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Emergence of universal scaling in financial markets from mean-field dynamics
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Collective phenomena with universal properties have been observed in many complex systems
with a large number of components. Here we present a microscopic model of the emergence of
scaling behavior in such systems, where the interaction dynamics between individual components
is mediated by a global variable making the mean-field description exact. Using the example of
financial markets, we show that asset price can be such a global variable with the critical role of
coordinating the actions of agents who are otherwise independent. The resulting model accurately
reproduces empirical properties such as the universal scaling of the price fluctuation and volume
distributions, long-range correlations in volatility and multiscaling.
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Universal scaling behaviour is an emergent property
of many complex systems [1]. In such systems, the in-
teractions between a large number of individual com-
ponents yields macro-scale collective behavior with fea-
tures that are almost invariant across different spatial
and temporal scales [2]. A financial market provides a
general and useful paradigm of such a system, since it
involves a large number of agents whose actions are sub-
ject to internal and external influences, such as informa-
tion about the state of the market as provided by market
indices [3]. Despite this complexity, the availability of a
large volume of high-quality data for analysis has enabled
the identification of well characterized statistical proper-
ties [4, 5]. These properties, including the fat-tailed dis-
tribution of relative price changes [6, 7] and intermittent
bursts of large fluctuations that characterize volatility
clustering [8], appear to be universal: they are invari-
ant across different markets, types of assets traded and
periods of observation [9]. More generally, the question
of how universal features emerge from collective behav-
ior in systems with many components is not restricted
to the purely economic domain. Thus, new approaches
to understanding the behavior of financial markets may
contribute to the understanding of the physics of non-
equilibrium steady states in general.

Mainstream economic theories for price fluctuations of
financial assets typically assume the efficient market hy-

pothesis [10]. According to this, price variations reflect
changes in the fundamental (or “true”) value of the as-
sets. However, detailed analysis of data from actual mar-
kets show that much of the observed price variation can-
not be explained solely in terms of changes in economic
fundamentals [11]. The absence of a strong correlation
between large market fluctuations and purely economic
factors leaves unresolved the question of why markets are
so volatile. As the dynamics of markets are a result of
the collective behavior of many interacting constituents,
models based on statistical physics have been proposed
to explain the observed universal behavior [12–15]. Most

such models consider explicit interactions between agents
to reproduce a very limited set of the universal empirical
features. However, it is possible that the observed com-
plex behavior is a result of a mean-field-like global vari-
able mediating the dynamics of components, which are
therefore coupled only indirectly. Such a potential sim-
plification in analyzing the non-equilibrium steady state
for markets holds promise as a general descriptive frame-
work for the dynamics of many complex systems.

In this paper, we present a model for market dynam-
ics where the action of each agent is governed solely by
global information about the system, viz., the price pt of
the single asset being traded. At each time-step, every
agent goes through a two-step stochastic process, anal-
ogous to decision making in an uncertain environment.
Based on the deviation of the instantaneous price from its
long-term average (representing the notional fundamen-
tal value of the asset) and the direction of price move-
ment, each agent decides (a) whether to trade, and (b)
if yes, whether to buy or sell. The price in turn evolves
as a function of the net demand, measured as the differ-
ence between the number of buyers and sellers. Thus, our
approach falls broadly within the theoretical framework
that treats markets as a system of spins, but it differs
from earlier models in not having direct Ising-like inter-
actions between the agents [14, 16]. Further, the fluctua-
tions in the model variables are endogenous to the system
and are not responses to external noise simulating the ar-
rival of news or information [12]. Despite its simplicity
the model reproduces the observed universal properties of
markets. These include the scaling behavior of the distri-
bution of price fluctuation measured by the relative log-
arithmic change, viz., the return, Rt,∆t = ln(pt+∆t/pt)
defined over a time-interval ∆t. The cumulative distri-
bution of Rt,∆t shows a power-law tail with a characteris-
tic exponent α ∼ 3 for many different markets – a robust
property referred to as the inverse cubic law [17, 18]. Our
model, which displays power-law scaling in the return dis-
tribution over a large region of the parameter space, can
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quantitatively reproduce the inverse cubic law on intro-
ducing heterogeneity among the agents. For the same pa-
rameters, the scaling exponent ζV for the distribution of
trading volume in a given interval of time, Vt, agrees with
the empirical values reported in Ref. [19]. Moreover, the
time-series generated by the model exhibits multifractal
statistics [20] and the auto-correlation of absolute returns
decay slowly, a signature of volatility clustering seen in
actual markets [21]. We also give an analytical derivation
of the relation between the scaling exponents for return
and volume distributions generated by the model, which
is in good agreement with the empirical literature.

