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Abstract. Shape memory alloys are fascinating materials, which have exclusively been studied 

over the last three decades owing to their distinctive functional properties, such as shape 

memory effect (thermal memory) and superelasticity (mechanical memory). These materials 

have a unique capability to react to external stimuli, such as heat and stress, because of the 

reversible martensitic transformation, when subjected to appropriate thermomechanical 

processing. They find applications in various sectors and are in particular used as actuators and 

sensors. Among SMAs, NiTi-based alloys are more common and have proven their utility in 

many practical applications. However, there is still a scope for improvement of the alloys in 

terms of their shape memory characteristics if they are to be exploited in several other critical 

applications. In this context, addition of copper proves to be an appropriate element to enhance 

the transformation characteristics and biocompatibility of NiTi SMAs. Hence, in this work 

NiTiCu ternary alloys were synthesized by vacuum induction melting followed by subjecting 

them to suitable thermomechanical treatment. These alloys were then characterized by X-ray 

diffraction, differential scanning calorimetry and optical microscopy in order to study the 

influence of copper addition on phases present, transformation temperatures and microstructure 

of NiTi SMAs. The results are discussed in detail in the paper. 

1. Introduction 
Shape memory alloys (SMAs) are a distinct group of metallic materials, which undergo solid-to-solid 

phase transformations, from austenite to martensite and vice versa, in response to stress or temperature 

[1,2]. These materials show heavy deformation in the martensite phase and regain their initial 

undeformed shape either on heating (shape memory effect) or on removal of stress at constant 

temperature (superelasticity) [3, 4]. Shape memory alloys have shown their capabilities in many vital 

areas and are specially used in most of the major sectors: aerospace, safety, defence, structural, 

biomedical, robotics, sport, etc. [5-7]. NiTi alloys are the most preferred shape memory materials for 

many applications since they can accommodate a considerably large distortion in their lattice, which 

gives rise to shape memory effect. But the lifespan of binary NiTi alloys is limited as they exhibit a 

broad hysteresis during cycling [8]. The hysteresis can be narrowed down by adding some select 

alloying elements. Ternary and quaternary addition to Ni-Ti is, by far, the most effective way of 

altering transformation temperatures [6]. While most of the alloying elements, mostly transition 

metals, decrease the transformation temperatures, addition of Pd, Pt, Au, Hf, Zr and Cu increase them. 

In this context, copper proves to be a viable alternative as it easily substitutes for nickel and augments 
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the workability of the alloy in addition to reducing the hysteresis. Addition of copper also influences 

the martensitic transformation temperatures and improves corrosion resistance of the alloys [9,10].  

When comparing the mechanical properties, ternary NiTiCu alloys have their yield strength almost 

similar to that of binary NiTi alloys [8].  

Various methods have been reported in the literature for the production of thin film and bulk shape 

memory alloys. Some of them include magnetron sputtering [11, 12] , melt spinning [13], vacuum arc 

remelting [14], vacuum plasma melting [15], flash evaporation [16] , molecular beam epitaxy [17], 

mechanical alloying [18-20], additive manufacturing [8, 21-23] etc. But almost all these methods are 

suitable for laboratory-scale preparation of bulk alloys and for thin films. For all practical and 

industrial applications, the alloys have to be prepared in large quantities. Vacuum induction melting 

(VIM) is an ideal method to produce these special alloys on a large scale. There is still a dearth of 

literature with respect to vacuum induction melting of NiTiCu alloys. This work therefore discusses 

the preparation of NiTiCu alloys with varying copper contents via VIM, followed by suitable thermo-

mechanical processing and study the influence of copper on the shape memory characteristics.   

