.31×

20 4.44×

50 10.45×

100 18.61×

104103102101100

Batch size

10−1

100

101

102

103

R
u

n
ti

m
e

(s
)

Large batch effect (1000 nodes, 2000 edges)

RSJM
ABF
Original BF

Figure 4: Asymptotic behavior of the algorithms.

batch size increases (asymptotically), we would expect that
the adaptive algorithm takes more and more time to operate,
finally converging to the same performance as the standard
Bellman-Ford algorithm.

As mentioned previously, the adaptive algorithm is bet-
ter than the incremental algorithm at handling changes in
batches. Table 1 shows the relative speedup for different
batch sizes on a graph of 1000 nodes and 2000 edges. Al-
though the exact speedup may vary, it is clear that as the
number of changes in a batch increases, the benefit of using
the adaptive approach is considerable.

Figure 4 illustrates this for a graph with 1000 vertices and
2000 edges. We have plotted this on a log-scale to capture the
effect of a large variation in batch size. Because of this, note
that the difference in performance between the incremental
algorithm and starting from scratch is actually a factor of 3
or so at the beginning, which is considerable. Also, this fig-
ure does not show the performance of Howard’s algorithm,
because as can be seen from Figures 2 and 3, the ABF algo-
rithm considerably outperforms Howard’s algorithm in this
context.

High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection 901

An important feature that can be noted from Figure 4
is the behavior of the algorithms as the number of changes
between updates becomes very large. The RSJM algorithm
is completely unaffected by this increase, since it has to
continue processing changes one at a time. For very large
changes, even when we start from scratch, we find that the
total time for update starts to increase, because now the time
taken to implement the changes itself becomes a factor that
dominates overall performance. In between these two ex-
tremes, we see that our incremental algorithm provides con-
siderable improvements for small batch sizes, but for large
batches of changes, it tends towards the performance of the
original Bellman-Ford algorithm for negative cycle detection.

From Figures 3 and 4, we see, as expected, that the RSJM
algorithm takes time proportional to the total number of
changes. Howard’s algorithm also appears to take more time
when the number of changes increases. Figure 2 allows us to
estimate at what batch size each of the other algorithms be-
comes more efficient than the RSJM algorithm. Note that the
scale on this figure is also logarithmic.

Another point to note with regard to these experiments
is that they represent the relative behavior for graphs with
1000 vertices and 2000 edges. These numbers were chosen to
obtain reasonable run times on the experiments. Similar re-
sults are obtained for other graph sizes, with a slight trend in-
dicating that the break-even point, where our adaptive algo-
rithm starts outperforming the incremental approach, shifts
to lower batch-sizes for larger graphs.

5. APPLICATIONS

We present two applications that make extensive use of algo-
rithms for negative cycle detection. In addition, these appli-
cations also present situations where we encounter the same
graph with slight modifications—either in the edge-weights
(MCM computation) or in the actual addition and deletion
of a small number of edges (scheduling search techniques).
As a result, these provide good examples of the type of appli-
cations that would benefit from the adaptive solution to the
negative cycle detection problem. As mentioned in Section 1,
these problems are central to the high-level synthesis of DSP
systems.

5.1. Maximum cycle mean computation

The first application we consider is the computation of the
MCM of a weighted digraph. This is defined as the maximum
over all directed cycles of the sum of the arc weights divided
by the number of delay elements on the arcs. This metric
plays an important role in discrete systems and embedded
systems [2, 21], since it represents the greatest throughput
that can be extracted from the system. Also, as mentioned in
[21], there are situations where it may be desirable to recom-
pute this measure several times on closely related graphs, for
example, for the purpose of design space exploration. As spe-
cific examples, [6] proposes an algorithm for dataflow graph
partitioning where the repeated computation of the MCM
plays a key role, and [22] discusses the utility of frequent
MCM computation to synchronization optimization in em-

bedded multiprocessors. Therefore, efficient algorithms for
this problem can make it reasonable to consider using such
solutions instead of the simpler heuristics that are otherwise
necessary. Although several results such as [23, 24] provide
polynomial time algorithms for the problem of MCM com-
putation, the first extensive study of algorithmic alternatives
for it has been undertaken by Dasdan et al. [2]. They con-
cluded that the best existing algorithm in practice for this
problem appears to be Howard’s algorithm, which, unfor-
tunately, does not have a known polynomial bound on its
running time.

