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ABSTRACT 
 

In falling film evaporation process, the heat is transferred from the condensing fluid to the liquid flowing over it. 

Tube geometry and tube size have an important role on the performance of the falling film evaporators. This paper 

presents a two dimensional CFD study of water falling film evaporation on a thermal spray metal coated vertical 

corrugated conduits. Two-phase flow simulation is done by using a finite volume method based commercial 

software, using k-ω equations with shear stress transport (SST). Sinusoidal corrugations with different porosity have 

been selected for the study. Evaporation and heat transfer during falling film evaporation are included through user 

defined functions (UDFs). Effect of Reynolds number, wall superheat and surface roughness on heat transfer 

coefficient is presented. Numerical results are compared with the results of horizontal circular tube falling film 

evaporation from literature. An enhancement of film heat transfer coefficient of at least 15% is observed for the 

vertical corrugated plate conduits. 

 

Key words 
Falling film evaporation, vertical corrugated plate conduit, numerical simulation, heat transfer enhancement, thermal 
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1. INTRODUCTION 
 

Horizontal shell-side falling film evaporators have a significant potential to replace flooded evaporators. Compared 

to flooded type evaporators, falling film evaporators need less working fluid and its small pressure drop and higher 

heat transfer coefficient will make the falling film evaporators dominate over the conventional flooded type 

evaporators. But, due to shell and tube configuration, the falling film evaporators are bulky like flooded tube 

evaporators. Another, main problem concerning about the film evaporation over horizontal tubes are the formation 

of dry patches. Dry patches causes reduction in heat transfer coefficient and sometimes the failure of the tubes also 

occurs. On the other hand, vertical plate falling film evaporators are more compact, cheaper, lower fouling 

resistance and higher heat transfer coefficient than that of the shell and tube configuration [2, 3, 7].  

 

Tube geometry and tube size have an important role on the performance of the falling film evaporators. Geometry of 

the tube can be varied by enhancing techniques (thermal spray metallic coating, creating grooves on the tube surface 

etc.) and also by changing the shape of the tube. Enhancing the tube can provide better heat transfer coefficient 

mainly because of increase in the number of nucleation sites, increase in the total surface area and the presence of 

turbulence [13]. A number of experimental studies [2, 6, 7, 11] have been reported in the literature about the 

enhancement techniques. Luo et al. [10] reported a better heat transfer performance by using non- circular tubes like 

oval shaped and drop shaped tubes and also reported a lower dimensionless temperature and a thinner thermal 

boundary layer. 

 

Corrugated vertical plate evaporators are developing technology in the vertical plate evaporators category. Most of 

the published falling film studies concern laminar and turbulent fluid flow over a horizontal tube or over a flat 

vertical plate compared to corrugated vertical plate. Gonda et al. [6] conducted an experimental study on falling film 

evaporation over a corrugated vertical plate. Around 50% increase in Nusselts number is obtained compared to 



 

 2044, Page 2 
 

16
th

 International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

smooth tube. And also Gonda et al. [6] reported that the flow regime is turbulent due to corrugated structure of the 

plate. The previous work which is somewhat related to vertical corrugated plate is by Kafi et al. [7]. Their studies 

are based on the evaporation of saline water over vertical smooth plate with horizontal metallic wires embedded on 

it. They reported high wetting, stability and turbulent falling film due to metallic wires on the plates.  

 

Thermal spray metal coating is a heat transfer enhancement technique, which is done by spraying molten metal on 

any heat transfer surface. Studies by Abraham and Mani [1] shows that, compared to plain tubes, the performance of 

thermal spray metal coated tubes are 75-150% higher. Studies by Mohammad et al. [11] shows that the metal 

coating on plain tubes increases the heat transfer coefficient up to particular value, after that increase in coating 

thickness will decrease the value of heat transfer coefficient. 

 

In the present study, a numerical model is developed for falling film evaporation over a thermal spray metal coated 

corrugated conduit. Fresh water is taken for the present computational study. A comparative study has been carried 

out between corrugated conduit and the circular tube. 

 

2. COMPUTATIONAL METHODS 
 

2.1 Physical and Computational Domain 
The component which is more interested in the present study is vertical corrugated plate conduits shown in figure 

1(a). It is made up of two stainless steel plates which are deformed to get sinusoidal corrugations on plates and 

welded together by horizontal rods to get conduits. The test section consists of a re-distributor and the corrugated 

conduits. As the name implies, the main function of re-distributor is to distribute the water to the corrugated 

conduits. 

