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Abstract—Light Field (LF) offers unique advantages such
as post-capture refocusing and depth estimation, but low-light
conditions severely limit these capabilities. To restore low-light
LFs we should harness the geometric cues present in different LF
views, which is not possible using single-frame low-light enhance-
ment techniques. We, therefore, propose a deep neural network
architecture for Low-Light Light Field (L3F) restoration, which
we refer to as L3Fnet. The proposed L3Fnet not only performs
the necessary visual enhancement of each LF view but also
preserves the epipolar geometry across views. We achieve this
by adopting a two-stage architecture for L3Fnet. Stage-I looks
at all the LF views to encode the LF geometry. This encoded
information is then used in Stage-II to reconstruct each LF view.

To facilitate learning-based techniques for low-light LF imag-
ing, we collected a comprehensive LF dataset of various scenes.
For each scene, we captured four LFs, one with near-optimal
exposure and ISO settings and the others at different levels
of low-light conditions varying from low to extreme low-light
settings. The effectiveness of the proposed L3Fnet is supported by
both visual and numerical comparisons on this dataset. To further
analyze the performance of low-light reconstruction methods, we
also propose an L3F-wild dataset that contains LF captured late
at night with almost zero lux values. No ground truth is available
in this dataset. To perform well on the L3F-wild dataset, any
method must adapt to the light level of the captured scene. To
do this we use a pre-processing block that makes L3Fnet robust
to various degrees of low-light conditions. Lastly, we show that
L3Fnet can also be used for low-light enhancement of single-
frame images, despite it being engineered for LF data. We do so
by converting the single-frame DSLR image into a form suitable
to L3Fnet, which we call as pseudo-LF.

Index Terms—Low-Light, Light Field enhancement, Light
Field dataset.

I. INTRODUCTION

IMAGES captured in low-light such as in the dark or night-

time, not only lack the pleasing visual aesthetics but are

also corrupted by high amount of noise and color distortions.

This forthrightly hinders the performance of many computer

vision algorithms [1]. This plight of low-light conditions is

not unique to conventional 2D photographs, but is also shared

by Light Fields (LFs) [2]–[5]. In contrast with a conven-

tional camera, which captures only 2-D spatial information,

a light field camera captures both 2-D spatial and 2-D angular
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Captured LF Depth from captured LF

Histogram equalized LF Depth from histogram equalized LF

Our restored LF Depth from our restored LF

Fig. 1. Low-light is a severe bottleneck to Light Field (LF) applications.
For example, the depth estimate of LF captured in low light is very poor. Our
proposed method not only visually restores each of the LF views but also
preserves the LF geometry for faithful depth estimation.

information about the scene. Capturing the full light field

allows us to perform post-capture controls such as digital

refocusing and aperture control [3], [6]. It also enables easy

scene depth estimation [7]–[9]. This has resulted in many LF

applications such as view synthesis [4], [5], [10], structure

from motion [11], pedestrian identification [12], reflection

removal [13], and various other real-world application like

autonomous driving and plant monitoring [14]. But, as stated

previously, these LF applications are not immune to the

challenges of low-light imaging. This is depicted in Fig. 1

where the depth estimation capability of LF is foiled due

to low-light conditions. Commonly used techniques such as

histogram equalization or having higher ISO does not help

much in this regard as they boost the noise levels and introduce

unwanted artifacts. Our goal, therefore, is to design a low-light

LF restoration technique to mitigate these problems.
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Low-light restoration is an ill-posed problem because of

the large amount of noise present in the low-light signal.

Also, color information is not present adequately. An LF,

however, by capturing multiple views of the low-light scene,

contains rich geometric cues about the scene. Harnessing the

complimentary information spread across the LF views should

help in reducing the ill-posedness of the problem and result in

better visual reconstruction. In addition to this, the restoring

process should also preserve the LF epipolar constraints to

allow for subsequent tasks like depth estimation. The existing

works on the low-light enhancement [15]–[20] are, however,

not designed to keep these points in consideration and so are

not suitable candidates for enhancing low-light LFs.

We propose a two-stage deep neural network for Low-Light

Light Field (L3Fnet) reconstruction. Stage-I of the L3Fnet

operates on the full LF to first encode the LF geometry. This

encoded information is then used as an auxiliary information

in Stage-II for actual view restoration. Adopting such a two-

staged architecture helps us to restore low-light LFs both

aesthetically and with geometric correctness.

Training a learning-based model such as L3Fnet requires

a low-light LF dataset but, unfortunately, there is no such

dataset. An easy way out would have been to create a syn-

thetic dataset using gamma correction, noise addition, or even

retouching the images in software such as Adobe Photoshop

and GIMP as was done for the single frame case [16], [17],

[20]–[22]. But these are only proxy solutions, and as pointed

out by Plötz and Stefan [23], benchmarking algorithms on

synthetic dataset may not correlate with their performance

on real-world data. We, therefore, collected our own Low-

Light Light Field (L3F) dataset using commercially available

Lytro Illum LF camera. L3F dataset was captured in the

evenings when the visibility was below normal level. For

each scene, 4 shots were taken. For the first shot, optimal

camera exposure and ISO settings were used to get the ground

truth LF. Lytro Illum’s exposure was then reduced in definite

proportions to capture three more low-light LFs. While taking

these shots, much care has been taken to avoid moving objects

such as passing vehicles and wavering leaves to prevent any

registration issues. Camera shake is another cause of incurring

registration problems and is much more pronounced for Lytro

Illum. Lytro Illum, unlike modern single-frame DSLR cam-

eras, does not allow remote connectivity for capturing data.

So the only way to capture LF was by physically pressing the

shutter button causing unintentional camera shake. To limit

this we captured multiple sets of four LFs for each scene and

employed additional measures to keep the camera rigidly fixed.

We then did a manual check to identify the set exhibiting

the least amount of camera shake. Using these techniques the

maximum pixel shift in the captured LFs is about 3−4 pixels.

While capturing the L3F dataset we were constrained to

capture the ground truth for each scene. This was essential to

train our network. Because of this constraint, we were unable

to capture extremely low-light LFs. We, therefore, decided

to forsake this restriction and collected a separate low-light

LF dataset captured late in the night with near zero lux

conditions at the camera lens. We call this dataset L3F-wild,

which we use only for evaluation. L3F-wild LFs were captured

with typical camera exposure of 1/5 second and nominal

ISO levels. Note that we do not use the standard practice of

capturing images with a long exposure, of say 10 seconds,

in low-light conditions. This is to avoid possible motion blur

and is a step towards fast low-light imaging. The L3F-wild

dataset has a good amount of variation in scene brightness

level, portraying a real-world scenario. We, consequently, use

a pre-processing block which when appended to L3Fnet makes

it robust to such variations in light levels by automatically

estimating an appropriate amplification factor.

We have already discussed why single-frame techniques are

not suitable for enhancing low-light LF. And we now address

the reverse question, can LF methods be used for single-frame

DSLR images? The proposed L3Fnet has been specifically

engineered for LF and so cannot be directly operated on

single-frame images. However, we propose a novel pixel

shuffling mechanism, which can convert any DSLR image into

a pseudo-LF. Pseudo-LF has a form suitable to L3Fnet, and so

can be enhanced using it. Later on, the enhanced pseudo-LF is

transformed back into a single-frame DSLR image in a lossless

fashion. This gives L3Fnet architecture a universal appeal for

both LF and single-frame image low-light enhancement with

restoration being more optimized for LF but maintaining a

decent recovery for single-frame images.

To summarize, we make the following contributions:

• We propose a two-stage deep neural network, L3Fnet, for

restoring extremely low-light LFs.

• We collected L3F dataset consisting of real LFs with

varying levels of low-light, which can be used for training

and evaluation of data driven methods.

• We use a pre-processing block that automatically adapts

L3Fnet to changing light levels.

• Our proposed Pseudo-L3Fnet framework enables L3Fnet

to process even single-frame DSLR images for better

enhancement in several cases.

II. RELATED WORK

LF processing algorithm: Many techniques and models

have been proposed for several LF related tasks. This includes

tasks such as spatial super-resolution [24]–[27], deblurring

[28]–[30], denoising [31]–[35], and depth estimation [7]–[9].

But, to the best of our knowledge, no prior work has consid-

ered solving the challenges involved in low-light LF imaging.

We, therefore, outline some of the important works on LF

denoising as denoising is a crucial part of low-light restoration.

The easiest approach to LF denoising is to individually denoise

each LF view using standard techniques like BM3D [36]. This,

however, does not capture the 4D structure of LF and was

addressed by Mitra and Veeraraghavan [31]. By operating on

LF patches, they modeled each 4D patch using Gaussian Mix-

ture Models (GMM) subject to the patch disparity information.