To model this application, the edge weights on our graph
are obtained from the equation

weight(u→ v) = delay(e)× P − exec time(u), (5)

where weight(e) refers to the weight of the edge e : u → v,
delay(e) refers to the number of delay elements (flip-flops)
on the edge, exec time(u) is the propagation delay of the cir-
cuit element that is the source of the vertex, and P is the de-
sired clock period that we are testing the system for. In other
words, if the graph with weights as mentioned above does not
have negative cycles, then P is a feasible clock for the system.
We can then perform a binary search in order to compute
P to any precision we require. This algorithm is attributed
to Lawler [9]. Our contribution here is to apply the adaptive
negative cycle detection techniques to this algorithm and an-
alyze the improved algorithm that is obtained as a result.

5.1.1 Experimental setup

For an experimental study, we build on the work by Das-
dan et al. [2], where the authors have conducted an exten-
sive study of algorithms for this problem. They conclude that
Howard’s algorithm [10] appears to be the fastest experimen-
tally, even though no theoretical time bounds indicate this.
As will be seen, our algorithm performs almost as well as
Howard’s algorithm on several useful sized graphs, and espe-
cially on the circuits of the ISCAS 89/93 benchmarks, where
our algorithm typically performs better.

For comparison purposes, we implemented our algo-
rithm in the C programming language, and compared it
against the implementation provided by the authors of [10].
Although the authors do not claim their implementation is
the fastest possible, it appears to be a very efficient imple-
mentation, and we could not find any obvious ways of im-
proving it. As we mentioned in the previous section, the im-
plementation we used incorporates the improvements pro-
posed by Dasdan et al. [2]. The experiments were run on a
Sun Ultra SPARC-10 (333 MHz processor, 128 MB memory).
This machine would classify as a medium-range workstation
under present conditions.

It is clear that the best performance bound that can be
placed on the algorithm as it stands is O(|V ||E| logT) where
T is the maximum value of P that we examine in the search
procedure, and |V | and |E| are, respectively, the size of the
input graph in number of vertices and edges. However, our
experiments show that it performs significantly faster than
would be expected by this bound.

902 EURASIP Journal on Applied Signal Processing

One point to note is that since we are doing a binary
search on T , we are forced to set a limit on the precision
to which we compute our answer. This precision in turn de-
pends on the maximum value of the edge-weights, as well
as the actual precision desired in the application itself. Since
these depend on the application, we have had to choose
values for these. We have used a random graph generator
that generates integer weights for the edges in the range [0–
10 000]. For this range of weights, it could be argued that in-
teger precision would be sufficient. However, since the max-
imum cycle mean is a ratio, it is not restricted to integer val-
ues. We have therefore conservatively chosen a precision of
0.001 for the binary search (i.e., 10−7 times the maximum
edge-weight). Increasing the precision by a factor of 2 re-
quires one more run of the negative cycle detection algo-
rithm, which would imply a proportionate increase in the
total time taken for computation of the MCM.

With regard to the ISCAS benchmarks, note that there
is a slight ambiguity in translating the net-lists into graphs.
This arises because a D-type flip-flop can either be treated as
a single edge with a delay, with the fanout proceeding from
the sink of this edge, or as k separate edges with unit delay
emanating from the source vertex. In the former treatment,
it makes more sense to talk about the |D|/|V | ratio (|D| be-
ing the number of D flip-flops), as opposed to the |D|/|E|
ratio that we use in the experiments with random graphs.
However, the difference between the two treatments is not
significant and can be safely ignored.

We also conducted experiments where we vary the num-
ber of edges with delays on them. For this, we need to ex-
ercise care, since we may introduce cycles without delays on
them, which are fundamentally infeasible and do not have
a maximum cycle mean. To avoid this, we follow the policy
of treating edges with delays as “back-edges” in an otherwise
acyclic graph [15]. This view is inspired by the structure of
circuits, where a delay element usually figures in the feed-
back portion of the system. Unfortunately, one effect of this
is that when we have a low number of delay edges, the result-
ing graph tends to have an asymmetric structure: it is almost
acyclic with only a few edges in the reverse “direction.” It is
not clear how to get around this problem in a fashion that
does not destroy the symmetry of the graph, since this re-
quires solving the feedback arc set problem, which is NP-hard
[25].