We consider the market to comprise N agents, each of
whom are in one of three possible states at time t, viz.,
Si(t) = 0 (not trading), +1 (buying) and −1 (selling)
(i = 1, . . . , N). For simplicity, we assume that an agent
can trade a unit quantity of asset at a given instant.
The change in the price of the asset is driven by the
net demand, as measured by the global order parameter
Mt =

∑

i Si(t)/N . Thus, after time instant t, the asset
price changes to pt+1 = [(1+Mt)/(1−Mt)]pt, with p0 >
0, which ensures that the price is always positive and rises
(falls) when relatively more agents buy (sell) it, with the
inactive agents, i.e., Si(t) = 0, not affecting the process.
A price equilibrium (pt+1 = pt) is achieved when supply
equals demand (Mt = 0), while in extreme cases, when
all N agents buy (sell), the price diverges (crashes to 0).
We have verified that the exact form of the price function
is not critical to obtain the results described here.

In our model, the net demand Mt is driven by the col-
lective behavior of agents, with each individual’s state Si

in turn evolving as a result of fluctuations in the instanta-
neous price pt around the asset’s fundamental value p∗t as
perceived by an agent. As the “true” value of p∗t is privi-
leged information and therefore inaccessible to an agent,
it is estimated based on the observed price time-series
as p∗t ≃ 〈pt〉τ , the long-time moving average measured
over a window of duration τ (= 104 time units for the
results shown in the paper). Note that previous studies
have shown that several features of empirical market dy-
namics are determined by an effective potential defined
in terms of the long-term moving average of price [22].
Given the price information, an agent i decides to trade
at time t according to the probability

P [|Si(t)| = 1] = 1−P [Si(t) = 0] = exp

(

−µ

∣
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log
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∣

)

,

(1)
where the parameter µ is a measure of the sensitivity of
an agent to the magnitude of deviation of the price from
its perceived fundamental value. For µ = 0, the system
reduces to a 2-state model where every agent trades at
all time instants.

Once an agent has decided to trade at time t, it still
has to choose whether to buy [Si(t) = +1] or sell [Si(t) =
−1]. Using the simple assumption that this is a random
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FIG. 1: Time evolution. (a) The time-series of price pt
(solid line) and its moving average 〈pt〉τ (broken line). The
corresponding (b) normalized returns, rt, and (c) volatility,
σt, calculated as the standard deviation of returns in a moving
window of interval δt = 100, show intermittent bursts of large
price fluctuations. This indicates the presence of volatility
clustering. Varying δt does not change the result qualitatively.
The model parameters are N = 2 × 104 and µ = 100.

process, we allow each trader to either buy or sell with
equal probability, independent of the price movement.
We have verified that introducing more complicated rules
based on consideration of supply and demand, where the
decision to buy or sell depends on the instantaneous price
fluctuations (e.g., as measured by the return), do not
qualitatively change the results reported here.

Time-evolution of the asset price, pt, shown in
Fig. 1 (a), is qualitatively similar to the time-series
of stock prices or indices observed in real markets.
The moving average of pt (broken line) which is the
agents’ perceived fundamental value of the asset, tracks
a smoothed pattern of price fluctuations coarse-grained
over a time-scale τ corresponding to the size of the av-
eraging window. The normalized returns rt for ∆t = 1
time unit, obtained from Rt by subtracting the mean
and dividing by the standard deviation of the entire re-
turn time series, exhibits significantly large deviations
relative to that expected from a Gaussian distribution
[Fig. 1 (b)]. These intermittent bursts of large fluctua-
tions have a tendency to aggregate together. This is seen
more clearly from the volatility σt, which is a measure of
risk (the unpredictable change in the value of an asset)
and may be calculated as the standard deviation of rt
over a moving window. The clustering of volatility seen
in Fig. 1 (c) is a universal feature of financial markets.