This way they provided a common framework for several LF

tasks such as super-resolution and denoising. Dansereau et

al. [33] observed that the LF of a Lambertian surface has a

hyperfan-like shape in the frequency domain. By appropriately

choosing the passband they tried to remove noise. Sepas-

Moghaddam et al. [34] treating LF akin to video frames,
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LF at optimal exposure setting

LF with 1/ optimal exposure50

th

LF with 1/ optimal exposure100

th

LF with 1/ optimal exposure20

th

Fig. 2. Sample center-view images from the Low-Light Light Field (L3F)
dataset consisting of 27 scenes. For each scene, we capture a LF at near
optimal exposure setting and at three other exposure settings with the
exposures being 1/20th, 1/50th and 1/100th of the optimal setting. Refer
supplementary material to view the full dataset.

first converted LF into an epipolar sequence and then applied

video-based techniques to denoise the LF. This 3D stacking of

epipoles, however, has limitations in capturing the 4D nature

of LF and was consequently addressed by LFBM5D [32], a

popular LF denoising technique. LFBM5D does a realistic 4D

LF modeling and is a natural extension to the then state-of-

the-art denoising method BM3D. However, LFBM5D does not

address the problem with low-light LFs because of its inability

to enhance color.

Single-frame low-light enhancement: A significant

amount of literature exists for low-light single-frame image

enhancement. We briefly review some of them. LIME [15]

used a non deep learning optimization framework for low-light

enhancement. It utilized the retinex theory [37] to decouple the

captured image into reflectance and illumination components

for subsequent enhancement. A similar idea was used by

Park et al. [16] and proposed another variational optimization-

based retinex model. Ying et al. [38] also used the retinex

model but combined it with the camera response model to

preserve the naturalness of the enhanced image. Deep learning

based methods employing encoder-decoder architecture have

also been recently used for low-light enhancement [17]–[20].

Amongst all these recent works, the work by Chen et al.

[19] is a landmark paper on extreme low-light enhancement

and is closest to our work. Following this work by Chen et

al., [39], [40] are some of the more recent methods which

show results on extreme low-light images. Other recent works

[17], [18], [20], [41]–[46] also aim at low-light but their main

objective is the enhancement of dim images. These images

already had a good representation of the target scene and only

lacked in aesthetics and contrast but had a decent amount of

scene visibility. This is an interesting problem to solve but in

our work we target image with much lower visibility, see Fig.

1, 6 and 15.

III. L3F DATASET

Creating a low-light LF enhancement dataset is a major

challenge in designing learning-based solutions. Synthetic

low-light LF data can be created using gamma correction

and noise addition [16], [20]–[22], however, such techniques

act globally and so do not mimic a real low-light situation

which severely affects some regions more than others. Also,

in synthetic data noise is generally modeled as Gaussian or

Poisson distribution which may not hold true in real low-light

data. The other popular technique is to retouch the low-light

images in photo-editing software by trained photographers to

obtain the ground-truth [17], [18]. Such proxy solutions are

not suitable for evaluating low-light LFs because any local

edit in a LF view needs to be propagated to all the other

SAIs which is difficult to enforce manually. Thus, different

from recent methods that adopt such techniques, we introduce

a Low-Light Light Field (L3F) dataset containing both low-

light LF and the corresponding ground-truth LF. To the best

of our knowledge, this is the first dataset available for training

and benchmarking low-light LF enhancement techniques.

All the LFs in the proposed L3F dataset were captured in

outdoor situations. The scene content predominantly includes

an outdoor urban campus environment with lambertian and

non-lambertian surfaces at varying depth and occlusion levels.

The captured LFs do not include any dynamic objects in the

scene such as moving people and vehicles. All the LFs were

captured in the evening with limited natural light where the

typical illuminance was between 0.1 Lux to 20 Lux.

We use the Lytro Illum Camera to capture all the LFs.

For each scene we captured four LF data. One of them was

captured using the least ISO and appropriate exposure settings

to make it look like a well-lit image. This we use as the ground

truth reference LF for that scene. The other three LFs were

captured by reducing the exposure setting to 1/20th, 1/50th

and 1/100th of the reference LF exposure time. For brevity,

we refer them as L3F − 20, 50 and 100 datasets. Chen et al.

[19] limited their work to approximately 1/20th setting but

we go even more low-light with L3F-100 dataset for better

understanding and contrasting the effect of low-light on LF

reconstruction.

Motion blur caused due to camera shake is a common

artifact when capturing long-exposure sequences. To limit this

we mount the Lytro camera on tripod and capture the LFs

using timer mode. Unlike DSLR cameras the Lytro Illum

camera does not allow remote capture which makes the data

capturing process harder and laborious. Consequently, the

four LFs captured for the same scene exhibits small spatial

misalignment. To contain this we capture multiple sets of these

four LFs for a target scene and choose the set exhibiting the

least alignment problem. We could have further used matching

algorithms, but they had a lot of difficulty in finding the correct

correspondences between well-lit and extremely dark images.

Thus, no subsequent alignment operation was performed. In

the supplementary we quantitatively show that for most scenes

the misalignment is ≤ 1 pixel. This small misalignment in L3F

dataset is taken care by our proposed method.

The images were captured in the Light Field Raw (LFR)

format of the Lytro Illum camera. The resolution of each LFR

file is 5368×7728 pixels. The raw images are captured in the

Bayer sensor pattern where the pixels are hexagonally packed.

We use Light Field Matlab Toolbox [35] to demosaic, decode,
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Fig. 3. L3Fnet architecture: The proposed architecture consists of a Global Representation Block (Stage-I) and a View Reconstruction block (Stage-II). Stage-I
operates on the full low-light LF to obtain a latent representation that encodes the LF geometry. This latent representation is then used by Stage-II to restore
each LF view.

devignetize and color-correct the LFR files. The decoded 4D

LF data have a resolution of 15× 15× 434× 625× 3, where

15×15 represents the angular resolution, 434×625 represents

the spatial resolution of each view and 3 corresponds to the

RGB channels.

The proposed dataset contains a total of 108 LFs organized

into 27 sets. Each set corresponds to a unique scene with 4
LFs captured at various exposure settings. Fig. 2 shows a few

sample LF center-views from the proposed dataset. 33% of

the dataset i.e., 9 sets (36 LFs) forms the test set. The dataset

is available for download from the project page.

While capturing L3F−20, 50, and 100 datasets, we were

constrained to capture the well-lit LF image also, which is

required for training the L3Fnet. Forsaking this restriction, we

captured even darker low-light LFs taken late in the night.

While capturing this dataset, the Lux measure at Lytro Illum’s

lens was almost nil, and so no ground truth was possible for

these LF images. We call this dataset L3F-wild. Although L3F-

wild cannot be used for training, the performance of methods

trained on L3F−20, 50, and 100 dataset can be checked by

evaluating on L3F-wild dataset. L3F-wild dataset is a step

forward towards fast low-light imaging because it does not

adopt the standard practices of low-light imaging such as

prolonged exposure or high ISO. Long exposures like 5− 10
seconds cause a lot of motion blur, and high ISO boosts

the noise. L3F-wild was, however, captured with a typical

exposure time of 1/4 − 1/15 second and low ISO values

around 100. In the experimental section and supplementary,

we demonstrate the effectiveness of L3Fnet on both L3F-100

and L3F-wild datasets.

IV. LOW-LIGHT LIGHT FIELD NETWORK (L3FNET)

A. Important Features of L3Fnet

Our proposed method is designed to enhance LFs captured

in low-light. But before describing the details of the proposed

solution, we highlight some of the desired characteristics that

the proposed solution should have. These characteristics are

not task-specific but essential to any LF architecture. These

features were cataloged after studying different architectures

for various LF related tasks. Firstly, L3Fnet should not make

strong assumptions about the scene, so that, given any low-

light LF we should be able to restore it. This is contrary

to works like [24], [47], which required explicit geometric

information of the scene, such as depth-map, to perform

the given task. Secondly, L3Fnet should not restore the LF

views independent of each other. This may lead to visually

pleasing reconstruction, but the LF epipolar geometry would

not preserved. This was noticed in works such as [27], where

only pairs of LF views were fed to the CNN model, failing to

capture the high view coherence of the LF [25]. The third

desired characteristics is view parallelization, which is the

ability to restore each view parallelly. This is contrary to

the approach taken by LFNet [25], which used bidirectional

recurrent units to model the inter-view dependencies. But as

pointed out in [26], the dependencies were not modeled well,

and the algorithm was slow because of sequential processing

over time. So if possible, recurrent units should not be used in

L3Fnet for potential view parallelization. View parallelization

also has the advantage that we can selectively reconstruct

only some of the desired LF, without reconstructing the full

Light Field, saving time and memory. Lastly, we do not want

different model architectures with multiple sets of weights

for different views. This was adopted by [26] to retrain their

network for each Sub-Aperture Image (SAI) and consequently

have a separate set of weights for each LF view. We, on the

other hand, would like to have a single architecture with shared

weights for all LF views. We have summarized this discussion

in Table. I.