One effect of this is in the way it impacts the perfor-
mance of the Bellman-Ford algorithm. When the number of
edges with delays is small, there are several negative weight
edges, which means that the standard Bellman-Ford algo-
rithm spends large amounts of time trying to compute short-
est paths initially. The incremental approach, however, is able
to avoid this excess computation for large values of T , which
results in its performance being considerably faster when the
number of delays is small.

Intuitively, therefore, for the above situation, we would
expect our algorithm to perform better. This is because, for
the MCM problem, a change in the value of P for which
we are testing the system will cause changes in the weights
of those edges which have delays on them. If these are

10.90.80.70.60.50.40.30.20.10

Feedback edge ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
u

n
ti

m
e

(s
)

ABF-based MCM computation
MCM computation using normal BF routine
Howard’s algorithm

Figure 5: Comparison of algorithms for 10 000 vertices, 20 000
edges: the number of feedback edges (with delays) is varied as a pro-
portion of the total number of edges.

fewer, then we would expect that fewer operations would
be required overall when we retain information across iter-
ations. This is borne out by the experiments as discussed in
Section 5.1.2.

Our experiments focus more on the kinds of graphs that
appear to represent real graphs. By this we mean graphs for
which the average out-degree of a vertex (number of edges
divided by number of vertices), and the relative number of
edges with delays on them are similar to those found in real
circuits. We have used the ISCAS benchmarks as a good rep-
resentative sample of real circuits, and we can see that they
show remarkable similarity in the parameters we have de-
scribed: the average out-degree of a vertex is close to and
a little less than 2, while an average of about (1/10)th or
fewer edges have delays on them. An intuitive explanation for
the former observation is that most real circuits are usually
built up of a collection of simpler systems, which predomi-
nantly have small numbers of inputs and outputs. For exam-
ple, logic gates have typically 2 inputs and 1 output, as do
elements such as adders and multipliers. More complex ele-
ments like multiplexers and encoders are relatively rare, and
even their effect is somewhat offset by single-input single-
output units like NOT gates and filters.

5.1.2 Experimental results

We now present the results of the experiments on random
graphs with different parameters of the graph being varied.

We first consider the behavior of the algorithms for
random graphs consisting of 10 000 vertices and 20 000
edges, when the feedback-edge ratio (ratio of edges with
nonzero delay to total number of edges) is varied from 0 to 1
in increments of 0.1. The resulting plot is shown in Figure 5.
As discussed in Section 5.1.1, for small values of this ratio,

High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection 903

21.81.61.41.210.80.60.40.20
×105

Number of vertices

0

5

10

15

20

25

30

35

40

R
u

n
ti

m
e

(s
)

MCM using ABF
MCM using original BF
Howard’s algorithm

Figure 6: Performance of the algorithms as graph size varies: all
edges have delays (feedback edges) and number of edges = twice the
number of vertices.

the graph is nearly acyclic, and almost all edges have nega-
tive weights. As a result, the normal Bellman-Ford algorithm
performs a large number of computations that increase its
running time. The ABF-based algorithm is able to avoid this
overhead due to its property of retaining information across
runs, and so it performs significantly better for small val-
ues of the feedback edge ratio. The ABF-based algorithm and
Howard’s algorithm perform almost identically in this exper-
iment. The points on the plot represent an average over 10
random graphs each.

Figure 6 shows the effect of varying the number of ver-
tices. The average degree of the graph is kept constant, so
that there is an average of 2 edges per vertex, and the feed-
back edge ratio is kept constant at 1 (all edges have delays).
The reason for the choice of average degree was explained in
Section 5.1.1. Figure 7 shows the same experiment, but this
time with a feedback edge ratio of 0.1. We have limited the
displayed portion of the Y-axis since the values for the MCM
computation using the original Bellman-Ford routine rise as
high as 10 times that of the others and drowns them out oth-
erwise.

These plots reveal an interesting point: as the size of the
graph increases, Howard’s algorithm performs less well than
the MCM computation using the ABF algorithm. This in-
dicates that for real circuits, the ABF-based algorithm may
actually be a better choice than Howard’s algorithm. This is
borne out by the results of the ISCAS benchmarks.

