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Microorganisms are ubiquitous and adapt to various dynamic environments

to sustain growth. These adaptations accumulate, generating new traits

forming the basis of evolution. Organisms adapt at various levels, such as

gene regulation, signalling, protein–protein interactions and metabolism.

Of these, metabolism forms the integral core of an organism for maintaining

the growth and function of a cell. Therefore, studying adaptations in meta-

bolic networks is crucial to understand the emergence of novel metabolic

capabilities. Metabolic networks, composed of enzyme-catalysed reactions,

exhibit certain repeating paradigms or design principles that arise out of

different selection pressures. In this review, we discuss the design principles

that are known to exist in metabolic networks, such as functional redun-

dancy, modularity, flux coupling and exaptations. We elaborate on the

studies that have helped gain insights highlighting the interplay of these

design principles and adaptation. Further, we discuss how evolution plays

a role in exploiting such paradigms to enhance the robustness of organisms.

Looking forward, we predict that with the availability of ever-increasing

numbers of bacterial, archaeal and eukaryotic genomic sequences, novel

design principles will be identified, expanding our understanding of these

paradigms shaped by varied evolutionary processes.
1. Introduction
Microorganisms are ubiquitous and survive in dynamic environments where

the level and nature of available nutrients change, for instance, the sources of

carbon, nitrogen, phosphorous and the levels of oxygen. Sessile organisms

are posed with a challenge to survive in situ and adapt in varying environ-

ments. Organisms adapt and acquire novel abilities predominantly by

processes of gain-of-function and loss-of-function mutations, as well as hori-

zontal gene transfer [1]. Adaptive evolution studies of E. coli suggest that

some mutations result in gain-of-functionality, such as the ability to grow on

a non-native carbon source [2]. Adaptation can also progress by loss-of-

function mutations, where a change in the regulatory circuitry can rewire

metabolism, resulting in adaptive fitness benefits [3]. Furthermore, bacteria

adapt to changing environments predominantly by horizontal gene transfer,

acquiring new genes, some of which establish novel functions [4]. Through

these adaptive and selective processes, microbes have acquired a wide

range of abilities—to grow in extreme physical conditions such as high and

low temperatures, osmotic stress, low pH, high salt concentrations, high

pressure and nutrient environments that are rich in sulfur, methane and

iron [5–9]. Numerous examples of adaptations by organisms exist in nature,

of which some are remarkable, e.g. Sphingobium chlorophenolicum, an organism

that evolved to grow on pentachlorophenol, an anthropogenic pesticide, as a

carbon source [10–12].

Adaptations in an organism occur at various levels, such as gene regulation,

signalling, protein–protein interactions and metabolism. Of these, metabolism

is one of the most complex cellular processes, and perhaps most vital for
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Table 1. Design principles in other networks. (The design principles discussed in the context of metabolism have been observed in other types of networks,
such as gene regulatory and signalling networks. However, note that flux coupling, by definition, is applicable only to metabolic networks.)

design principle description reference

modularity modules in gene expression networks for various cancer types [19]

modularity of feed-forward loops [20]

modularity and robustness in signalling networks [21]

modularity for establishing synthetic tools [22]

modularity in bacterial protein networks [23]

synthetic lethality synthetic genetic array analysis of Escherichia coli and yeast [24,25]

synthetic lethality analysis to target Mycobacterium tuberculosis [26]

synthetic lethal interaction of PLK1 inhibitors and microtubule-destabilizing drug [27]

drug target identification in Staphylococcus aureus using synthetic lethality analysis [28]

synthetic lethality for targeting cancer [29]

understanding the redundant roles of teichoic acid polymers in regulating cell division,

based on synthetic lethality

[30]

exaptation exaptation of transposable elements—derived sequences [31]

functional exaptation of transposable elements in higher plants [32]

exaptation of the scnRNA pathway for regulating cellular genes [33]

understanding the mechanisms mediating the substrate preference of LuxI protein family through exaptation [34]
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maintaining several physiological functions. The adaptations

and evolutionary changes that occur in metabolic processes

are crucial, as these processes produce essential metabolites

and small molecules that promote growth and manage

adverse conditions such as temperature, oxidative and osmo-

tic stresses [13,14]. Metabolism is composed of a complex

network of numerous gene-encoded enzyme-catalysed

reactions that use nutrients from external and internal

environments to synthesize compounds necessary for the

growth of organisms in a given environmental condition.