We have incorporated these features in the design of L3Fnet,

see Fig. 3, to the extent possible without harming the primary

purpose of enhancing low-light LFs. L3Fnet admits no strong

assumption about the target scene because it requires no extra

information other than the low-light LF for enhancement.

To achieve view-coherence, we have a Global Representation

Block (GRB), which operates on the entire LF to obtain a

latent representation that encodes the LF epipolar geometry.

The View Reconstruction Block (VRB) of L3Fnet then uses

the global information encoded by GRB to restore each LF
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TABLE I
COMPARISON OF ARCHITECTURAL FEATURES PRESENT IN L3FNET.

No strong View View Shared weights

priors coherence Parallelization & architecture

Wanner et al. [24] ✗ ✗ ✓ ✓

Yoon et al. [27] ✓ ✗ ✓ ✓

LFNet [25] ✓ ✓ ✗ ✓

Zhang et al. [26] ✓ ✓ ✓ ✗

Ours L3Fnet ✓ ✓ ✓ ✓

view independent of other LF view. Thus we incorporate the

view parallelization property.

Splitting the L3Fnet architecture into two stages is very ben-

eficial. If all the SAIs are pushed into a CNN model, the model

may be hard to train and test because of huge computational

requirements. This is because LFs are much larger than even

HD DSLR images. We, therefore, decomposed the L3Fnet

architecture into two stages. Stage-I looks at all the SAIs and

provides a latent representation to Stage-II, to aid individual

restoration of each SAI. This architecture thereby prevents the

parameter and computational complexity explosion.

Restoring low-light light fields subsumes the task of denois-

ing, color restoration and preserving the LF geometry. The

proposed GRB leverages information from multiple views to

aid denoising and in preserving high-frequency details and the

LF geometry. We shall verify these claims in the experimental

section where we show that by using GRB depth estimation

is benefitted, PSNR/SSIM improves, and the high-frequency

details are preserved well.

B. Network Architecture

The architecture of L3Fnet is shown in Fig. 3. We now

describe each of its component in detail below.

Stage-I Global Representation Block (GRB): Given an

input LF Llow ∈ R
U×V×W×H×3, we first stack all the views

across channels to obtain Î ∈ R
W×H×3UV . Such a repre-

senation can be processed using a 2D Convolutional Neural

Network (CNN) to obtain a low-dimensional LF representation

useful for any down-stream task.

In the Global Representation Block (GRB) a convolutional

layer HGRB is used to reduce the input channel dimensions

of Î, see Table II.

J0 = HGRB
(

Î
)

(1)

To now extract useful information, we further process this

representation using M (fixed at 4) residual blocks [48] to

obtain the global representation

Jm = BGRB
m (Jm−1) , m ∈ {1, . . . ,M}, (2)

where BGRB
m denotes the mth residual block in the GRB. This

feature map is then fed to the final convolutional layer T GRB

as a post-processing step

JM+1 = T GRB (JM ) . (3)

By processing all the views together using a CNN archi-

tecture the network captures the implicit LF structure such

Compute
Histogram

�

:	Product

Fig. 4. The Histogram Module computes the RGB histogram of a low-light
LF and outputs an amplification factor γ. Normalizing the dark LF with this
module allows L3Fnet to process images of varying low-light levels mitigating
the over/under saturation problem.

as disparity, sub-pixel information etc., relevant for the final

task at hand. This global representation is then used by the

view reconstruction block as an augmented information to

reconstruct any of the input view.

Stage-II View Reconstruction Block (VRB): While the

GRB representation is too coarse and common to all SAIs,

for better reconstruction of each SAI we explicitly use its

immediate neighbours. Formally, to reconstruct a particular

view I(u, v) ∈ R
W×H×3, its neighbours {I(u, v− 1), I(u−

1, v), I(u, v + 1), I(u+ 1, v)} are stacked across channels to

obtain Ĩ ∈ R
W×H×15. The view restoration process begins

by processing Ĩ using a convolutional layer HV RB to obtain

the feature map C0:

C0 = HV RB
(

Ĩ
)

. (4)

The global feature map is concatenated with this before being

fed to N (fixed at 6) residual blocks:

C1 = BV RB
1 (C0 ⊕ JM+1) (5)

Cn = BV RB
n (Cn−1) , n ∈ {2, . . . , N}, (6)

where BV RB
n denotes the nth resblock in the view reconstruc-

tion block and ⊕ denotes the concatenation operation. The

resblocks in GRB and VRB branches share the same structure.

Finally, the output feature map is passed through a transposed

convolution block T V RB followed by a long skip connection

from the input SAI to restore the SAI

Iout(u, v) = T V RB (CN ) + I(u, v). (7)

Many works [49], [50] have reported difficulty in train-

ing very deep networks by simply stacking residual blocks.

Therefore, to stabilize the training and optimization of deep

networks, adding a long/global skip connection has become

a standard practice [49], [51]. Further, unlike the short skip

connections which help in propagating finer details, long skip

connection helps to transmit coarse level details which are

crucial for image restoration tasks.

Histogram Module: The typical illuminance of the scenes

in our dataset varies from 0.1 lux−20 lux. This causes a lot of

variation in the input data distribution. A simple workaround

is to scale the input image with an appropriate amplification

factor γ which controls the brightness of the image. Chen et

al. [19] requires a manual input for γ. Contrary to this, we

automate the process by pre-processing the low-light LF with

the Histogram Module shown in Fig. 4.
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TABLE II
L3FNET ARCHITECTURE SUMMARY. K STANDS FOR KERNEL SIZE, S FOR

STRIDE, OUT FOR NUMBER OF CHANNELS IN CONVOLUTIONAL LAYERS.

Branch Name Type K S Out

Stage-I

Global Representation

Block

HGRB
Conv-2D 7 1 64

Conv-2D 3 2 128

BGRB

Res-Block 3 1 128

Res-Block 3 1 128

Res-Block 3 1 128

Res-Block 3 1 128

T GRB Conv-2D 1 1 64

Stage-II

View Reconstruction

Block

HV RB
Conv-2D 7 1 15

Conv-2D 3 2 64

BV RB

Res-Block 3 1 128

Res-Block 3 1 128

Res-Block 3 1 128

Res-Block 3 1 128

Res-Block 3 1 128

Res-Block 3 1 128

T V RB
Transpose-2D 2 2 128

Conv-2D 3 1 3

Histogram

Module
H

FC - - 200

FC - - 100

FC - - 50

FC - - 1

To estimate the appropriate amplification factor γ, we

make use of the RGB histogram of the input low-light LF

image Llow. Formally, let hc ∈ R
L be the normalized L-

bin histogram of the input image corresponding to the color

channel c ∈ {R,G,B}. This histogram is then fed to 3 fully

connected layers H to compute the amplification factor γ. γ
is then used to appropriately scale the input low-light LF:

γ = H
(

hR ⊕ hG ⊕ hB
)

(8)

Lnorm = γ × Llow, (9)

where ⊕ denotes concatenation. During the training phase,

we only need to update the weights of the MLP to obtain the

required γ and this requires back-propagation to happen only

till the first layer of MLP and not beyond. Scaling the input

image with the amplification factor acts as an important pre-

processing step. Without this pre-scaling step the restored LF

would sometimes tend to be over or under-saturated for light

levels of different gradations.

Loss Function: For the proposed solution we try to min-

imise the following loss function:

Loss = α1

K
∑

k=1

||Iout(uk, vk)− IGT (uk, vk)||1

+ α2

K
∑

k=1

CX
(

Iout(uk, vk), I
GT (uk, vk)

)

+ λ||w||1, (10)

where CX(·, ·) is the contextual loss [52], w denotes

the model parameters and IGT (uk, vk) is the ground-truth

Fig. 5. Pseudo-LF: Extending the proposed L3Fnet to single-frame DSLR
images. The proposed Pseudo-LF transformation coverts a 2D DSLR image
into a 4D pseudo-LF. Pseudo-LF transformation allows a CNN designed for
LF to also process single-frame DSLR images.