Figures 8 and 9 show a study of what happens as the edge-
density of the graph is varied: for this, we have kept the num-
ber of edges constant at 20 000, and the number of vertices
varies from 1000 to 17 500. This means a variation from an
edge-density (ratio of the number of edges to the number
of vertices) of 1.15 to 20. In both these figures, we see that

21.81.61.41.210.80.60.40.20
×105

Number of nodes

0

5

10

15

20

25

R
u

n
ti

m
e

(s
)

MCM using ABF
MCM using original BF
Howard’s algorithm

Figure 7: Performance of the algorithms as graph size varies: pro-
portion of edges with delays = 0.1 and number of edges = twice the
number of vertices (Y-axis limited to show detail).

180001600014000120001000080006000400020000
Number of vertices

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
u

n
ti

m
e

(s
)

MCM using ABF
MCM using original BF
Howard’s algorithm

Figure 8: Performance of the algorithms as graph edge density
varies: all edges have delays (feedback edges) and the number of
edges = 20 000.

the MCM computation using ABF performs especially well
at low densities (sparse graphs), where it does considerably
better than Howard’s algorithm and the normal MCM com-
putation using ordinary negative cycle detection. In addition,
the point where the ABF-based algorithm starts performing
better appears to be at around an edge-density of 2, which is
also seen in Figure 5.

904 EURASIP Journal on Applied Signal Processing

180001600014000120001000080006000400020000
Number of vertices

0

0.5

1

1.5

2

2.5

R
u

n
ti

m
e

(s
)

MCM using ABF
MCM using original BF
Howard’s algorithm

Figure 9: Performance of the algorithms as graph size varies: pro-
portion of edges with delays = 0.1 and the number of edges =
20 000.

We note the following features from the experiments:

(i) If all edges have unit delay, the MCM algorithm that
uses our adaptive negative cycle detection provides
some benefit, but less than in the case where few edges
have delays.

(ii) When we vary the number of feedback edges (edges
with delays), the benefit of the modifications becomes
very considerable at low feedback ratios, doing better
than Howard’s algorithm for low-edge densities.

(iii) In the ISCAS benchmarks, we can see that all of the cir-
cuits have |E|/|V | < 2, and |D|/|V | < 0.1, (|D| is the
number of flip-flops, |V | is the total number of circuit
elements, and |E| is the number of edges). In this range
of parameters, our algorithm performs very well, even
better than Howard’s algorithm in several cases (also
see Table 2 for our results on the ISCAS benchmarks).

Table 2 shows the results obtained when we used the dif-
ferent algorithms to compute MCMs for the circuits from the
ISCAS 89/93 benchmark set. One point to note here is that
the ISCAS circuits are not true HLS benchmarks; they were
originally designed with logic circuits in mind, and as such,
the normal assumption would be that all registers (flip-flops)
in the system are triggered by the same clock. In order to
use them for our testing, however, we have relaxed this as-
sumption and allowed each flip-flop to be triggered on any
phase; in particular, the phases that are computed by the
MCM computation algorithm are such that the overall sys-
tem speed is maximized. These benchmark circuits are still
very important in the area of HLS, because real DSP circuits
also show similar structure (sparseness and density of delay
elements), and an important observation we can make from
the experiments is that the structure of the graph is very rel-

Table 2: Run time for MCM computation for the 6 largest ISCAS
89/93 benchmarks.

Bench- |E|/|V | |D|/|V | Orig. BF ABF Howard’s

mark MCM MCM algo.

s38417 1.416 0.069 2.71 0.29 0.66

s38584 1.665 0.069 2.66 0.63 0.59

s35932 1.701 0.097 1.79 0.37 0.09

s15850 1.380 0.057 1.47 0.18 0.36

s13207 1.382 0.077 0.73 0.12 0.35

s9234 1.408 0.039 0.57 0.06 0.11

s6669 1.657 0.070 0.74 0.07 0.04

s4863 1.688 0.042 0.27 0.04 0.03

s3330 1.541 0.067 0.11 0.02 0.01

s1423 1.662 0.099 0.07 0.01 0.01

evant to the performance of the various algorithms in the
MCM computation.

As can be seen in Table 2, Lawler’s algorithm does reason-
ably well at computing the MCM. However, when we use the
adaptive negative cycle detection in place of the normal neg-
ative cycle detection technique, there is an increase in speed
by a factor of 5 to 10 in most cases. This increase in speed is
in fact sufficient to make Lawler’s algorithm with this imple-
mentation up to twice as fast as Howard’s algorithm, which
was otherwise considered the fastest algorithm in practice for
this problem.