Thus, a cell’s metabolic network comprises all reactions across

various biosynthetic and degradation pathways hitherto

known to exist in an organism. The architecture and activity

of this network are greatly influenced by the nutrients avail-

able for assimilation from the environment. A complex

network of gene regulation underlies the switching on and

off of various reactions, under different environmental con-

ditions. These reactions, which are components of various

metabolic pathways, are active in different scenarios. There-

fore, building on a given base metabolic network, multiple

architectures or topologies for the metabolic networks can

exist. As these multiple topologies are interdependent,

they need to be studied together to get a comprehensive

understanding of the entire metabolic network.

Adaptations can facilitate new capabilities such as the

ability to grow in novel environments, via changes in the

architecture of the metabolic network. These changes typi-

cally increase the fitness and viability of an organism in

new environments and enable it to evolve. Across the meta-

bolic networks of diverse organisms, a remarkable variation

is observed; this diversity represents a ‘universe’ of possible

metabolic reactions, some of which an organism can acquire

for adaptation [4]. However, this ability of an organism to

acquire new metabolic reactions is limited by the extent of

microbiome diversity in its environmental niche and its

inherent metabolic capabilities. As an organism evolves in
multiple environments, mutations tend to accumulate,

unless genetic interactions between these mutations are detri-

mental and selected against. Even in such a scenario, where

certain genetically interacting mutations are mildly detrimen-

tal, many organisms tend to accumulate these combinations,

if they have a fitness advantage in some other environmental

conditions [15–18].

In this review, we illustrate how a few repeating para-

digms, or design principles, namely functional redundancy,

flux coupling, modularity and exaptation, have emerged in

diverse organisms enabling them to adapt and survive in a

multitude of environments. Although design principles

have previously been elucidated in other types of networks

as well (table 1), in this review, we focus specifically on

metabolic networks. It is important to note that these

design principles are not strategies preferred by the organism

per se but are essentially post facto observations of paradigms

that have emerged as a consequence of the evolutionary

processes that operate in different environments. We discuss

several in silico and empirical studies that illustrate these

recurring principles in metabolic networks, and summarize

the progress that has been made towards understanding

various underlying aspects of metabolic network structure

and regulation.
2. Design principles in metabolism
(a) Functional redundancy
Functional redundancy is a defining feature of all metabolic

networks. Functional redundancy is characterized by the

ability of an organism to use alternative fluxes (reactions,

their corresponding enzymes or genes) in a metabolic net-

work in a given environment, which can completely or

partially compensate for the loss of the other [35]. Through

functional redundancy of key reactions or enzymes,
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Figure 1. Functional redundancy and flux coupling. (a) The figure shows a
sample metabolic network to illustrate redundancy. Circles denote metab-
olites (M1, M2, etc.), rectangles represent reactions (R1, R2, etc.). The
reactions pairs fR1, R2g, fR1, R4g, fR2, R3g, fR3, R4g form synthetic
lethal pairs and the pathways fM1! R1! M2! R3! M4g and
fM1! R2! M3! R4! M4g are redundant for the production of
the metabolite M4. (b) A sample metabolic network where circles denote
metabolites (M1, M2, etc.) and rectangles represent reactions. All the stoi-
chiometric coefficients in the network are 1 except reaction R11, where
1 mol of M1 is converted to 3 mol of M9. The three types of flux coupling
are illustrated.
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metabolic networks have evolved to reduce the chances of

disruption of core metabolic pathways. A highly powerful

approach, particularly suited to study and understand func-

tional redundancy in metabolic networks, is the analysis of

synthetic lethal (SL) combinations or synthetic lethality. An

SL pair in an organism refers to a pair of genes or reactions,

which when deleted simultaneously, lead to a lethal pheno-

type [36], but the organism can sustain growth when even

one of the genes/reactions in the pair is present. An SL, there-

fore, is the extreme case of a genetic interaction, where the

combined effect of two genetic mutations differs markedly

from those of their individual effects [37]. Figure 1a depicts

a schematic metabolic network where metabolite M5 is

essential for the survival of the organism. Here, the reactions

fR1, R2g form a synthetic lethal pair; only upon deletion of

both these reactions, the metabolite M5 cannot be produced.