2. Experimental Procedure 
Highly pure raw materials, such as elemental nickel, titanium and copper (each ~ 99.96 wt.% purity) 

were purchased from M/s. Alfa Aesar in the form of pellets, biscuits and rods. These elements were 

carefully weighed in suitable quantities according to the composition of the alloy. Five different 

compositions were used for the study as presented in Table 1. The raw materials were initially cleaned 

with acetone and then fed into a high density graphite crucible. A special method of arranging the raw 

materials with titanium cladding at the periphery followed by nickel and copper inside was adapted 

after Frenzel et al. in order to minimize the carbon pick up by the melt [24, 25]. A steel split mould 

coated with a layer of zirconia for high temperature lubrication was fastened with screws and placed in 

a resistance furnace for pre-heating at 525 oC for 1h. The preheated mould was then placed carefully in 

the vacuum chamber of the vacuum induction melting (VIM) furnace to avoid it coming in contact 

with the induction coil and the chamber was closed. Vacuum was created with the aid of rotary and 

diffusion pumps in stages to produce a vacuum level of 10-5 mbar. After achieving the required level 

of vacuum the current was switched on in order to heat the charge inside the high density graphite 

crucible. The temperature rise in the charge was monitored with the help of a Raytek non-contact 

infrared pyrometer. Once the temperature of the charge reached above 400 oC the chamber was back-

filled with argon and a negative pressure was maintained throughout. In order to ensure proper 

flowability, the heating was continued until the temperature reached ~ 1400 oC and the molten alloy 

was poured into a preheated steel mould. The mould was then removed from the chamber after giving 

sufficient time for cooling. The as-cast biscuits were then removed, ground to remove any burrs and 

sharp corners and then coated with a layer of delta glaze in order to prevent oxidation during 

subsequent thermo-mechanical treatments. This process was then followed by solutionizing the alloy 

at 900 oC for 3h. A two-high rolling mill was used in order to reduce 3 mm thick cast biscuits into 1 

mm thick sheets. Again the rolled sheet was solutionized at 900oC for 1h and then quenched in water. 

Samples were then polished to a mirror-finish to remove any adherent delta glaze layer and then cut 

using an electric discharge machining for further characterization studies. The chemical compositions 

of the ingots were analyzed using a LECO CS744 Analyzer for carbon and sulphur inclusions, and a 

LECO ONH 836 Analyzer for oxygen, nitrogen and hydrogen inclusions. The samples were polished 

using standard metallographic procedures and then etched with an etchant containing nitric acid, 

hydrochloric acid and hydrofluoric acid for optical microscopy. The phase analysis of the samples was 

done using a Panalytical X-Ray Diffractometer. The transformation temperatures were evaluated using 

a Perkin Elmer differential scanning calorimeter with a heating and cooling rate of 10℃/min, 

respectively and the samples were thermally cycled from – 50℃ to 250℃. A Vickers hardness tester 

(Wolpert Wilson) was employed to determine the hardness of the samples under a load of 0.5 kg for 

30 s.  
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Table 1. Alloy compositions studied in this 

work. 

S.No Alloy ID Composition 

1 NTCu2 Ni48Ti50Cu2 

2 NTCu4 Ni46Ti50Cu4 

3 NTCu6 Ni44Ti50Cu6 

4 NTCu8 Ni42Ti50Cu8 

5 NTCu10 Ni40Ti50Cu10 

3. Results and Discussion 

3.1. CHNOS Analyses 

The major impurity elements in binary NiTi shape memory alloys are carbon and oxygen. These 

impurity elements tend to have a considerable influence on the transformation temperatures and 

microstructure. They consume titanium in the vicinity by forming titanium carbide and Ti4Ni2Ox [25]. 

Therefore the concentration of average nickel in the matrix increases. As a result, oxygen and carbon 

take-up should be monitored and kept to a bare minimum, although they cannot be fully suppressed. It 

is therefore always essential to have a check on carbon and oxygen pick-up by the melt. Hence, the 

concentrations of carbon, hydrogen, nitrogen, oxygen and sulphur were determined and listed in  

Table 2.  

Table 2. CHNOS results. 