5.2. Search techniques for scheduling

We demonstrate another application of our technique, effi-
cient searching of schedules for IDFGs. The basic idea is that
for scheduling an IDFG, we need to (a) assign vertices to pro-
cessors and (b) assign relative positions to the vertices within
each processor (for resource sharing). Once these two aspects
are done, the schedule for a given throughput constraint is
determined by finding a feasible solution to the constraint
equations, which we do using the ABF algorithm. This idea
that the ordering can be directly used to compute schedule
times has been used previously, for example see [26]. Since
the search process involves repeatedly checking the feasibil-
ity of many similar constraint systems, the advantages of the
adaptive negative cycle detection come into play.

The approach we have taken for the schedule search is

(i) start with each vertex on its own processor, find a fea-
sible solution on the fastest possible processor;

(ii) examine each vertex in turn, and try to find a place
for it on another processor (resource sharing). In do-
ing so, we are making a small number of changes to
the constraint system, and need to recompute a feasi-
ble solution;

(iii) in choosing the new position, choose one that has min-
imum power (or area, or whatever cost we want to op-
timize);

(iv) additional moves that can be made include inserting a
new processor type and moving as many vertices onto

High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection 905

it as possible, moving vertices in groups from one pro-
cessor to another, and so forth;

(v) the technique also lends itself very well to the applica-
tion in schemes using evolutionary improvement [27];

(vi) in the present implementation, to choose among var-
ious equivalent implementations at a given stage, we
use a weight based on giving greater importance to im-
plementations that result in lower overall slack on the
cycles in the system. (Slack of a cycle here refers to the
difference between the total delay afforded by the reg-
isters (number of delay elements in the cycle times the
clock period) and the sum of the execution times of the
vertices on the cycle, and is useful since a large slack
could be taken as an indication of under-utilization of
resources.)

Each such move or modification that we make to the
graph can be treated as a set of edge-changes in the prece-
dence/processor constraint graph, and a feasible schedule
would be found if the system does not have negative cycles.
In addition, the dist(v) values that are obtained from apply-
ing the algorithm directly give us the starting times that will
meet the schedule requirements.

We have applied this technique to attack the multiple-
voltage scheduling problem addressed in [28]. The problem
here is to find a schedule for the given DFG that minimizes
the overall power consumption, subject to fixed constraints
on the iteration period bound, and on the total number of
resources available. For this example, we consider three re-
sources: adders that operate at 5 V, adders that operate at
3.3 V, and multipliers that operate at 5 V. For the elliptic fil-
ter, multipliers operate in 2 time units, while for the FIR fil-
ter, they operate in 1 time unit. The 5 V adders operate in 1
time unit, while the 3.3 V adders operate in 2 time units al-
ways. It is clear that the power savings are obtained through
scheduling as many adders as possible on 3.3 V adders in-
stead of 5 V adders. We have used only the basic resource
types mentioned in Table 3 to compare our results with those
in [28]. However, there is no inherent limit imposed by the
algorithm itself on the number of different kinds of resources
that we can consider.

In tackling this problem, we have used only the most ba-
sic method, namely, moving vertices onto another existing
processor. Already, the results match and even outperform
that obtained in [28]. In addition, the method has the ben-
efit that it can handle any number of voltages/processors,
and can also easily be extended to other problems, such as
homogeneous-processor scheduling [15]. Table 3 shows the
power savings that were obtained using this technique. S
and R power saving indicates the power savings (assuming
25 units for 5 V devices and 10.89 units for 3.3 V devices) ob-
tained by [28], while ABF power savings refers to the results
obtained using our algorithm (where the ABF algorithm is
used to test the feasibility of the system after each move as
per the definition above). The overall timing constraint T is
the iteration period we are aiming for.

Table 3 shows some interesting features, the iterative im-
provement based on the ABF algorithm (column marked

Table 3: Comparison between the ABF-based search and algorithm
of Sarrafzadeh and Raje [26] (×: failed to schedule,— : not avail-
able).

