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Abstract. The effect of external pulsation on a pair of stationary Lamb–Oseen vortices of equal strength has

been analyzed to investigate kinematic behavior of a fluid particle. The assumption of vortices being treated

stationary or fixed vortex filaments is valid in a reference frame attached to the vortex system with axes along

and perpendicular to the line of their centers. Also, it is assumed that change in core shape and size is much

small, with least possibility of core merger. In such situations, periodic particle paths are observed and

superposition of pulsation becomes beneficial. In the present work, motion of a representative fluid particle is

modeled as a non-linear dynamical system by varying both amplitude and frequency of external pulsation. Effect

of external pulsation has been brought out with the help of quantification of deviation from periodic paths by

using the concept of total average deviation. Results are presented in terms of particle paths, velocity phase

plots, velocity signals and their spectra for varying amplitude and frequency of external pulsation.

Keywords. Lamb–Oseen vortex pair; stationary vortices; nonlinear dynamical system; particle paths; external

pulsation.

1. Introduction

Transport and mixing in fluid flow is influenced by the

presence of vortices. In two-dimensional flows vortices can

be modeled as inviscid, Rankine or Lamb–Oseen vortices

[1]. These vortex models are exact solutions of the Navier–

Stokes equations under different assumptions. In general,

these vortices move under the influence of each other.

Initial contributions to motion of vortices by Helmholtz,

Kirchoff and Gröbli have been compiled by Aref [2]. The

use of inviscid vortices (also referred to as ‘point vortex’ in

two-dimensions) to analyze flow phenomena like von

Karman vortex street, vortex rings, rolling up of vortex

sheets, etc. has been well documented in classical books of

fluid mechanics and vortex dynamics [3, 4]. In the case of

point vortices, the velocity decreases as inverse function of

radius. A real vortex in a flow possesses vorticity around its

center. In order to simplify the analysis, one may assume

the core region of vorticity to have circular shape and the

vorticity to be uniformly distributed in the core. Such a

vortex with uniform vorticity in a circular core is called a

Rankine vortex [1]. In the case of Rankine vortex the

velocity increases linearly inside the core while it decreases

as inverse function of radius outside the core. Rankine

vortex models have been used to analyze heat transfer and

mixing due to fluid flows [5–7]. Vortices in actual flow

situations exhibit diffusion of vorticity in the core due to

the effect of viscosity. Hence, there takes place an increase

in the core size with time. Such a vortex accounting for

effect of diffusion is modeled as Lamb–Oseen vortex [1].

The Lamb–Oseen vortex model considers vorticity diffu-

sion from an initially inviscid vortex configuration where

the vorticity tends to be infinitely large near the center. This

leads to a Gaussian vorticity distribution in the core at a

given time (t[ 0) and is expressed as

x ¼ C
4pmt

e�r2=4mt ð1Þ

where x is the vorticity at any radial location (r), C is the

circulation and m is the kinematic viscosity. The tangential

velocity, Vh, is given by

Vh ¼
C

2pr
1 � e�r2=4mt
� �

: ð2Þ

The radial distance at which the velocity becomes

maximum can be assumed to be the radius of the core. It

can be shown that the maximum velocity occurs at a radial

distance of nearly
ffiffiffiffiffiffi
5mt

p
[8]. Lamb–Oseen vortex models

closely mimic coherent vortex structures in two-dimen-

sional turbulent flows [9]. One of the major phenomenon

involved with Lamb–Oseen vortices is the merger of vortex

cores [10–12].
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The motion of vortices due to influence of each other can

be modeled as a dynamical system [13, 14]. To analyze the

fluid particle motion, any particles can be assumed as a

vortex having zero circulation [15]. Such a dynamical

system can be used to analyze wake vortices behind a bluff

body [14], to study transport of particles in turbulent flows

[16] and many other applications. Stationary solution of a

dynamical system is referred to as ‘equilibrium point’ (EP)

which is analogous to stagnation zones in fluid mechanics.

EPs can be classified based on the characteristics of phase

paths around them as hyperbolic or elliptic. In a fluid flow

situation, presence of elliptic points is not desired for effi-

cient mixing. The presence of hyperbolic points such as a

saddle assists in stretching and folding of material lines

which in turn is helpful for efficient mixing [17]. In addi-

tion to the presence of hyperbolic points, superposition of

external pulsations can improve mixing and transport

characteristics a flow domain. External pulsations are well

utilized to increase mixing characteristics in micro-fluidic

devices by using acoustic, electrical or magnetic means

[18]. Effect of external pulsations on the wake behind cir-

cular cylinders on vortex shedding behavior has been

studied by Lu and Papadakis [19].