Alloy ID Carbon,  

wt. % 

Hydrogen,  

wt. % 

Nitrogen,  

wt. % 

 Oxygen,  

wt. % 

Sulphur,  

wt. % 

NTCu2 0.0276 0.00098 0.000132 0.00155 0.0000535 

NTCu4 0.0218 0.00111 0.000327 0.000408 0.0000428 

NTCu6 0.0149 nil 0.000114 0.00136 0.0000126 

NTCu8 0.0167 0.00127 nil 0.00342 0.0000306 

NTCu10 0.0132 0.00119 nil 0.00293 0.0000215 

 

From the results presented in Table 1, it can be seen that carbon and oxygen, which can easily 

deteriorate the properties of shape memory alloys, are well below 500 ppm, which adheres to the 

industrial standards. This small amount of carbon can be evidenced because of the special feeding 

method used as described in the experimental procedure. This helps form a protective TiC layer, 

which, in turn, reduces the carbon pick-up by the melt. Very low oxygen content in the melt is 

attributed to the high vacuum levels maintained in the vacuum chamber and also back-filling the 

chamber with high purity argon gas. All these experimental set-up and precautions are essential in 

order to produce a sound alloy, which consecutively aids in retaining the shape memory properties of 

these alloys. The sulphur content is negligible and its presence arises from the initial raw materials 

used for melting, such as Ni, Ti and Cu.  

3.2.  X-Ray Diffraction 

The X-ray diffractograms of NiTiCu alloys with different compositions at room temperature are 

shown in Fig. 1. The XRD results were obtained from all alloys after rolling and homogenization at 
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900oC.  The diffractograms obtained at 30oC confirms that there are diffraction lines corresponding to 

the parent B2 austenite phase. A small peak of martensite is also visible, which is marked as (111). 

The XRD patterns also reveal the presence of Cu4Ti3 precipitate in the matrix. Some other ternary 

phases of Cu–Ni–Ti intermetallic compounds may also be present, as reported by Pan et al. But it 

must be noted that these compounds are known to possess a similar structure [9]. Therefore separate 

peaks are not visible.   

 

Figure 1. XRD results of NiTiCu alloys. 

3.3. Differential Scanning Calorimetry  

Figure 2 presents the DSC thermograms of different NiTiCu shape memory alloys. It can be seen that 

NTCu2, NTCu4  and NTCu10 alloys undergo a single stage B2 ↔ B19′ transformation during cooling 

and heating cycles. However, for the other two alloys (NTCu6 and NTCu8) a two-step transformation 

was evidenced during cooling with the transformation sequence of B2 → R → B19′. During the 
heating cycle, only a single-step transformation (B19′ → B2) was observed. R-phase formation is 

generally not favourable in the case of actuator applications. The R-phase can be avoided completely 

or partially by varying the composition of the alloy followed by appropriate thermomechanical 

procedures. The direct martensite formation B2 → B19′ with a small hysteresis is essential for actuator 
applications.  With an aim to study the influence of copper on the transformation temperatures, the 

transformation temperatures were calculated by tangent intersection method and are tabulated in table 

3. The transformation temperatures are plotted with increasing copper contents and are presented in 

Figure 3. There has been almost a steady and consistent increase of all the transformation temperatures 

with increasing amounts of copper. The addition of copper, therefore, seems to have increased all the 

transformation temperatures. The increase of copper from 8 to 10 at. % decreases the Ms and Mf  

temperatures of the alloy though marginally. This decrease can be due to the absence of R-phase 

transformation and presence of Cu-rich precipitate, which are evident from DSC and XRD, 

respectively. The variation of hysteresis is shown in Figure 4. It can be observed that the hysteresis 

width of all alloys is less than 25 oC, which makes these alloys an ideal material for device 

applications. The hysteresis is very low at 2 at. % and then increases to 21.22 oC mainly because of the 

appearance of R-phase. Beyond 2 at. %, the hysteresis is maintained constant for the alloys.    
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Figure 2. DSC thermograms of (a) NTCu2 (b) NTCu4 (c) NTCu6 (d) NTCu8 and (e) NTCu10 alloys. 
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Table 3. Transformation temperatures and thermal hysteresis width. 