(uk, vk)
th view of the LF having K views. The first com-

ponent in our loss function performs a dense matching (i.e.,

pixel-to-pixel) between the restored and the ground truth LF to

recover the structure and color information. Since recovering

the precise color information from a low-light signal is a

hard problem, a small shift from actual hue information is

expected, no matter how long the network is trained. So,

in a bid to prevent our loss function from having large

errors due to this mismatch, we chose the sum-of-absolute-

deviation (L1 loss ) over other alternatives such as L2 loss

to perform the dense pixel matching. But as our dataset has

small misalignment, directly using the L1 loss would lead to

blurred outputs. To prevent this we additionally used a low

weighted contextual loss to handle this problem. Our ablation

studies nicely demonstrate the importance of both components

in our loss function.

V. PSEUDO-LF: EXTENDING L3FNET TO SINGLE-FRAME

DSLR IMAGES

The proposed L3Fnet has been specifically engineered for

low-light Light Fields and thus cannot enhance low-light

single-frame DSLR images. On the contrary, we will show that

(see Fig. 6) methods designed for single-frame DSLR images

are also inappropriate for low-light LF. Thus, we introduce

a very simple and light-weight transformation called pseudo-

LF transform, which allows L3Fnet to enhance even DSLR

images. This is illustrated in Fig. 5.

The first step is to convert the the DSLR image into pseudo-

LF. To do this, the high-resolution DSLR image is divided

into blocks of B × B pixels. The ith pseudo SAI, where

i ∈ [1, . . . , B2], is then obtained by collecting together the

ith pixel from each B × B block. We use the term pseudo

because the resulting pseudo-LF SAIs have no real disparity

and only happen to be shifted subsampled versions of the

input high-resolution DSLR image. The converted pseudo-

LF, and not the original DSLR image, is then processed by

the L3Fnet to obtain well-lit pseudo-LF. The resulting well-

lit LF is finally converted back to well-lit DSLR image by

reversing the sampling process described just now. Recently

Gu et al. [39] and Shi et al. [53] have also used a similar pixel

shuffling technique for better performance on DSLR images

but do not allow CNNs designed for LF to process DSLR

images.

The proposed pseudo-L3Fnet pipeline may appear a

workaround to fit L3Fnet in the DSLR image framework, but
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TABLE III
PSNR(DB)/SSIM COMPARISON OF THE PROPOSED L3FNET WITH

RECENT WORKS ON THE L3F-20, L3F-50 AND L3F-100 DATASETS. THE

EFFECTIVENESS OF THE PROPOSED L3FNET IS MORE EVIDENT FOR THE

EXTREMELY LOW LIGHT IMAGES IN THE L3F-100 DATASET. BOLD

INDICATES BEST VALUE AND UNDERLINE INDICATES SECOND-BEST.

L3F-20 L3F-50 L3F-100

LFBM5D [32] 24.48/0.79 20.94/0.64 18.14/0.46

PBS [42] 20.80/0.68 16.48/0.53 13.94/0.38

RetinexNet [41] 21.82/0.72 18.98/0.59 17.8/0.41

DID [40] 24.09/0.78 22.63/0.68 20.68/0.61

SGN [39] 24.10/0.76 22.18/0.67 20.70/0.59

SID [19] 24.53/0.76 22.87/0.66 20.75/0.58

Our L3Fnet 25.25/0.82 23.67/0.74 22.61/0.70

it has some inherent advantages. It allows a large receptive

field which helps the restoration by gathering more contextual

information. For example, modern CNN architectures mostly

use a 3×3 convolution kernel that operates directly over

a DSLR image and hence it has a receptive field of just

3×3 for one convolution layer. However, we first convert the

DSLR image into B2 pseudo-SAIs. Stage-I of L3Fnet then

collects all the B2 pseudo-SAIs and subsequently performs

3×3 convolution with a stride of 1. This is equivalent to a

receptive field of 3B × 3B and with a stride of B in the

DSLR image. In our experiments, we use B = 10 and so the

effective receptive field is 30×30. To have the same effect by

convolving directly on the DSLR image, requires a 30 × 30
convolution kernel with a stride of 10. However, such large

kernel sizes and strides have become obsolete in modern CNN

architectures and deep learning libraries are mostly optimized

for 3×3 kernel size [54]. Thus, even though L3Fnet has been

designed for LF, by using the pseudo-LF transformation it

can be effectively used for single image enhancement with

the advantage of having a large receptive field.

VI. EXPERIMENTAL RESULTS

A. Implementation details

Data Pre-processing: Recent works on single-frame low-

light image restoration [19], [55] chose to work with raw

format. This is because the raw data directly stores the signal

measured by the sensor and so is immune to any loss of

information due to the Image Signal Processing pipeline of the

camera. However, there are few difficulties with directly work-

ing on raw LF obtained from Lytro Illum. The raw LF requires

a significant amount of pre-processing [35] which involves

tasks such as alignment rectification, hexagonal to orthogonal

lattice conversion, de-vignetisation, and demosaicing [35]. We

wanted L3Fnet to focus on low-light restoration rather than

learning these difficult geometric transformations for which

already efficient techniques exist. So we chose to work with

decoded JPEG images with the highest quality factor. From the

training time and resource utilization perspective also this is

beneficial because the JPEG compression reduced the decoded

image size form massive 400−500MB to 40−50MB, which

is still much larger than raw single-frame DSLR data.

Lytro Illum captures 225 views of a scene arranged in a

15×15 grid. As the peripheral views are affected by ghosting

and vignetting effect [25], [26], we restore only the central 8×
8 views. For the SAIs lying at the boundary of this 8×8 grid,

the adjoining SAIs are taken from the 9th row and column.

Reducing Memory Requirement: Stage-I computes the

global representation by looking at all the 64 SAIs. This

representation is then used by Stage-II to restore each SAI. But

to speed-up the training and reduce the model size on GPU, we

pass only 12 randomly chosen SAIs to Stage-II and the loss is

computed only over these 12 SAIs. Note that during inference,

however, we can together restore all the SAIs because during

inference, the chain rule mechanism of PyTorch is disabled,

which is responsible for most of the memory and computation.

Loss Function: L1 loss turns out to be more crucial than

the CX loss [52] in our ablation studies (see Table V). We thus

set α1 = 5 and α2 = 0.1 for first 20k iterations. After this α1

is reduced to 1. For CX loss, we used the feature maps at the

9, 13 and 18th layer of VGG19 [56]. λ was fixed to 10−6 for

all iterations. L3Fnet was trained for 100k iterations.

Data augmentation: To augment the data in the training

phase, we use horizontal flipping, vertical flipping, and color

augmentation. Color augmentation is achieved by swapping

the color channels in random order. The training is done on

patches of size 180 × 180 and full spatial resolution is used

at the time of testing. In each iteration, the patch location is

chosen randomly within each sub-aperture view. Since each

view has a resolution of 625 × 433 and we use randomly

selected patches of 180× 180, along with data augmentation

techniques we had sufficient training data.

Baseline: We compare our L3Fnet with a LF denoising

technique LFBM5D [32] and single-frame low-light enhance-

ment methods SID [19], SGN [39], DID [40], RetinexNet

[41] and PBS [42]. As LFBM5D is a denoising technique,

we had to suitably scale it for better color restoration before

proceeding for denoising. LFBM5D additionally requires an

estimate of the noise variance. This was obtained from small

texture-less patches of the low-light LF.

SID for single-frame images chose to work with raw format

and performed an end to end training. It is however not suited

for raw Lytro LF images. For reconstruction using SID, it

has to be independently operated over each SAI which is

like a single-frame image. The SAIs are however not readily

available in raw LFR format and needs to decoded using the

Light Field Matlab Toolbox [35].

The existing methods such as SID were trained and evalu-

ated using their own loss function comprising of just the L1
loss. We, however, also tried our loss function consisting of

L1 + Contextual loss to train them. We found that our loss

function gave slightly better results and so we use these results

for comparison.