Thus, the pathways fM1! R1!M2! R3!M4g and fM1

! R2!M3! R4!M4g are redundant pathways,

ultimately producing the same metabolite.

Functional redundancy is usually achieved when genes,

pathways, chromosomes or genomes get duplicated. The

duplicated set of metabolic genes and reactions often leads to

conservation of metabolic function; alternatively, these dupli-

cated genes may diversify, to innovate novel functions. Gene

duplicates play a major role in the maintenance of metabolic

functions; indeed, they are known to occur more frequently

in metabolic proteins than non-metabolic proteins [38].

Genes involved in central metabolism, catabolic pathways

and reactions that carry a high metabolic flux also tend to

have a higher rate of duplication compared to genes in anabolic

pathways [38,39]. Some of these duplicate genes acquire

specialized functions and possess not just a single essential

function but an array of overlapping functions [40]. The

selection pressure that retains such duplicates is still not clearly

understood [40]. However, some studies suggest that redun-

dant genes are preserved by evolution; analysis of gene

expression data in yeast and mammals shows that the

expression levels of duplicated genes decrease, following the

duplication event [41]. Owing to the reduced selection pressure

on genes with lowered expression, the retention of duplicate

genes is facilitated [41]. Apart from studying SLs in metabolic

reaction networks in silico, SLs have also been studied geneti-
cally, by deleting pairs of genes and testing for growth in a

given environmental condition [25]. Extensive studies in

yeast have shown that understanding gene–gene interactions

gives insight into the structure and function of the genetic net-

works and also the SL interactions that exist [25,42]. A study on

yeast genetic interactions suggests that at least 23% of the syn-

thetic lethal genetic interactions are conserved between

Schizosaccharomycetes pombe and Saccharomycetes cerevisiae.
Although the two organisms are separated by hundreds of

million years of evolution, they possess conserved synthetic

interactions and essential genes, suggesting that evolutionary

pressures play a significant role in retaining such interactions,

even in eukaryotes [43].

SLs in metabolic networks manifest either as redundant

genes, reactions or pathways. Functionally redundant reac-

tions and pathways identified from SL analyses play an

important role in conferring robustness against single

mutations. Deletion of an SL pair abrogates growth

(figure 1a), owing to the deleterious effect on one or more

key metabolic functions, and gives insights into the function-

ally redundant reactions or pathways [35]. Thus, the
identification of SL reaction pairs is a powerful technique to

identify alternative pathways that can carry out similar func-

tions. In the majority of cases, SL pairs occur in alternative

pathways where one reaction is active in the wild-type and

the other is inactive [35]. The deletion of inactive pathways

does not have phenotypic effects; upon deletion of the active

reaction, fluxes are re-routed through the alternative pathway,

enabling the organism to grow [35,44]. Systems-level analyses

of the metabolic networks of Escherichia coli and yeast found

that most of the redundant reactions are preserved, contribut-

ing directly towards increasing fitness. Although these

redundancies can be regarded as adaptations against deleter-

ious mutations, the evolutionary mechanisms that retain

such overlapping pathways are still not clear [45]. Despite

the fact that multiple alternative pathways exist, evolution is

believed to select those that are known to increase fitness.

A classic example is that of alternative pathways for glycolysis

and gluconeogenesis [46]. Although multiple pathways exist,

the other pathways carry lower flux when compared

with the cardinal pathway in a given physiological state. How-

ever, the alternative pathways may supersede the cardinal

pathway under other physiological conditions.

A systems-level flux balance analysis of yeast in a wide range

of environments suggests that genetic interactions, particularly

synthetic lethals, have a strong dependence on the existing

environmental conditions [47]. A pair of synthetic lethal genes

is environment-dependent, i.e. they are not redundant in all

environments, and therefore, their ability to compensate varies

considerably. Thus, environmental constraints play a key role

in restricting the alternative pathways that are open to selection.
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Microorganisms have thus evolved to achieve redun-

dancy in key reactions and pathways that are vital for the

growth of the organism; the redundancy enables buffering,

and rescue from single mutations. For instance, following

gene duplication, the organism might have retained both

genes although one of them would have since evolved to per-

form a different function still preserving the native function.