Example Resource T Power saved
(5 V+, 3.3 V+, 5 V∗) S and R ABF

5th order {2, 2, 2} 25 31.54% 34.86%

ellip. filt. {2, 1, 2} 25 18.26% 16.60%

{2, 2, 2} 22 23.24% 26.56%

{2, 1, 2} 21 13.28% 14.94%

FIR filt. {1, 2, 1} 15 29.45% ×

{1, 2, 2} 15 — 34.35%

{1, 2, 1} 16 — 36.81%

{1, 2, 2} 10 17.18% 24.54%

ABF) produced results with significantly higher power sav-
ings than the results presented in [28]. One important reason
contributing to this could be that the iterative improvement
algorithm makes full use of the iterative nature of the graphs,
and produces schedules that make good use of the available
interiteration parallelism. On the other hand, we find that
for one of the configurations, the ABF-based algorithm is not
able to find any valid schedule. This is because the simple na-
ture of the algorithm occasionally results in it getting stuck in
local minima, with the result that it is unable to find a valid
schedule even when one exists.

Several variations on this theme are possible; the search
scheme could be used for other criteria such as the case where
the architecture needs to be chosen (not fixed in advance),
and modifications such as small amounts of randomization
could be used to prevent the algorithm from getting stuck in
local minima. This flexibility combined with the speed im-
provements afforded by the improved adaptive negative cy-
cle detection can allow this method to form the core of a large
class of scheduling techniques.

6. CONCLUSIONS

The problem of negative cycle detection is considered in the
context of HLS for DSP systems. It was shown that impor-
tant problems such as performance analysis and design space
exploration often result in the construction of “dynamic”
graphs, where it is necessary to repeatedly perform negative
cycle detection on variants of the original graph.

We have introduced an adaptive approach (the ABF al-
gorithm) to negative cycle detection in dynamically chang-
ing graphs. Specifically, we have developed an enhancement
to Tarjan’s algorithm for detecting negative cycles in static
graphs. This enhancement yields a powerful algorithm for
dynamic graphs that outperforms previously available meth-
ods for addressing the scenario where multiple changes are
made to the graph between updates. Our technique explic-
itly addresses the common, practical scenario in which neg-
ative cycle detection must be periodically performed after
intervals in which a small number of changes are made to
the graph. We have shown by experiments that for reason-
able sized graphs (10 000 vertices and 20 000 edges) our al-

906 EURASIP Journal on Applied Signal Processing

gorithm outperforms the incremental algorithm (one change
processed at a time) described in [4] even for changes made
in groups of as little as 4–5 at a time.

As our original interest in the negative cycle detection
problem arose from its application to the problems described
above in HLS, we have implemented some schemes that
make use of the adaptive approach to solve those problems.
We have shown how our adaptive approach to negative cy-
cle detection can be exploited to compute the maximum cy-
cle mean of a weighted digraph, which is a relevant metric
for determining the throughput of DSP system implementa-
tions. We have compared our ABF technique, and ABF-based
MCM computation technique against the best known related
work in the literature, and have observed favorable perfor-
mance. Specifically, the new technique provides better per-
formance than Howard’s algorithm for sparse graphs with
relatively few edges that have delays.

Since computing power is cheaply available now, it is in-
creasingly worthwhile to employ extensive search techniques
for solving NP-hard analysis and design problems such as
scheduling. The availability of an efficient adaptive nega-
tive cycle detection algorithm can make this process much
more efficient in many application contexts. We have demon-
strated this concretely by employing our ABF algorithm
within the framework of a search strategy for multiple volt-
age scheduling.

ACKNOWLEDGMENTS

This research was supported in part by the US National Sci-
ence Foundation (NSF) Grant #9734275, NSF NYI Award
MIP9457397, and the Advanced Sensors Collaborative Tech-
nology Alliance.

REFERENCES

[1] R. Reiter, “Scheduling parallel computations,” Journal of the
ACM, vol. 15, no. 4, pp. 590–599, 1968.

[2] A. Dasdan, S. S. Irani, and R. K. Gupta, “Efficient algo-
rithms for optimum cycle mean and optimum cost to time
ratio problems,” in 36th Design Automation Conference, pp.
37–42, New Orleans, La, USA, ACM/IEEE, June 1999.

[3] B. Cherkassky and A. V. Goldberg, “Negative cycle detection
algorithms,” Tech. Rep. tr-96-029, NEC Research Institute,
March 1996.

[4] G. Ramalingam, J. Song, L. Joskowicz, and R. E. Miller, “Solv-
ing systems of difference constraints incrementally,” Algorith-
mica, vol. 23, no. 3, pp. 261–275, 1999.