B. Visual and Geometric Reconstruction Comparisons

The proposed L3F-20, L3F-50 and L3F-100 datasets have

very different light illumination levels, see Sec. III. In our

first experiment, we train and test our method and the existing

methods for each of the three datasets independently. That
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L3F-100 input L3F-20 input Ground Truth L3F-100 input L3F-20 input Ground Truth

— — — — Results on L3F-100 Dataset — — — —

LFBM5D [32] PBS [42] RetinexNet [41] SGN [39] DID [40] SID [19] Ours

18.52/0.47 14.50/0.32 18.64/0.41 21.06/0.53 21.12/0.54 21.22/0.50 21.44/0.62

13.61/0.32 12.13/0.30 17.09/0.39 18.39/0.62 17.70/0.60 18.44/0.59 19.41/0.68

— — — — Results on L3F-20 Dataset — — — —

LFBM5D [32] PBS [42] RetinexNet [41] SGN [39] DID [40] SID [19] Ours

21.64/0.67 16.92/0.42 18.99/0.50 22.21/0.65 21.93/0.66 22.22/0.64 24.80/0.71

21.28/0.75 14.30/0.45 17.49/0.53 20.45/0.76 19.79/0.75 20.86/0.76 23.11/0.83

Fig. 6. (Best viewed when zoomed in) Visual and epipolar comparisons of the restored Light Fields. For the very low light case of the L3F-100 dataset,
all the existing methods obtain very blurry restorations with much loss in details. Additionally, they sometimes have a large amount of noise. The proposed
L3Fnet, however, overcomes these limitations to a good extent.

is, we train all the methods on the training-set of L3F-

20 dataset and then test it on the testing-set of L3F-20.

The same is repeated for L3F-50 ad L3F-100 datasets. Our

proposed L3Fnet is equipped with an amplification module

(which we call as the Histogram module) which can handle

varying illumination levels. However, existing methods lack

this feature. Thus, for a fair comparison with the exiting

methods, we switched OFF the Histogram Module of L3Fnet

for the above experiments. Anyway, since we are training the

methods for a particular light level (for example L3F-20) and

testing it for the same light level (L3F-20), there is no need

for estimating the amplification factor.

The results are shown in Fig. 6 and Table. III. The proposed

L3Fnet does better restoration for all three datasets. However,

the difference between L3Fnet and the other methods is most

evident for the extreme low-light case of L3F-100 dataset. For



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Scene I SID [19] Proposed
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Scene II SID [19] Proposed
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Fig. 7. Depth estimation from reconstructed low-light LFs for low-light (L3F-
20) and extreme low light (L3F-100) cases: Depth estimates from LFs restored
using SID are good for L3F-20 but very poor for the case of L3F-100 dataset
because it is hardly able to preserve the epipolar geometry. On the other hand,
our method is able to preserve the epipolar geometry even in the extreme low-
light case.

this dataset, all the existing methods struggle to restore the

finer details and the results are very blurry. L3Fnet harnesses

information from all the views and hence is able to better

restore each of the views. The single-frame methods such as

SID [19], SGN [39] and DID [40], however, restore each

SAI independent of other SAIs which causes performance

degradation, including detail loss and blurry results. We further

observe that for PBS [42] and RetinexNet [41], which are also

single-frame methods, the restoration additionally has a lot

of noise. This is because these methods have been designed

for enhancing under-exposed images, which have sufficient

color information with moderate level of noise. However,

for the challenging case of extreme low light imaging, color

information is almost lost and noise is very high.

The restored image may look aesthetically pleasing but the

LF geometry might be destroyed. We thus additionally show

the depth estimates by L3Fnet and SID for L3F-20 and L3F-

100 dataset in Fig. 7. The method proposed by Jeon et al. [7] is

used for depth estimation. Similar to visual restorations, depth

estimation becomes more and more challenging for lower light

levels and the depth estimates of L3Fnet are closer to the

ground truth.

For the L3F-20 dataset, depth estimates from LFs restored

using SID are good but lack the fine details. For example

the spokes of the bike’s tyre in scene I of Fig. 7 are clearly

demarcated in L3Fnet’s depth estimates but not for the case of

SID. Likewise, for scene II the sharpness of the board corners

is much better preserved in our results. Similar observations

hold true for the L3F-100 dataset.

TABLE IV
VARIATION CAUSED IN γ VALUES BY THE HISTOGRAM BLOCK ON THE

TEST DATASET. THE PREDICTED AMPLIFICATION FACTOR INCREASES

MONOTONICALLY WITH DECREASING LIGHT LEVEL.

Dataset γ range

L3F–20 0.3− 0.4
L3F–50 0.8− 0.9

L3F–100 1.4− 1.7

TABLE V
ABLATION STUDY TO EXAMINE THE CONTRIBUTION OF STAGE-I IN

L3FNET MODEL AND THE TWO LOSS FUNCTIONS: L1 AND CX.

Stage-I Stage-II L1 loss CX loss PSNR/SSIM

Net-I ✓ ✓ ✓ ✗ 21.71/0.63
Net-II ✓ ✓ ✗ ✓ 13.68/0.18
Net-III ✗ ✓ ✓ ✓ 22.21/0.65

Proposed ✓ ✓ ✓ ✓ 22.61/0.70

C. L3Fnet for LF captured in Wild

In this section, we evaluate the performance of L3Fnet on

the L3F-wild dataset. This dataset was collected under near 0

lux conditions and hence neither the ground-truth is available

nor the optimal exposure is known. Therefore, it is crucial

to estimate an appropriate amplification factor to restore these

LF images. To facilitate this, the Histogram Module of L3Fnet

was switched ON.

Since ground truth is not available for these images it cannot

be used for training L3Fnet. We instead re-train L3Fnet with

L3F − 20, 50, and 100 datasets merged together but pre-

processed with the Histogram Module to estimate the desired

amplification factor γ. The weights of the Histogram Module

and L3Fnet were learnt together in a end-to-end fashion. We

call this trained network as L3Fnet-γ. In Table X we report

the range of γ values predicted by L3Fnet-γ for different light

levels. For ease in notation and brevity, we refer L3Fnet trained

on L3F − 20, 50, and 100 datasets as L3Fnet-20, L3Fnet-50,

and L3Fnet-100, respectively.

In Fig. 15, we show a night time scene captured using

different ISO and exposure settings and try to restore it using

L3Fnet-20, L3Fnet-50, L3Fnet-100 and L3Fnet-γ. We can

easily notice the over/under saturation artifacts in LFs restored

by L3Fnet-20, L3Fnet-50 and L3Fnet-100. The reason is that

these networks are agnostic to image statistics and hence can

not adapt to different illumination condition. But L3Fnet-γ
avoids this problem to a large extent by estimating an appro-

priate amplification for input LF. We also tried using Gamma

correction instead of linear amplification, but the restoration

exhibited a lot of artifacts. More results and discussion can be

found in the supplementary.

D. Ablation Study

Effect of different loss functions: We trained 2 variants

of the proposed L3Fnet on the L3F-100 dataset called Net-

I and Net-II as shown in Table V. Net-I, which was trained

only with L1 loss, gave slightly blurry results. In contrast,

Net-II was trained only with the Contextual Loss. While Net-

I showed a small dip in performance due to blurriness, Net-II

performed very poorly. The reason is without the L1 loss, the

network could not learn the correct colors. We therefore have
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Exposure Time:1/15 s, ISO:80 L3Fnet-20 restoration L3Fnet-50 restoration L3Fnet-100 restoration L3Fnet-γ restoration

Exposure Time:1/5 s, ISO:100 L3Fnet-20 restoration L3Fnet-50 restoration L3Fnet-100 restoration L3Fnet-γ restoration

Fig. 8. Results on the L3F-wild dataset. The dark LF images have been pre-processed with the Histogram Module allowing L3Fnet to adapt to different
levels of low-light. For example, in the top row, L3Fnet trained on L3F-20 dataset (denoted as L3Fnet-20) fails to achieve ambient brightness. Likewise, when
the light levels are increased for test image in the second row, L3Fnet-100 oversaturates. L3Fnet-γ, however, adjusts to both lighting conditions using the
Histogram Module. Check supplementary for more visual results.

GT image Net-I Net-II Net-III L3Fnet GT patch

Fig. 9. Visual reconstruction results for ablation study on L3Fnet. Net-I
produces blurry results since it uses only L1 loss. Net-II restores the sharpness
by instead using the contextual loss but introduces a large amount of color
artifacts. Net-III solves both problems by incorporating both loss functions,
but because of the absence of Stage-I it could not capture the LF geometry
leading to inferior results than those obtained by the proposed L3Fnet. The
difference is better corroborated by comparing depth estimations results in
Fig. 10. Refer Table V for PSNR/SSIM values.

Only Stage-II Stage-I + Stage-II GT

(Net-III) (L3Fnet)

Fig. 10. Depth estimates from reconstructed LF with and without Stage-I of
the L3Fnet model. Stage-I captures the LF geometry and hence it helps in
producing better depth maps.

both L1 and Contextual loss for the proposed L3Fnet. Some

visual results are also given in Fig. 9. Since the exclusion of

L1 loss penalises the restoration far more than the Contextual

loss, we first try to restore the color and basic geometry by

giving higher importance to L1 loss in the first 20k iterations

and subsequently reduce it to let contextual loss finetune the

result. Besides the L1 and Contextual loss we also tried to train

with the SSIM loss along with L1 + Contextual losses. Using

the SSIM loss, increases the SSIM value of the restored LF

marginally, but the decrease in PSNR value is slightly more,

see supplementary.