The nature of price fluctuations can be examined in
more detail by focusing on the cumulative distribution
Pc(rt > x). When the agents are homogeneous (i.e.,
having the same sensitivity µ), this distribution shows
power-law tails having exponent α ≃ 2 for a large range
of values of µ (viz. µ > 50). For lower values of µ (< 10)
the distribution is exponential. In reality, agents will dif-
fer in their responses to the same stimulus. This hetero-
geneity in agent behavior is modeled by a distribution of
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FIG. 2: Distributions. (a) Cumulative distribution of nor-
malized returns for heterogeneous agents with µ distributed
uniformly over [10, 200]. The broken line indicates a power-
law exponent of −3 and the circles represent the standard
normal distribution. (b) The corresponding cumulative distri-
bution of the number of agents trading at a given time instant
t, nt, with the broken line indicating a power-law exponent
of −1.5. The results are obtained by averaging over multiple
realizations of the model with N = 104 agents simulated over
2 × 105 time units.

the sensitivity parameter µ that measures the degree of
risk-aversion in an individual. Fig. 2 (a) shows that the
cumulative distribution for rt quantitatively reproduces
the inverse cubic law (α ≃ 3) when µ for each agent is
randomly selected from an interval. To accurately deter-
mine the numerical value of the return exponent α, we
use the Hill estimator, γk,n, for a time-series of length
n, whose inverse approaches the true value of α as the
order statistic k → ∞ with k

n → 0 [23]. To avoid the bias
arising from finite length of the time-series, we have used
a subsample bootstrap method to estimate the optimal
k [24]. Using this method, the estimated value of the
exponent α is 3.11 for the positive tail of the return dis-
tribution [shown in Fig. 2 (a)] and 3.12 for the negative
tail. We have verified that this long-tailed behavior of re-
turns is robust with respect to variations in the interval
and the nature of the distribution for µ.

As the model assumes that each trading agent buys
or sells a unit quantity of the asset, the total number of
traders at any instant t, viz., nt =

∑

i |Si(t)|, is equiv-
alent to the trading volume Vt. The distribution of this
variable also exhibits a power-law scaling, with the ex-
ponent ζV ≃ 1 when the agents are homogeneous. The
heavy-tailed nature of nt distribution is even more ro-
bust than that of rt, as we observe a power-law tail also
for lower values of µ (where the return distribution is ex-
ponential). On introducing heterogeneity among agents
as explained before, the cumulative distribution of nt is
seen to be a power-law, whose exponent is evaluated by
the Hill estimator to be ζV ≃ 1.63 (using the same pa-
rameters for which α ≃ 3) [Fig. 2 (b)]. This is almost
identical to the trading volume exponents reported for
different markets [25]. In order to check the sensitivity
of our results on the assumption that an agent can trade
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FIG. 3: Correlations. (a) The auto-correlation of rt (trian-
gle) rapidly falls to noise level but its absolute value (squares)
shows long-term memory. (Inset) Probability distribution of
the volatility, σt. (b) The q-th moments of absolute value
of the fluctuations in return have a power-law scaling rela-
tion with respect to the time-scale d. The inset shows the
non-linear variation of the corresponding power-law expo-
nent, ζq , indicating multifractality. The model parameters
are N = 2 × 104 and µ = 100.

only a unit quantity, we have verified that a Poisson dis-
tribution of the number of units traded by an agent does
not change the results qualitatively. Thus, our model
suggests that heterogeneity in agent behavior is a key
factor for explaining the quantitative properties of the
observed distributions. It implies that when the behavior
of agents become more homogeneous, e.g., during a mar-
ket crash, the return exponent α will tend to decrease.
This is intriguing in light of earlier work [26] showing
that the power-law exponent for the distribution of rel-
ative prices during a crash has a significantly different
value from that seen at other times.