 

 
Figure 1(a): Physical structure of a vertical corrugated conduit 

 

Figure 1(b) shows the computational domain used for the present study with boundary conditions. Re-distributor is 

thermally insulated. The length L is taken as 33 mm, amplitude A is taken as 10.7 mm and feeder height H is taken 

as 4 mm. Finite volume method based commercial software is used to carry out the heat transfer studies on falling 

film evaporation on corrugated plate.  

 

2.2 Governing Equations 
Pressure based solver is employed in the present model. For turbulence modeling k-ω turbulence model with shear 

stress transport (SST) is used. k-ω is well suited for simulations inside the viscous sub-layer and k-ε is well suited 

for simulations away from the wall. So, this ensures that appropriate equation is used throughout the flow field. For 

interface tracking, volume of fluid (VOF) method is used. Compressive scheme is used for the discretization of 

volume fraction equation. The VOF solves two sets of continuity equations for liquid and vapour phase and a single 

set of momentum and energy equations for combined phase of liquid and vapour. 
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Figure 1(b): Computational domain with boundary conditions for the present model 
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2.3 Phase change Model 
The main challenge of simulation of two-phase flow is considering the heat and mass transfer during phase change. 

Several phase change models are proposed in literature. The commonly used phase change models for evaporation 

and condensation are based on model by Lee [15] and model by Tanasawa [16]. From literatures [5, 8, 14] reported 

that interfacial temperature obtained by means of Lee and Tanasawa numerical technique will not be exactly the 

saturation temperature. The empirical constants used in Lee model and in the Tanasawa model does not have any 

physical limits. Therefore, excessively small values of these empirical constants lead to a significant deviation 

between interfacial and saturation temperature. However, too large values cause convergence problems and 

therefore optimal values must be found. 

 

Third phase change model, which is used in the present study, is called sharp interface model, which uses the 

Rankine – Hugoniot jump condition for energy conservation at the interface. This model is purely theoretical and 

does not depend upon any empirical constants. The interfacial heat flux jump and mass flux can be calculated by 

using equations (9) and (10) respectively. 
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Mass and energy source terms calculated from sharp interface model is given in equations (11) and (12) 

respectively. 
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2.4 Grid and Time-step size 
Mesh and time independence studies are carried out. The mesh size used for the present model is 140336. Boundary 

layer meshing method is used and a y
+
 value of less than 5 is taken for the calculation of first layer thickness. 

Structured mesh is used for the entire domain. The convergence criteria used for the present model is 10
-6

 for energy 

equation and 10
-4

 for both continuity and momentum equation. The time step used for the present study is 10
-4 

s.  

 

3. RESULTS AND DISCUSSION 
 

3.1 Heat Transfer Coefficient 
For the calculation of local film evaporative heat transfer coefficient, value of wall heat flux is calculated at various 

locations after a steady film is formed and equation (13) is used to calculate the local film heat transfer coefficient. 

For finding the average heat transfer coefficient area weighted average of wall heat flux is calculated and is given in 

the equation (14). Equation (15) and (16) give the average film heat transfer coefficient and average Nusselts 

number respectively. 
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In order to validate the present numerical solution an experimental study by Gonda et al. [6] from literature is 

selected. Geometry shape, dimensions (L= 22.7mm and A= 5mm) and the operating conditions except the heating 

method are same as that of the experimental studies. The dimensions above mentioned are used only for validation 

of the present numerical model. L= 33mm and A= 10.7mm are used for the remaining parametric study. Figure (2) 
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shows the comparison of present study with experimental results by Gonda et al. [6]. From the results, at higher 

Reynolds numbers, the current numerical results are in good agreement with the deviation of 16%. 

 

Figure (3) shows the comparison of present numerical study, with no surface roughness, about film evaporation over 

the corrugated conduit with the results of film evaporation over smooth tube from literature. It is clear from the 

graph is that an enhancement in heat transfer is observed for corrugated conduit. At least 50% enhancement in heat 

transfer is observed by comparing the present results with results by Chun and Seban [4]. At lower Reynolds 

numbers the performance of corrugated conduit is poor compared to Parken et al. [12]. But it is found that the 

overall values of heat transfer coefficient are higher for corrugated conduit compared to circular tube. It is mainly 

due to the following reasons. Firstly, the effective contact area between the corrugated conduit and the liquid film is 

larger. Secondly, the liquid film is turbulent because of the sinusoidal shape of the corrugated conduit. 

 

 
Figure 2: Comparison of present results with the literature for vertical corrugated conduit 

 

 
 

Figure 3: Comparison of present results with literature on falling film evaporation over tubes 
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From Jacobi et al. [12] under fully conventional conditions, the heat transfer coefficient is increasing with increase 

in flow rate. Figure (4) shows the variation of heat transfer coefficient with inlet Reynolds number for two Prandtl 

numbers. Heat transfer coefficient is increases with Reynolds number and not very appreciably with Prandtl number. 