Importance of Global Representation Block (Stage-I):

We trained a third variant of the proposed L3Fnet on the L3F-

100 dataset by removing the Stage-I and instead added the

4 residual blocks of Stage-I to Stage-II so that the model

parameters remains the same. Without Stage-I, L3Fnet was

not able to preserve the epipolar constraints of LF. Fig. 10

shows that the depth map obtained from the LF restored by

Net-III is inferior to that obtained from the LF restored when

both stages are included in L3Fnet. Some more qualitative and

quantitative results pertaining to Net-III can be found in Fig.

9 and Table V respectively.

Effect of number of residual blocks and model param-

eters: We have fixed the total number of residual blocks in

L3Fnet to 10 for computational reasons. Out of the total 10

residual blocks, we allocate 4 residual blocks to Stage-I and

6 to Stage-II. We chose more residual blocks for Stage-II

because our main goal is LF enhancement, which is being

explicitly performed by Stage-II. Moreover, we want L3Fnet

to give more weightage to the immediate neighbors of the

SAI being restored and this is only possible in Stage-II. In

the supplementary, we report several experiments that validate

our intuition. In these experiments, we tried allocating a

different number of blocks to Stage I and II and found that

the proposed allocation is better. In the supplementary, we

have also analyzed the performance of L3FNet by varying the

model parameter count and found the performance to be quite

robust to change in model parameters.

E. Pseudo-LF for single-frame image reconstruction

In this section, we evaluate the proposed pseudo-L3F

transformation for processing single-frame low-light DSLR

images. The purpose here is not to surpass low-light DSLR
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Ground Truth Baseline SID [19] Pseudo-L3Fnet

BRISQUE, NIQE 47.68, 4.97 44.71, 5.10 38.35, 4.84
PSNR / SSIM 17.75/0.92 20.48/0.85 20.62/0.83

45.59, 5.07 48.84, 5.11 41.24, 3.92
17.92/0.42 19.03/0.47 18.03/0.60

45.65, 4.99 47.85, 5.26 36.47, 4.36
12.76/0.56 12.16/0.58 12.45/0.64

46.32, 5.22 46.40, 5.26 40.03, 3.53
19.68/0.36 19.63/0.43 20.77/0.57

Fig. 11. Single-frame low-light DSLR restoration using the proposed pseudo-
L3Fnet pipeline. BRISQUE and NIQE are recent perceptual metrics for single-
frame DSLR images. Lower are these metrics, better is the perception.

reconstruction methods but to highlight the universality of

L3Fnet to enhance both LF and single-frame images.

Similar to the L3F-100 dataset, we capture 50 extreme low-

light DSLR images of which 14 were reserved for testing. We

process JPEG images only as the raw format did not give

much improvement but instead had much slower convergence

because of additionally learning the Bayer demosaicing. We

used all the data augmentation techniques mentioned for

L3Fnet with patch-wise training.

We compare our pseudo-L3Fnet pipeline with SID [19].

We also create a new baseline with the same number of

residual blocks present in pseudo-L3Fnet. Pseudo-L3Fnet has

10 residual blocks (4 in Stage-I and 6 in Stage-II), and so

the new baseline has 10 residual blocks stacked end-to-end

with a long skip connection from input to output. The new

baseline has approximately the same capacity and number of

layers present in pseudo-L3Fnet. The difference is that input

to the new baseline is the actual DSLR image, while the input

to pseudo-L3Fnet is DSLR image converted to pseudo-LF.

Some of the restoration results are shown in Fig. 11. The

baseline and SID do good at denoising but very poorly on

preserving the spatial smoothness, which is visible by the pres-

ence of color blobs spread all over the image. On the contrary,

pseudo-L3Fnet obtains much gradual transitions mitigating the

color blobs problem. This is because, as described in Sec.

V, the pseudo-LF transformation awards L3Fnet with a large

receptive field. To verify this, we experimentally computed the

receptive field and found that L3Fnet has a large receptive field

of 830×830, while for SID and Baseline it is just 252×252

and 83×83, respectively. The large receptive field of L3Fnet

helps gather more contextual information for better restoration.

The average PSNR(dB)/SSIM values for SID is 17.21/0.61,

for baseline is 17.08/0.56 and for the proposed Pseudo-LF is

19.04/0.62. Further, the average NIQE [57] values for SID is

5.24, for baseline is 5.01 and 4.29 for pseudo-LF. The average

BRISQUE [58] values for SID is 48.30, for baseline is 46.48
and 41.45 for the proposed pseudo-LF. A lower value for these

metrics is considered better.

VII. CONCLUSION AND DISCUSSION

The primary objective of this work was to enhance LF

captured in low-light conditions. We showed that the existing

single-frame low-light enhancements methods find it hard to

preserve the LF geometry because they reconstruct each LF

view independently. To this end, we proposed a low-light L3F

dataset and a two-stage L3Fnet architecture. The effectiveness

of L3Fnet was shown on LFs for varying levels of low-

light by conducting experiments on L3F-20, L3F-50 and L3F-

100 datasets. Additionally, we used the Histogram Module

to automatically tune the amplification factor γ. With this

pre-processing module, L3Fnet could now automatically adapt

to different light levels, which was substantiated by showing

results on the L3F-wild dataset.

We additionally showed that while single-frame methods

are not conceptually suited for LF related tasks, our L3Fnet

can be used for decent enhancement of single-frame low-

light images also. This was achieved by converting the DSLR

images into pseudo-LF and vice-versa. Of course, L3Fnet is

better optimized for LF and may be modified in the future to

equally suit both LF and DSLR images simultaneously.

As a future work, another interesting direction would be to

explore which camera is more suited for low-light reconstruc-

tion: a single-frame DSLR camera or a Light Field camera?

While DSLR cameras have high resolution, LF cameras may

be helpful because of complementary information present

in various LF views. Besides, depth estimation is a clear

advantage for LF cameras.

VIII. SUPPLEMENTARY

Fig. 12. Central SAI of the ground truth LFs present in the training set of
the proposed L3F dataset. This does not include the L3F-Wild dataset.
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Forest Generator Cement

SignBoard Ramanujam Bikes

PaintBox Crane Grass

Fig. 13. Central SAI of the ground truth LFs present in the test set of the
proposed L3F dataset. This does not include the L3F-Wild dataset.

SID Ours SID Ours

Fig. 14. L3F-100 Restoration results for the test data shown in Fig. 13.

TABLE VI
PSNR (DB)/ SSIM COMPARSION FOR THE L3F TEST IMAGES SHOWN IN

FIG. 13

Image L3F-100 dataset

SID [19] Our L3Fnet

Forest 22.03/0.38 24.79/0.67

Generator 28.01/0.80 31.30/0.85

Cement 21.22/0.50 21.44/0.62

SignBoard 18.44/0.59 19.41/0.68

Ramanujam 19.89/0.72 22.86/0.79

Bikes 22.63/0.68 23.16/0.80

PaintBox 11.84/0.42 12.79/0.53

Crane 20.40/0.42 23.47/0.61

Grass 22.27/0.65 24.22/0.70

Captured LF Our Reconstructed

Fig. 15. Some L3F-Wild Reconstruction Results [Trained on L3F-20+L3F-
50+L3F-100, see Fig. 12] with Histogram Module Pre-processing. The figure
shows two consecutive SAIs.
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TABLE VII
VARIATION IN PERFORMANCE BY CHANGING THE PARAMETER COUNT IN

THE PROPOSED L3FNET. THESE NETWORKS HAVE BEEN RE-TRAINING ON

THE L3F-100 DATASET. EVEN WITH MUCH LOWER PARAMETER COUNT,
WE OUTPERFORM SID [19] WHICH HAS MORE THAN 7 MILLION

PARAMETERS. NOTATION: S1 = NUMBER OF RESIDUAL BLOCKS IN

STAGE-I, S2 = NUMBER OF RESIDUAL BLOCKS IN STAGE-II, C =

NUMBER OF CHANNELS IN EACH RESIDUAL BLOCK, CT = NUMBER OF

CHANNELS IN THE FINAL TRANSPOSED CONVOLUTION LAYER.