The pair of Lamb–Oseen vortices in a fluid move under

the influence of each other. In the case of equal strength

vortices, co-rotating vortices rotate about an axis that is

perpendicular to the line of centers and counter rotating

vortices translate. The angular velocity about the rotation

axis of the co-rotating system and the translational velocity

of the counter-rotating system do not vary with time [20].

During rotation or translation, the relative distance between

the vortices does not change when there is least possibility

of core merger. If a rotating frame of reference is attached

to the co-rotating pair or a translating frame of reference is

attached to the counter-rotating pair, the vortex system can

be considered stationary in the respective frame of

reference.

In the present work, a pair of stationary Lamb–Oseen

vortices are considered and the particle paths generated by

these vortices are analyzed. Even though there exist many

parametric combinations of strengths and distance between

the vortices, the present work assumes equal strength for

the considered vortex pair. For the system of moving vor-

tices, the initial distance between the vortices can be

assumed to be four times the core radius to avoid the

possibility of core merger [21]. In Lamb–Oseen system, the

core radius is normally variable and hence for given initial

separation the growing core radius will not satisfy the cri-

teria for non-merger. Moreover, there is a better possibility

of mixing during core merger due to which superposition of

external pulsation may be less effective. Consequently, the

effect of external pulsation becomes mostly important in

non-merging vortex systems. Therefore, present work

considers the situation when change in core radius is much

small (may be true at large core radius after long time) and

it can be assumed to be almost independent of time. Such

an attempt for analysis is expected to cause less error while

still successfully being able to bring out the effect of

external pulsation. Both the cases of co-rotating and

counter-rotating vortex pair have been separately analyzed.

On either of these arrangements, external pulsation has

been superimposed. An attempt is made to examine the

effect of external pulsation on particle paths, u-velocity

signal and its Fourier spectra. The governing equations

form a dynamical system which have been solved using

RK-4 method.

2. Problem statement

In a vortex dominated flow, the interactions of vortices

influence the transport characteristics. An interaction

between two vortices may be assumed as building block or

elementary form of interaction. Even though vortices move

relative to each other, analysis by considering the vortices

as stationary can be useful to understand transport of pas-

sive particles. Every fluid particle under the influence of

stationary vortices moves in its own unique way. Stationary

vortices produce a large number of periodic paths. Periodic

particle motion is not quite favorable when mixing is

desired in the flow domain. In fact, mixing can be enhanced

if the particles possess higher degree of wandering in the

flow domain. In order to increase wandering of fluid par-

ticles, one may impose fluctuations to the velocity field in

the form of external pulsation. In the present work, influ-

ence of external sinusoidal pulsations has been studied.

A system of two stationary Lamb–Oseen vortices of equal

strength in an unbounded fluid domain is shown in figure 1.

Both co-rotating and counter-rotating arrangements of vor-

tices have been considered for analysis by assuming them

stationary or as fixed vortex filaments. Such an assumption is

valid in a rotating frame attached to co-rotating pair or trans-

lating frame attached to counter-rotating pair. The effect of

external pulsation on particle paths has been studied by

superposition of a sinusoidal oscillation on the field generated

by the vortices. Even though the pulsation can be superim-

posed in both x- and y-directions in general, the present work

considers only the effect of pulsation along x-direction.

3. Governing equations

The vorticity at the center of a point vortex (inviscid) tends

to become infinitely large. When diffusion of vorticity with

time is considered, the resulting vortex forms the Lamb–

Oseen vortex. Figure 2a and b present the variation of

vorticity and velocity respectively as function of radial

distance. It is apparent that maximum values of both

velocity and vorticity decrease with increase in time. This is

due to vorticity diffusion and increase in core radius. For a

Lamb–Oseen vortex, the velocity becomes maximum at the

end of the core radius as observed for a Rankine vortex.
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Equation (2) can be written in the Cartesian coordinate

system as

u ¼ �Cy

2p x2 þ y2ð Þ 1 � e�
x2þy2

4mt

� �
ð3aÞ

v ¼ Cx

2p x2 þ y2ð Þ 1 � e�
x2þy2

4mt

� �
ð3bÞ

where u is the x-component of the velocity and v is the y-

component of the velocity.