Turning now to the correlation properties of the return
time-series, we see that rt is uncorrelated, as expected
from the efficient market hypothesis [10]. However, the
absolute values, which are a measure of the volatility,
show a slow logarithmic decay in their auto-correlation
(Fig. 3 (a)), which is a signature of long-memory effects
operating in actual markets [21]. Fig. 3 (a) (inset) shows
the bulk of the volatility distribution which has a log-
normal form as found empirically [27]. To understand
better the temporal organization of price fluctuations
than is possible with the 2-point correlations considered
above, we consider the n-point correlations as reflected in
the multifractal spectrum [28, 29]. Fig. 3 (b) shows the
power-law scaling of the q-th moment Mq(d) of the abso-
lute value of fluctuations as a function of the time scale
(d) being considered. The resulting power-law exponents
ζq do not have a simple linear relation to q (inset), indi-
cating that the process is multifractal. Thus, our model
also reproduces the multifractal nature of financial mar-
kets [20, 21].

The genesis of the power-law scaling relations in the
model is strongly connected to the dynamics by which
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agents decide to trade, which results in a variable num-
ber of agents buying/selling at a given instant. This is
illustrated by the absence of power-law scaling when the
number of trading agents do not change with time (viz.,
µ = 0 for which n = N). Further, it is the long-tailed
nature of the distribution of nt that is responsible for
the heavy tails of the returns. For instance, imposing a
log-normal form on nt rather than generating it by using
Eq. (1), again results in fat tails for rt. This dependence
of the long-tailed nature of the returns on the distribution
of number of trading agents can be analytically derived
as follows. First, we note that, if the number of trad-
ing agents is a constant (nt = n), the returns follow a
Gaussian distribution with mean 0 and variance, σ2 ∼ n.
Therefore, when the number of traders changes over time,
with nt following a distribution P (n), the corresponding
return distribution P (r) can be expressed as a sum over
many conditional distributions P (r|n):

P (r) =

N
∑

n=1

P (r|n)P (n) =

N
∑

n=1

1√
2πn2

exp(−r2/2n)P (n),

(2)
where N is the maximum number of agents who
can trade. If the cumulative distribution for nt fol-
lows a power law with exponent ζV as obtained from
our model, Eq. (2) can be rewritten as P (r) ∼
[1/

√
2π]

∑N
n=1 n

−(ζV + 3

2
)exp(−r2/2n). Replacing the sum

by an integral and taking the upper limit N → ∞, we
get a closed form solution

P (r) = Cζv K(0.5 + ζV , 1.5 + ζV ,−r2/2), (3)

where K(.) is the Kummer confluent hypergeomet-
ric function and the normalization constant Cζv =
Γ(0.5+ζV )Γ(1+ζV )
√
2πΓ(ζV )Γ(1.5+ζV )

. Numerically evaluating K(.) gives a

power-law distribution for r. For half-integral values of
the exponent ζV , Eq. (3) simplifies to a form where the
power law nature of the return distribution is evident.
E.g., for ζV = 3/2, as obtained in our model for hetero-
geneous distribution of agents, P (r) = CζV =3/2(1/r

4)[4−
2e−r2(2 + r2)], with CζV =3/2 ≃ 1.67. For large r, P (r) ∼
r−4, indicating that the cumulative distribution of re-
turns will have a power-law tail with exponent α = 3
(i.e., the inverse cubic law).

In this paper we have presented a model for the dynam-
ics of complex systems which quantitatively reproduces
the observed universal properties of markets without
considering explicit interactions among agents or prior
assumptions about individual trading strategies (e.g.,
chartists vs. fundamentalists) [12]. Recent work on other
aspects of financial markets have shown that coherent
collective behavior can emerge in a system through com-
ponents responding to the same global signal [30]. We
show that the price of an asset can play the role of such
a mediator that generates effective interactions between

agents, resulting in a non-equilibrium steady state char-
acterized by scaling distributions. Heterogeneity of agent
behavior is seen to be critical for obtaining the inverse cu-
bic law, suggesting that in normal circumstances agents
differ significantly in terms of their response to similar
market signals. On the other hand, when the agents are
more homogeneous in their behavior (as during a crash),
the model exhibits even fatter tails. Possible extensions
of our model include the introduction of a volume dy-
namics that decides the quantity of assets traded by an
agent at a particular time instant, the inclusion of mul-
tiple assets and considering the effect of external news.
The framework presented here can be applied to many
other complex systems whose emergent phenomena can
be explained in terms of indirect interactions between
components mediated by a mean-field-like variable.
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