Model description Parameter count PSNR(dB) / SSIM

Proposed. S1=4, S2=6,
C=128, CT=128

3.7 Million 22.61/0.70

Reduce number of Resid-
ual Blocks. S1=2, S2=2,
C=128, CT=128

2.2 Million 22.60/0.69

Increase the number of
Residual Blocks S1=6,
S2=9, C=128, CT=128

5.2 Million 22.57/0.69

Reduce the channels in
Residual Blocks. S1=4,
S2=6, C=64, CT=128

1.4 Million 21.87/0.68

Increase the channels in
Residual Blocks. S1=4,
S2=4, C=256, CT=128

13.4 Million 22.50/0.69

Increase the richness of fi-
nal activation layer. S1=4,
S2=6, C=128, CT=1024

4.2 Million 22.60/0.70

A. Effect of parameter count on performance

The proposed L3Fnet with 3.7 Million parameters, out-

performs the best performing baseline in our experiments

SID [19] which has more than 7 Million parameters. To

further understand the effect of parameter count on model

performance, we conducted additional experiments. In these

experiments, the parameter count in L3Fnet were varied and

then re-trained on the L3F-100 dataset (see Table VII). The

details are given below:

• Reduce the number of residual blocks: Currently,

L3Fnet has 4 residual blocks for Stage-I and 6 for Stage-

II. We reduce this to half and thus Stage-I has 2 residual

blocks while Stage-II has 3. This reduces the parameter

count from 3.7 Million to 2.2 Million. The performance

is almost the same as the original network.

• Increase the number of residual blocks: Currently,

L3Fnet has 4 residual blocks for Stage-I and 6 for Stage-

II. We increase this to 6 and 9 respectively. This increases

the parameter count from 3.7 Million to 5.2 Million. The

performance is almost the same as the original network.

• Reduce the channels in Residual Block: Currently

L3Fnet has 10 Residual Blocks each using 128 channels

for each convolution. We reduced the number of channels

to 64, which in turn reduced the parameter count from 3.7

Million to 1.4 Million. We observe a drop in performance.

• Increase the channels in Residual Block: We increased

the number of channels in the Residual Blocks from

128 to 256. This increased the parameter count from 3.7

Million to 13.4 Million. With this huge increase in the

TABLE VIII
PSNR (DB) / SSIM METRICS BY SWAPPING THE NUMBER OF RESIDUAL

BLOCKS IN SATGE-I AND STAGE-II. IN BOTH CASES L3FNET WAS

RE-TRAINED AND TESTED ON THE L3F-100 DATASET.

Number of Residual

Blocks in Stage-I

Number of Residual

Blocks in Stage-II

PSNR(dB)/SSIM

4 6 22.61/0.70
(Proposed)

6 4 22.30/0.69

3 7 22.28/0.69

7 3 22.27/0.68

number of model parameters the performance decreases

a bit possibly due to over-fitting.

• Increase the richness of final Transposed Convolution:

To obtain the final 3 channel RGB image it is always good

to average out a large feature map with richer activations.

We thus increase the number of output channels in

the Transpose-2D convolution form 128 to 1024. This

increased the parameter count from 3.7 Million to 4.2

Million but with no change in performance.

The results are summarized in Table VII. Overall the per-

formance of the proposed L3Fnet remains stable with the

change in parameter count. Save and except for the case of

1.4 Million parameters, change in parameter count causes a

variation of maximum 0.1 dB in the PSNR and 0.01 in the

SSIM metric. A closer inspection of Table VII reveals that our

results corroborate the ‘U-shaped’ curve of the famous bias-

variance trade-off. Initially when model parameters are less

(close to 1 Million) the performance increases with parameter

count. However, after some sweet spot it starts to decline

marginally with increase in model parameters.

B. Given a fixed number of Residual Blocks, how to distribute

them among Stage-I & Stage-II ?

For the proposed L3Fnet we have used 4 residual blocks for

Stage-I and 6 for Stage-II. We chose more residual blocks for

Stage-II because our main goal is LF enhancement, which

is being explicitly performed by Stage-II. Stage-I looks at

all the 64 SAIs and computes a Global Representation. In

the restoration process however, it should not happen that to

restore a pixel from a particular SAI φ, the network is looking

at all the SAIs without any discrimination. Rather to restore

a pixel from SAI φ the network should gather more contextual

information from φ and its immediate neighbors. To allow this,

we designed Stage-II which looks at the Global Representation

of Stage-I but at the same time gives exclusive attention to the

particular SAI (and its 4-nearest neighbors) which is being

restored. Given that we want to give more weightage to the

immediate neighbors, we allocated more residual blocks to

Stage-II.

We conducted more experiments by varying the number of

residual blocks in Stage I and II, see Table VIII. For all these

experiments, training and testing was carried out on L3F-100

dataset. We kept the total number of residual blocks to 10 so

that the parameter count of L3Fnet is low (it is less than half of
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TABLE IX
PSNR/SSIM METRICS OF THE PROPOSED L3FNET ON THE L3F-100

DATASET FOR VARIOUS LOSS FUNCTIONS.

L1 loss Contextual loss SSIM loss PSNR(dB) / SSIM

✓ ✗ ✗ 21.71/0.63

✓ ✓ ✗ 22.61/0.701

✓ ✗ ✓ 22.40/0.711

✓ ✓ ✓ 22.45/0.710

what is found in SID [19] and yet outperform it). We observe

that flipping the number of residual blocks between Stage I

and II, results in a small drop in performance. We also tried

7 residual blocks for stage-I and 3 for stage-II and the other

way around, see Table VIII. For both the cases, the results are

lower than the proposed L3Fnet.

C. Trying different combinations of L1, Contextual and SSIM

loss

The main reason why we chose Contextual Loss was to

handle any minor camera shake that would have occurred

during the dataset collection. But we also tried using the

SSIM loss. We do not find much difference in performance

in either using SSIM or Contextual Loss, see Table IX. Using

the SSIM loss, SSIM increases marginally, but the decrease

in PSNR is slightly more. And since recent methods such as

Gu et al. [39] and recently popular NTIRE challenges (https:

//data.vision.ee.ethz.ch/cvl/ntire20/, https://data.vision.ee.ethz.

ch/cvl/ntire19/, https://data.vision.ee.ethz.ch/cvl/ntire18/) pre-

fer PSNR over SSIM for deciding the best performance, we

do not include the SSIM loss.

D. On the use of Linear amplification vs Gamma Correction

Range of γ: Table X shows the range of γ. The learned γ
values follow our intuition that it should be higher for darker

images.

Can γ cause over-saturation? : No, it is very unlikely

that the Histogram Module can cause oversaturation. The

Histogram Module is applied at the beginning of L3Fnet and

not on the final restored image. As everything is learned end-

to-end, the supervision provided by the GT images would

modify the model weights such that the restored image is

within the desired range. Besides this, the pixel intensities

of the captured low-light LF are very small and the learned

γ values are less than 2 (see Table X). Thus multiplying the

input low-light LF with γ does not cause oversaturation and

the pixel intensities still remain in the range [0,1] 1. Some

restoration results are shown in Fig. 15 .

Ablation study on linear amplification vs. Gamma cor-

rection: In an ablation study we re-trained the Histogram

Module with the proposed L3Fnet in an end-to-end fashion

with the linear multiplication replaced with gamma correction.

Specifically, Lnorm = γ × Llow was changed to Lnorm =

1In our experiments all images are normalized in the range [0,1]. Thus the
maximum pixel intensity in our experiments is 1.

TABLE X
RANGE OF γ VALUES LEARNED FOR DIFFERENT DATASETS. WE ALSO

COMPUTE THE MEAN AND MAXIMUM PIXEL INTENSITY FOR EACH TEST

IMAGE PRESENT IN THE DATASET, AND THEIR RANGE IS SHOWN IN THE

TABLE. THE LEARNED γ VALUES FOLLOW OUR INTUITION THAT γ
SHOULD BE HIGHER FOR DARKER IMAGES.

Dataset Mean pixel intensity Max pixel intensity γ range

L3F-20 0.0097− 0.0257 0.06− 0.77 0.3− 0.4

L3F-50 0.0043− 0.0107 0.04− 0.41 0.8− 0.9

L3F-100 0.0026− 0.0084 0.04− 0.16 1.4− 1.7

Input Linear Gamma

Amplification Correction

Fig. 16. Restoration results using L3Fnet by first normalizng the input LF
using the proposed linear amplification or by using gamma correction. Using
gamma correction for normalizing the images, oversaturates the bright pixels
in order to boost the dark pixels and exhibits artifacts in the vicinity of bright
pixels.

(Llow)γ . In Fig. 16 we find that using gamma correction for

normalizing the images, oversaturates the bright pixels in order

to boost the dark pixels and exhibits some artifacts in the

vicinity of bright pixels. A possible reason for this could be

the fact that Gamma correction introduces higher order noise

terms which will be more difficult to remove by the later CNN

stages. We elaborate on this in the next paragraph.