Furthermore, as a result of adaptation to a new environment,

it is possible that reactions which perform different functions

adapt to compensate for one another [48].
rnal/rspb
Proc.R.Soc.B

286:20190098
(b) Flux coupling
The fluxes of reactions in metabolic networks are seldom

independent; they are often correlated across different meta-

bolic pathways. A comprehensive understanding of such

correlations or dependencies between reactions is achieved

through flux coupling analysis (FCA) [49]. FCA reveals the

functional dependencies between reactions and the coordi-

nation of regulation across a metabolic network. FCA

also provides insights into gene essentiality, gene regulation,

network evolution and metabolic network hierarchy [50,51].

Reactions can be coupled in three different ways: fully,

partially or directionally (figure 1b). In fully coupled

reactions, a flux in one reaction implies a fixed flux in the

other reaction, such that their fluxes are proportional to

each other (reactions fR1, R2g and fR2, R3g in figure 1b).

In partially coupled reactions, the flux of one reaction implies

flux in the other reaction but their fluxes are not proportional,

i.e. either one of the reactions can have a variable flux (reac-

tions fR6, R9g and fR9, R10g in figure 1b). In both the

above categories, if one reaction carries a flux, it is essential

that the other reaction carries a flux as well. In the case of

directionally coupled reactions, when the first reaction carries

a non-zero flux, the second reaction also has a non-zero flux;

however, the converse does not hold, thus illustrating an

asymmetric (i.e. directional) dependence between the

reactions (reactions fR1, R5g and fR2, R6g in figure 1b) [49].

The reactions that do not fall into any of the above

categories are said to be uncoupled (reactions fR1, R7g and

fR2, R11g in figure 1b). Efficient methods have been

developed for identifying coupled reactions, notably flux

coupling finder (FCF) [49], feasibility-based flux coupling

analysis (FFCA) [52] and F2C2 [50].

Flux coupling analyses have shown that genes, whose

reaction fluxes are fully coupled, are co-expressed and co-

regulated; further, many such genes also share transcriptional

regulators or reside in the same operon [53]. Flux coupling

relationships have been used to construct a hierarchical flux

coupling graph for E. coli metabolism, illustrating that the

reactions essential for a wide range of environments are

conserved during evolution [51]. This coupling graph also

established that newly acquired reactions (e.g. via horizontal

gene transfer), which facilitate adaptation to specific

environments, get placed at the top of the hierarchy [51].

Identification of fully and directionally coupled reactions in

E. coli and yeast reflects that a large fraction of genes catalys-

ing such reactions are co-expressed and are regulated by the

same transcription factor [53,54]. The nature of flux coupling

gives a notion of the extent of genes being co-regulated [53].

Directionally coupled reactions give insight into the asym-

metric relationship between proteins [55]. Such relationships

are consistent with asymmetry in gene expression patterns [55].
Furthermore, FCA helps in identifying reactions that

directly have an effect on the phenotype of the organism,

e.g. the reactions that are directly coupled with growth.

These reactions, which are essential for cell growth, remain

conserved during evolution [51]. Adaptation of organisms

to new environments results in the addition of new reactions;

as evolution progresses, some of these are retained as they are

coupled with essential reactions. A flux coupling study of 23

organisms from different kingdoms of life identified the

smallest number of reactions, the driver set, which can control

the entire metabolic network of an organism. These

reactions are involved in complex transcriptional and

post-transcriptional regulation in the metabolic network of

E. coli; thus, the regulation of the cell depends on these

driver reactions for efficient control of the entire metabolic

network. Such driver reactions can also serve as targets for

optimization of cellular metabolite production and are

thus useful for metabolic engineering applications. The

study also identified driver reactions in human cancer

cells, which are known to play a major role in malignancy.

Consequently, these reactions can serve as potential drug

targets [54].

In summary, FCA is crucial to identifying essential genes

and reactions in metabolic networks, and can provide infor-

mation about the co-occurrence of genes, co-expression of

genes and the evolution of metabolic networks. Notably,

this is possible without even the knowledge of the genes

themselves. FCA can aid in the identification of drug targets

for pathogenic organisms [54]. FCA also has important impli-

cations for metabolic engineering applications because it

helps in identifying the few key reactions that may alter the

flow of flux through the entire metabolic network. Overall,

the analysis of coupling of reaction fluxes in a metabolic net-

work can reveal functional dependencies and shed light on

the coordination of regulation across the network.
(c) Modularity
Biological networks are highly modular in nature, which

means that they can be decomposed into subunits, or modules,

which can function relatively independently and are highly

interconnected [56] (figure 2a). Nodes (genes or reactions)

within a module are more densely connected when com-

pared with nodes across modules. Biological networks at

various levels exhibit such differentiable entities organized

into modules. Many studies have established the existence

of modularity in biological networks [57–59]. Modularity

allows segregation of functions, and thus serves as an effec-

tive mechanism to insulate large complex systems from the

effects of local damages, resulting in robustness [60,61].