[5] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, “Fully
dynamic shortest paths and negative cycle detection on di-
graphs with arbitrary arc weights,” in ESA ’98, vol. 1461
of Lecture Notes in Computer Science, pp. 320–331, Springer,
Venice, Italy, August 1998.

[6] L.-T. Liu, M. Shih, J. Lillis, and C.-K. Cheng, “Data-flow par-
titioning with clock period and latency constraints,” IEEE
Trans. on Circuits and Systems I: Fundamental Theory and Ap-
plications, vol. 44, no. 3, 1997.

[7] G. Ramalingam, Bounded incremental computation, Ph.D.
thesis, University of Wisconsin, Madison, Wis, USA, August
1993, revised version published by Springer-Verlag (1996) as
vol. 1089 of Lecture Notes in Computer Science.

[8] B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and
F. K. Zadeck, “Incremental evaluation of computational
circuits,” in Proc. 1st ACM-SIAM Symposium on Discrete
Algorithms, pp. 32–42, San Francisco, Calif, USA, January
1990.

[9] E. Lawler, Combinatorial Optimization: Networks and Ma-
troids, Holt, Rhinehart and Winston, New York, NY, USA,
1976.

[10] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick,
and J.-P. Quadrat, “Numerical computation of spectral ele-
ments in max-plus algebra,” in Proc. IFAC Conf. on Syst. Struc-
ture and Control, Nantes, France, July 1998.

[11] N. Chandrachoodan, S. S. Bhattacharyya, and K. J. R. Liu,
“Adaptive negative cycle detection in dynamic graphs,” in
Proc. International Symposium on Circuits and Systems, vol. V,
pp. 163–166, Sydney, Australia, May 2001.

[12] G. Ramalingam and T. Reps, “An incremental algorithm for a
generalization of the shortest-paths problem,” Journal of Al-
gorithms, vol. 21, no. 2, pp. 267–305, 1996.

[13] D. Frigioni, M. Ioffreda, U. Nanni, and G. Pasqualone, “Ex-
perimental analysis of dynamic algorithms for single source
shortest paths problem,” in Proc. Workshop on Algorithm Engi-
neering, pp. 54–63, Ca’ Dolfin, Venice, Italy, September 1997.

[14] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows,
Prentice-Hall, Upper Saddle River, NJ, USA, 1993.

[15] S. M. H. de Groot, S. H. Gerez, and O. E. Herrmann, “Range-
chart-guided iterative data-flow graph scheduling,” IEEE
Trans. on Circuits and Systems I: Fundamental Theory and Ap-
plications, vol. 39, no. 5, pp. 351–364, 1992.

[16] K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal
scheduling of iterative data-flow programs via optimum un-
folding,” IEEE Trans. on Computers, vol. 40, no. 2, pp. 178–
195, 1991.

[17] R. E. Tarjan, “Shortest paths,” Tech. Rep., AT&T Bell labora-
tories, Murray Hill, New Jersey, USA, 1981.

[18] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms, MIT Press, Cambridge, Mass, USA, 1990.

[19] A. Dasdan, S. S. Irani, and R. K. Gupta, “An experimental
study of minimum mean cycle algorithms,” Tech. Rep. UCI-
ICS #98-32, University of California, Irvine, 1998.

[20] K. Mehlhorn and S. Näher, “LEDA: A platform for combi-
natorial and geometric computing,” Communications of the
ACM, vol. 38, no. 1, pp. 96–102, 1995.

[21] K. Ito and K. K. Parhi, “Determining the minimum iteration
period of an algorithm,” Journal of VLSI Signal Processing, vol.
11, no. 3, pp. 229–244, 1995.

[22] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Resynchroniza-
tion for multiprocessor DSP systems,” IEEE Trans. on Circuits
and Systems I: Fundamental Theory and Applications, vol. 47,
no. 11, pp. 1597–1609, 2000.

[23] D. Y. Chao and D. T. Wang, “Iteration bounds of single rate
dataflow graphs for concurrent processing,” IEEE Trans. on
Circuits and Systems I: Fundamental Theory and Applications,
vol. 40, no. 9, pp. 629–634, 1993.