 

 
Figure 4: Variation of average heat transfer coefficient with inlet Re 

 

Conventional heat transfer coefficient is directly depends upon the fluid velocity. So increase in flow rate causes 

increase in fluid velocity that lead to increase in heat transfer coefficient. Figure (5) shows the variation of local heat 

transfer coefficient along the surface. Local heat transfer coefficient decreases from the top of the surface until at a 

particular location for all flow rates and then tend to have a relatively uniform distribution with periodic fluctuations 

as the flow approaches the bottom of the surface.  

 

 
Figure 4: Variation of heat transfer coefficient along the surface 

 

For the present study, a wall super heat of 3K is used. From the Fig. (6), there is no systematic variation of the heat 

transfer coefficient is observed. So the heat transfer coefficients are almost independent of wall superheat for fully 

conventional (without boiling phenomenon) conditions. 
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Figure 6: Variation of heat transfer coefficient with wall super heat 

 

3.5 Effect of Surface Roughness on Heat Transfer Coefficient 
Thermal spray metal coating is a heat transfer enhancement technique, by increasing the roughness of the surface, 

which is done by spraying molten metal on any heat transfer surface. Surface roughness plays a major role in heat 

transfer enhancement by increasing the turbulence effects as well as by providing higher wetting compared to plain 

surfaces. Figure 7(a) shows the variation of heat transfer coefficient with surface roughness. It is clear from the 

figure that, the increase in heat transfer coefficient with surface roughness is very less. It is mainly because of the 

roughness heights which are in the order of 10
-6

 m. The same phenomenon is also reported in studies by Abraham 

and Mani [1]. Figure 7(b) shows the variation of heat transfer coefficient with inlet Reynolds number for both coated 

and non-coated surface. At lower Reynolds number the heat transfer coefficient for both the surfaces are almost 

same, but at higher heat transfer coefficient an observable difference of 3.3% is noticed.  

 

 
    (a)       (b) 

Figure 6: (a) shows the variation of heat transfer coefficient with roughness height and (b) shows the comparison of 

heat transfer coefficient of coated and non-coated surface 

 

3.6 Temperature Profile 
Figure (8) shows the non-dimensional temperature profiles across the liquid film at five different axial locations for 

Re= 2891 and Pr= 3.5. Using the phase change model, the interface temperature is managed to maintain at saturation 

temperature with a maximum error of ±0.5
0
C. 

Pr = 2.983 
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Figure 8: Non-dimensional temperature profile at different curve lengths (Xc)  

 

At smaller curve lengths, the temperature gradient at the interface is very small. So the large amount of heat flux 

given at the wall is used to heat the liquid film itself and the evaporation rate is also small. Liquid film is thermally 

developing at the interface at curve lengths (Xc) of 0.5 mm, 18.5 mm, and 37 mm. But for larger curve lengths 74 

mm and 100.6 mm a steep temperature gradients can be seen at both wall and at the interface. An appreciable 

amount of heat flux will be dissipating at the interface. Therefore the evaporation rate is also higher at these regions. 

So we can say that the film is almost thermally fully developed at the interface. 

 

4. CONCLUSIONS 
 

The present numerical study examined heat transfer characteristics of falling film evaporation over a corrugated 

conduit. Conclusions are arrived at based on the numerical studies as follows: 

• Heat transfer across the interface is successfully captured with the aid of the sharp interface phase change 

model. And the interface is managed to maintain at saturation temperature with a maximum deviation of 

±0.5
0
C. 

• The liquid film heat transfer coefficient of corrugated plate conduit is at least 15% higher than that of 

circular tube at higher Reynolds numbers. 

 

NOMENCLATURE 

 
E Energy per unit mass (J/kg)  

g Acceleration due to gravity (m/s
2
)   

h Heat transfer coefficient (W/m
2 
K) 

hfg Latent heat of vaporization (J/kg) 

k Thermal conductivity (W/m K) 

Pr Prandtl number  

p Pressure (N/m
2
) 

qw Wall heat flux (W/m
2
) 

Re Reynolds number  

S Volumetric mass source term (kg/m
3 
s) 

T Temperature (K) 

Xc Curve length (m) 

y
+
 Dimensionless distance  

 perpendicular to the wall  
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y Distance perpendicular to 

 the wall. (m) 

Greek symbols    

ρ Density 

µ Dynamic viscosity 

Γ Mass flow rate per unit length 

δ Film thickness 

θ Dimensionless temperature 

η Dimensionless film thickness 

 

Subscript      

eff Effective 

e Energy 

f Liquid 

g Vapour 

sat Saturation 

tur Turbulent 

w Wall   
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