Metabolic networks exhibit modularity with a large

number of reactions organized into modules; the majority

of reactions in a module are associated with the same

biochemical pathway [62,63]. Further, the establishment of

modules facilitates adaptation to new environments [62].

A number of studies have been carried out to understand

the origin of such distinctive structures in metabolic net-

works. Studies have shown that variability in environments

plays a major role in the formation of modules. For instance,

the evolution of networks into modules was found to be

more rapid in networks that are exposed to temporally vary-

ing or alternating environments [64,65]. Analysis of several

bacterial species differing in their habitat and environmental
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Figure 2. Modularity and exaptation. Schematic drawing of metabolic net-
works, demonstrating the concepts of modularity and exaptation.
(a) Metabolic network forming modules with more connections within mod-
ules and fewer connections across modules. The original network is less
modular (more inter-connectivity, than intra-connectivity), compared to the
one on the right, where tightly connected modules (indicated by different
colours) exist, with relatively few interconnections. (b) The metabolic network
(where circles denote the reactions present) on the left cannot grow in an
environment (blue triangle). Following adaptation, where it has acquired
reactions (highlighted in green), the network exhibits growth in the environ-
ment. However, the highlighted reactions turn out to be an exaptation, when
exposed to another environment (brown square), where the pre-existing reac-
tions (highlighted green) enable growth in this new environment as well. In
both panels, circles denote reactions and lines connect reactions that share a
metabolite. (Online version in colour.)
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variability could conclusively explain that more variable

environments promote the evolution of highly modular meta-

bolic networks, compared with constant environments [65].

The metabolic networks that are more versatile, i.e. that can

grow in many different environments, have been shown to

be highly modular [62]. Taken together, these studies high-

light that adaptation plays a major role in the formation of

such modular architectures [56,61].

Modularity is influenced by the relationship of horizontal

gene transfer (HGT), habitats and environments [66]. Studies

have suggested that HGT plays a major role in the emergence

of modularity in metabolic networks [4,65,67]. A study on

the relationship of the proportion of horizontally transferred

genes and modularity for 94 bacteria revealed a strong

positive correlation [65]. Other simulations showed that a

combined selection pressure to maximize performance

and simultaneously minimize the cost of network

connectivity can enhance modularity even under constant

environments [68].

As networks are subjected to varying environments,

modules composed of reactions that operate in different

environments emerge, thus enabling adaptation in new

environments. Thus, evolution appears to shape metabolic

networks to form segregated modules corresponding to

specific defined functions. Modularity establishes isolation

of functions and facilitates co-option, thus giving rise to

evolutionary innovations [69].
(d) Exaptation
Pre-adaptations, or exaptations, are defined as traits that are

initially naturally selected for a specific role, but later

co-opted for a different purpose [70] (figure 2b). While

adaptation involves the addition of new features that arise

out of natural selection, exaptations involve co-option of an

already existing feature for some other function. Exaptations

thus arise non-adaptively, yet play an important role in the

establishment of novel biological functions.

Metabolic networks selectively evolved on one carbon

source were found to exapt on different carbon sources,

illustrating that carbon source use can arise non-

adaptively, and this paradigm serves as an important feature

in the evolution of metabolic networks [71]. As illustrated in

figure 2b, an organism adapts to an environment by acquiring

certain reactions (green circles), which at a later stage become

essential for survival in a different environment. Therefore,

these reactions are said to have exapted for growth on the

carbon source (figure 2b). A large number of metabolic net-

works evolved in silico to be viable on one particular carbon

source were found to be viable on multiple other carbon

sources that were not selected for. This illustrates the fact

that adaptation to one carbon source imparts the network

added advantage, namely growth on additional carbon

sources. Metabolic networks that had a greater yield on com-

plex carbon sources were found to be viable on a larger

number of other carbon sources. Also, the chemical nature

of the carbon sources was shown to influence the effect of

metabolic network exaptation on a new source [72].