[24] S. H. Gerez, S. M. H. de Groot, and O. E. Hermann, “A poly-
nomial time algorithm for computation of the iteration pe-
riod bound in recursive dataflow graphs,” IEEE Trans. on Cir-
cuits and Systems I: Fundamental Theory and Applications, vol.
39, no. 1, pp. 49–52, 1992.

[25] M. R. Garey and D. S. Johnson, Computers and
Intractability—A Guide to the Theory of NP-Completeness, W.
H. Freeman and Company, New York, NY, USA, 1979.

[26] D. J. Wang and Y. H. Hu, “Fully static multiprocessor array
realizability criteria for real-time recurrent DSP applications,”
IEEE Trans. Signal Processing, vol. 42, no. 5, pp. 1288–1292,
1994.

High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection 907

[27] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary com-
putation: Comments on the history and current state,” IEEE
Trans. Evolutionary Computation, vol. 1, no. 1, pp. 3–17, 1997.

[28] M. Sarrafzadeh and S. Raje, “Scheduling with multiple volt-
ages under resource constraints,” in Proc. 1999 International
Symposium on Circuits and Systems, pp. 350–353, Miami, Fla,
USA, 30 May–2 June 1999.

Nitin Chandrachoodan was born on Au-
gust 11, 1975 in Madras, India. He received
the B.Tech. degree in electronics and com-
munications engineering from the Indian
Institute of Technology, Madras, in 1996,
and the M.S. degree in electrical engineer-
ing from the University of Maryland at Col-
lege Park in 1998. He is currently a Ph.D.
candidate at the University of Maryland.
His research concerns analysis and representation techniques for
system level synthesis of DSP dataflow graphs.

Shuvra S. Bhattacharyya received the B.S.
degree from the University of Wisconsin
at Madison, and the Ph.D. degree from the
University of California at Berkeley. He is
an Associate Professor in the Department of
Electrical and Computer Engineering, and
the Institute for Advanced Computer Stud-
ies (UMIACS) at the University of Mary-
land, College Park. He is also an Affiliate
Associate Professor in the Department of
Computer Science. The coauthor of two books and the author or
coauthor of more than 50 refereed technical articles, Dr. Bhat-
tacharyya is a recipient of the NSF Career Award. His research in-
terests center around architectures and computer-aided design for
embedded systems, with emphasis on hardware/software codesign
for signal, image, and video processing. Dr. Bhattacharyya has held
industrial positions as a Researcher at Hitachi, and as a Compiler
Developer at Kuck & Associates.

K. J. Ray Liu received the B.S. degree from
the National Taiwan University, and the
Ph.D. degree from UCLA, both in electrical
engineering. He is Professor at the Electri-
cal and Computer Engineering Department
of University of Maryland, College Park.
His research interests span broad aspects
of signal processing architectures; multime-
dia communications and signal processing;
wireless communications and networking;
information security; and bioinformatics in which he has pub-
lished over 230 refereed papers, of which over 70 are in archival
journals. Dr. Liu is the recipient of numerous awards including
the 1994 National Science Foundation Young Investigator, the IEEE
Signal Processing Society’s 1993 Senior Award, IEEE 50th Vehicu-
lar Technology Conference Best Paper Award, Amsterdam, 1999.
He also received the George Corcoran Award in 1994 for outstand-
ing contributions to electrical engineering education and the Out-
standing Systems Engineering Faculty Award in 1996 in the recog-
nition of outstanding contributions in interdisciplinary research,
both from the University of Maryland. Dr. Liu is Editor-in-Chief
of EURASIP Journal on Applied Signal Processing, and has been
an Associate Editor of IEEE Transactions on Signal Processing, a
Guest Editor of special issues on Multimedia Signal Processing of

Proceedings of the IEEE, a Guest Editor of special issue on Signal
Processing for Wireless Communications of IEEE Journal of Se-
lected Areas in Communications, a Guest Editor of special issue on
Multimedia Communications over Networks of IEEE Signal Pro-
cessing Magazine, a Guest Editor of special issue on Multimedia
over IP of IEEE Trans. on Multimedia, and an editor of Journal of
VLSI Signal Processing Systems.

	1. INTRODUCTION
	2. BACKGROUND AND PROBLEM FORMULATION
	3. THE ADAPTIVE BELLMAN-FORD ALGORITHM
	4. COMPARISON AGAINST OTHER INCREMENTAL ALGORITHMS
	5. APPLICATIONS
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