Alloy ID Ms  

(oC) 

Mf  

(oC) 

As  

(oC) 

Af  

(oC) 

Hysteresis  

(oC)  

NTCu2 -6.38 -19.21 -2.13 6.56 12.94 

NTCu4 -4.78 -18.52 3.69 16.44 21.22 

NTCu6 5.39 -4.66 11.77 22.61 17.22 

NTCu8 12.89 0.022 21.22 33.32 20.43 

NTCu10 11.97 -2.6 22.98 34.62 22.65 

 

Figure 3. Variation of transformation temperatures with copper content. 

 
Figure 4.  Thermal Hysteresis of the alloys studied. 
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3.4. Hardness 

Figure 5 shows a histogram of Vickers hardness with increasing copper content of the binary NiTi 

alloys. In shape memory alloys the hardness values are correlated to the transformation temperatures. 

All the hardness measurements were carried out at room temperature (RT) on the samples that were 

subjected to an identical heat treatment. Most of the alloys studied have their Af temperature around 

RT, i.e. 30 oC. Therefore the hardness values can be taken as a measure of the hardness of these alloys 

in the austenite phase. Hardness also serves as a promising characterization technique when it comes 

to shape memory alloys because it directly corresponds to the strength of the sample without causing 

much damage to the bulk of the sample. From Fig. 7, it is evident that addition of copper enhances the 

hardness of the alloys because of the formation of copper-rich precipitates, which are evident from 

XRD. As a result the strength of the austenite phase is also comparatively higher when compared to 

that in the binary NiTi alloy [26]. Martensite in shape memory alloys is a softer phase. Higher the 

strength difference between the martensite and austenite phases, higher is the work that is done by the 

SMA when it recovers. Hence, these NiTiCu SMAs are potential materials for devices with actuators.   

 

Figure 5. Hardness measurements of different NiTiCu SMAs. 

3.5.  Microstructure 

The micrographs of NiTiCu SMAs with varying copper contents are presented in figure 6. In all cases, 

martensite plates can be visible throughout the matrix. The martensite plates in the form of needles are 

finer for lower copper contents and become coarser with higher copper contents. These needle-like 

martensite plates are oriented along different directions across the matrix. It is also evident from the 

micrographs that there are many regions of retained austenite which are prominent in all the samples. 

The distribution of martensite plates in the austenitic matrix is characteristic of NiTi shape memory 

alloys. The needle-like morphology is favourable for shape recovery [5]. This forms the basis for self-

accommodation, which is responsible for shape recovery in these alloys. 
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Figure 6. Micrographs of (a) NTCu2, (b) NTCu4, (c) NTCu6, (d) NTCu8 and (e) NTCu10 alloys. 
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4. Conclusions 
NiTiCu (Cu - 2, 4, 6, 8, 10 at. %) SMAs were successfully fabricated by vacuum induction melting. 

They were then subjected to appropriate thermo-mechanical processing to obtain the best properties 

and the samples were characterized using different techniques. Following conclusions can be drawn 

from this study: 

CHNOS analysis confirms that carbon and oxygen impurities, which have proven to deteriorate the 

properties of SMAs, are present within permissible limits in all these alloys.  

X-Ray diffractograms signify that alloying has taken place properly and the austenite peaks were 

prominent along with faint martensite peaks.  

Differential scanning calorimetry reveals that copper addition increases almost all the transformation 

temperatures. Presence of two-step transformation (B2 → R → B19′) in some alloys is also evident.   
Hardness steadily increases with copper addition. This can be attributed to the formation of Cu-rich 

precipitates.  

The microstructure confirms the presence of needle-like martensite distributed in an austenitic matrix.  

All the above results indicate that NiTiCu alloy can be an actuator material for any kind of application. 

The transformation temperatures and R-phase formation can be tailored by choosing appropriate alloy 

contents and thermo-mechanical processing.    
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