Whenever we capture images in low light, it is affected

by a large amount of noise. For simplicity, we can assume

y = x+n, where y is the captured image in low light, x is the

actual signal we intended to capture and n is the large amount

of noise present due to low-light conditions. Now if we use a

linear amplification we obtain, γy = γx+ γn. If however, we

use the power law (gamma correction), we obtain,

yγ = xγ
(

1 +
n

x

)γ

= xγ +
γnxγ−1

1!
+

(γ)(γ − 1)n2xγ−2

2!

+
(γ)(γ − 1)(γ − 2)n3xγ−3

3!
+ ... (11)

As for low-light n is very large, the CNN will have a tough

time to remove all the higher order terms.

E. Quantifying the misalignment in the proposed Dataset

To quantitatively examine the small misalignment in our

data, we have adopted two approaches: (a) Use automated
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(a) L3F-20 dataset
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(b) L3F-50 dataset
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(b) L3F-100 dataset

Fig. 17. The figure shows the misalignment in the horizontal (tx) and vertical (ty) direction. Data for rotation is not plotted as both manual
and automated feature matching revealed almost zero rotation. The first nine images on the x-axis are the test images and the remaining are
the images used for training.

feature correspondences to estimate the transformation re-

quired to warp the low-light image onto the GT image. The

estimated transformation thereby describes the misalignment

quantitatively. (b) Manually inspecting the images to detect

and quantify misalignment. Before describing these methods

in detail, we summarise the results in Fig. 17. The figure shows

the misalignment in the horizontal and vertical directions for

all the scenes in our dataset. The average misalignment is < 1
pixel. We now describe the two approaches in detail and then

report the results in Sec. VIII-H.

F. Using automated feature matching

Employing matching algorithms for extreme low-light im-

ages often results in wrong correspondences. This is especially

true for the proposed L3F-100 dataset, where we had a

tough time finding reliable matched pairs. This is because

the input extreme low-light LF has very poor visibility and

SNR, marked by an arbitrarily high amount of noise. A more

reliable alternative is to manually inspect the image pairs for

misalignment. But as manual inspection for all the image pairs

across the entire dataset is virtually impossible, we use a good

number of precautionary measures to find a reliable set of

feature correspondences using the SIFT descriptor. They are

described below:

• The GT image is well-illuminated, and we faced no

trouble in finding good descriptors in them. However,

we tried several descriptors such as SIFT, SURF, ORB,

etc, but they could not detect features in our extreme

low-light images. We thus linearly amplified them. The

L3F-20 dataset was amplified by 10×, L3F-50 by 30×
and L3F-100 by 50×. Although a larger amplification

gives better overall brightness level, but also increases the
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Fig. 18. Here we show the matched feature pairs between a well-
lit GT scene (on the left) and extreme low-light scene taken from
the L3F-50 dataset. The low-light image was linearly amplified by
30×. These pairs were obtained after the Cross-Check, Ratio Test and
RANSAC, checks were made. But despite all these precautions, we
had to also manually check the matched pairs for inconsistencies. The
blue arrows point to an inconsistent matched pair that was deleted
after manual inspection.

noise — causing inconsistent pairs. We thus tried using

the minimum amplification factor required for detecting

features in the low-light image. These amplification fac-

tors were chosen after empirically experimenting with

different amplification factors. The grayscale version of

the color images are used for feature matching.

• We then matched the features from the GT image and the

low-light image by computing the L1 distance between

the feature descriptors. To now remove the inconsistent

pairs we employed a technique called ‘Cross-Check’. Let

G = {g1, g2, ..., gn} and D = {d1, d2, ..., dm} be the set

of detected features in the GT and the input dark images,

respectively. Now for each descriptor gi ∀ i ∈ [1, n], we

find the descriptor dj ∈ D such that,

||gi − dj || < ||gi − dk|| ∀ dk ∈ D but dk 6= dj . (12)

This pair (gi, dj) is called a consistent feature pair, if

additionally,

||gi − dj || < ||gk − dj || ∀ gk ∈ G but gk 6= gi, (13)

otherwise the pair is called inconsistent and is not used

for subsequent calculations.

• To further ensure the matched pair’s consistency, they

were subjected to the ‘Ratio Test’ mentioned by David

Lowe in his seminal paper on SIFT [59]. The threshold

ratio was set to 70%.

• After these pre-eliminary checks were made, the

RANSAC algorithm was used to remove the outliers with

a confidence of 0.99.

• Despite all these precautions, we also randomly checked

the matches returned after employing these automatic

subroutines and once a while had to manually delete the

incorrect correspondences as illustrated in Fig. 18.

Some examples of reliable matched pairs between the low-

light and GT SAI are shown in Fig. 19. Here the visualisation

is shown for the (7,7) SAIs lying in a 15 × 15 grid. Once

we had the matched pairs we estimated the translation and

rotation matrix required to warp the low-light SAI onto the

GT SAI. Our dataset’s misalignment is not because of casual

photography but because of a very small but unavoidable

camera shake due to pressing of camera button and movement

of the camera’s internal mirrors. Thus it is safe to assume that

the captured dataset is free from scaling, skew and projective

distortions. This is also evident from Fig. 20 in which we show

the GIF animation of toggling between the GT and low-light

SAI. One can hardly see any scaling or skew distortions in this

animation. We thus estimate the following transformation,





xg

yg
1



 =





cosθ −sinθ tx
sinθ cosθ ty
0 0 1









xd

yd
1



 . (14)

Here x and y denote the spatial coordinates and the subscripts

g and d denote GT and dark input image, respectively. θ
is the rotation angle and tx, ty are the translation along the

horizontal and vertical direction.

G. Manual Inspection

Automated feature matching is a quick way of estimating

the misalignment. Still, occasionally we had to see failure

cases because, in our low-light images, the noise significantly

dominates the scene visibility. This is especially true for the

L3F-100 dataset, where localizing the features is very hard.

We thus manually inspected the image pairs to estimate the

misalignment. For this, we overlapped the SAIs with 50%
transparency and quickly toggled between the GT and dark

SAIs to detect the regions showing some displacement. Then

with a good amount of zoom-in, we noted the pixels’ spatial

coordinates in those regions, which we could uniquely identify

in both images. This is a very slow and tedious task but

returned a couple of matched pairs with a very high probability

of correct correspondence.

H. Results and conclusion

As each SAI present in a LF image captured using Lytro

Illum has pixels from all parts of the LF sensor, we focus on

analyzing the (7,7) SAIs. The results are shown in Fig. 17. In

this figure, we plot |tx| and |ty| for the (7,7) SAIs obtained

from each scene present in our dataset. The figure shows the

estimates obtained using both manual inspection (denoted as

‘Manual’ in the legend) and using automated feature matching

(denoted as ‘Automated Feature Matching’ in the legend). The

first nine scenes denoted on the x-axis are the scenes reserved

for testing and the remaining scenes were used for training. We

do not plot θ because the rotation angle was < 0.01 degress.

We observe that for the L3F-20 dataset the estimation via

both methods is in almost perfect harmony. But as the noise

increases, especially for the L3F-100 dataset, we sometimes

see sporadic peaks for the automated feature matching method.

This is because in the L3F-100 dataset the noise dominates the

true signal by a large margin. This makes precise localization

very difficult, resulting in wrong estimates. Thus, manual

inspection of misalignment in such cases is very essential.

Please note that, while manually inspecting the L3F-100

dataset, it was quite challenging for us also to do precise

localization. At several instants, we found misalignment to be

< 1 pixel. But given the huge dominance of noise over the true

signal, we decided not to report a conservative estimate and

thus, for some scenes upto 2 pixel misalignment is reported.

Still, overall both the manual and automated methods estimate
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(a) L3F-20 dataset, amplified 10×

(b) L3F-50 dataset, amplified 30×

(c) L3F-100 dataset, amplified 50×

Fig. 19. Some examples of reliable matched pairs between the low-light and GT SAI. Here the visualisation is shown for the (7,7) SAIs
lying in a 15× 15 grid.

(a) L3F-20, 10× amplified (b) L3F-50, 30× amplified (c) L3F-100, 50× amplified

Fig. 20. GIF animation of the toggling operation between the GT and the input extreme low-light SAI. View in Adobe PDF Reader or any
other PDF viewer with JavaScript engine enabled.

nearly the same value for most scenes. On an average, the

misalignment in both directions is < 1 pixel. We also repeated

this experiment for all the SAIs present in the central 9 × 9
grid and the automated feature matching estimated roughly the

same misalignment of 1 pixel on an average.
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