Complex innovations have also been shown to arise

from stepwise additions of new reactions to a metabolic

network [73]. The addition of even a single reaction was at

times sufficient to pre-adapt and help form a complex trait

later, in a new environment. A recent study on the history

of bi-functionality for sugar isomerase HisA, a part of the

histidine biosynthesis pathway [74], showed that the ances-

tral HisA, apart from histidine biosynthesis, can also

catalyse the isomerization of a substrate usually catalysed

by TrpF. This bi-functionality is estimated to have been con-

served for two billion years without any selection pressure.

Actinobacteria have lost the TrpF activity, yet possess the

bi-functional HisA homologue, which performs the functions

of both TrpF and HisA. This empirically exemplifies the

evolution of novel functions through exaptation.

Exaptations are particularly interesting in metabolism

because the addition of one or a few reactions to a metabolic

network often enables survival on new carbon sources. Thus,

exaptations can provide novel capabilities to metabolic

networks and may play an important role in facilitating

adaptation, highlighting evolutionary innovations.
3. Outlook
Metabolic networks are shaped through a variety of complex

evolutionary processes, depending on the nature of the

environments organisms are exposed to, and the consequent

selection pressures. Despite the variety of mechanisms and

selection pressures, all metabolic networks display distinctive

features or design principles, which serve to increase the survi-

vability of an organism, or its robustness. An understanding of

such organizational principles can also point towards the

evolutionary processes shaping various cellular networks.
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Design principles such as functional redundancy and flux

coupling illustrate fundamental constraints underlying

metabolic networks. These constraints become important as

one seeks to manipulate the flow of flux through various

pathways towards applications in metabolic engineering or

combinatorial targets for therapeutics [29,54,75,76]. Knowl-

edge on the development of modules and exaptation in

metabolic networks paves the way to obtain a better picture

on the adaptation of organisms to new environments and

thereby evolution.

Despite substantial advances made by the numerous

studies we have discussed herein, the study of design prin-

ciples in biological networks is still very nascent, with

several open questions. For instance, while it is known that

gene duplication leads to redundant functions, does it also

facilitate flux coupling? Given that we have quite a good

understanding of duplicated genes, can we predict functional

redundancy and flux coupling? Further, are some design

principles more likely to occur in a given evolutionary

context, or under some specific evolutionary pressure?

While it is known that alternating selection pressures

enhance the modularity of networks [77], it is harder to pin

down the exact origins of some of the other design principles.

Of the design principles we have enumerated, exaptation

appears to be the most challenging to study, given that exap-

tations appear to arise serendipitously, repurposing existing

machinery for a new function. A limited number of studies

of exaptation have examined only a restrictive set of possible

new functions, e.g. the ability to grow on a different carbon

source. Identifying additional examples of exaptations will

probably further our understanding on the emergence of

possible exapted genes and reactions, which may help

identify the patterns and nature of exaptation. Although we

have chosen to restrict ourselves to metabolic networks in

this review, interesting questions emerge, as we consider

the large-scale organization of biological networks, where

the metabolic networks are embedded, e.g. modules, that
span across networks, viz. metabolic, regulatory and

signalling networks.

Finally, it is important to note that the design principles

outlined here are by no means exhaustive. Notwithstanding

the number of studies discussed here, it is estimated that

less than 35% of its entire metabolic network has been discov-

ered, even for very well-studied organisms such as E. coli
[78]. Given that we currently know but a small part of the

universe of possible metabolic reactions (KEGG: http://

www.kegg.jp/) [79], it is likely that other complex

mechanisms and design principles may exist, especially in

under-studied and novel organisms. Consequently, it will

be exciting to study how metabolic networks from very

different organisms behave: do archaeal metabolic networks

share the design principles outlined? Alternatively, in the

case of extremophiles, which may have fundamentally

different metabolic network architectures, do evolutionary

forces that determine these design principles act analogously

in extreme environments? Another interesting dimension of

research would be to explore the correlation between

genome (or metabolic network) size or complexity and var-

ious design principles. Can smaller metabolic networks still

demonstrate functional redundancy or carbon source exapta-

tions, while more complex networks that have more

constraints demonstrate different design principles? With an

increasing number of genomes being sequenced, the studies

of metabolic networks and their design principles will further

unravel evolutionary adaptation and constraints in these

networks, as organisms adapt to varying and divergent

environments.
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