When two vortices are simultaneously present in the domain,

the velocity induced because of individual vortices can be

superimposed. Referring to figure 1, the Cartesian components

of velocity of a particle in the flow domain are given by,

dx

dt
¼ u ¼ �C1y

2p

1 � e�
ðxþl=2Þ2þy2

4mt

� �

ðx þ l=2Þ2 þ y2
� C2y

2p

1 � e�
ðx�l=2Þ2þy2

4mt

� �

ðx � l=2Þ2 þ y2

ð4Þ

dy

dt
¼ v

¼ C1

2p

ðx þ l=2Þ 1 � e�
ðxþl=2Þ2þy2

4tt

� �

ðx þ l=2Þ2 þ y2

þ C2

2p

ðx � l=2Þ 1 � e�
ðx�l=2Þ2þy2

4tt

� �

ðx � l=2Þ2 þ y2
ð5Þ

The above expressions can be non-dimensionalized with

respect to the core radius rc for length variables and s ¼
2pr2

c=C for time. Let r� ¼ r=rc, x� ¼ x=rc, y� ¼ y=rc,

l� ¼ l=rc, C1 ¼ aC, C2 ¼ bC, and t� ¼ t=s. To avoid

merging, the distance between vortices has to be at least

four times the core radius [9] and hence the distance

between the vortex centers is taken as l ¼ 4rc. The resulting

non-dimensionalized equations after removing superscript

‘*’ are given by

dx

dt
¼ u

¼ �y
a 1 � e�a r2

1
Re=ð8ptÞ

� �

r2
1

þ
b 1 � e�b r2

2
Re=ð8ptÞ

� �

r2
2

0
@

1
A

ð6aÞ

dy

dt
¼ v

¼
aðx þ 2Þ 1 � e�a r2

1
Re=ð8ptÞ

� �

r2
1

þ
bðx � 2Þ 1 � e�b r2

2
Re=ð8ptÞ

� �

r2
2

0
@

1
A

ð6bÞ

x

y

A B

Γ1 Γ2

l / 2 l / 2

Figure 1. Lamb–Oseen vortex pair with the dotted line repre-

senting core radius.

Figure 2. Variation of (a) vorticity and (b) viscosity with time.
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where Re ¼ C=m is the Reynolds number, r1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx þ 2Þ2 þ y2

q
and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � 2Þ2 þ y2

q
. Equations (6a)

and (6b) are solved simultaneously using RK-4 method for

different initial positions of the particles in case of co-rotating

vortices (a ¼ 1 and b ¼ 1). For Re ¼ 50 the particles are not

closed curves and the co-ordinates of the considered initial

locations (x, y) are, (0, ±0.1), (0, ±1.8), (0, ±2.9), and (0,

±3.2). For Re ¼ 100 the initial positions are (0, ±0.1), (0,

±1), (0, ± 0.5), (0, ±1.8), (0, ±2.9), and (0, ±3.2). For large

values of Re (that is Re ¼ 500 and Re ¼ 1000) particle paths

are closed curves and they cross x-axis at two locations. The

initial point assumed at any of these locations gives the same

particle path. The time step is chosen to be Dt ¼ 0:005,

because for smaller time steps particle paths remain the same.

The results obtained are as shown in figure 3.

It is seen that for Re ¼ 50, the particle paths are not closed

curves. This may be because of the core radius changing

rapidly due to the effect of viscosity that is large at low

Reynolds number. For higher values of Re, the particle paths

are closed curves. In case the core radius changes with time

rapidly, the chances of the ratio of distance between vortex

centers and the core radius becoming less than four are high

and this may cause deformations in assumed shape of vortex

cores. At the onset of merger, assumption of circular core gets

flawed and also the assumption of fixed filaments is not quite

appropriate. Further, if the particle paths are not closed

curves, flow already has built-in possibility of better mixing

due to which superimposing pulsation may not be required.

Therefore, advantage of analyzing the effect of pulsation is

more for the cases where there is almost no core deformation.

Accordingly, in the present work, the core radius has been

assumed to be a constant. For constant core radius (rc), non-

dimensionalization of Eqs. (4) and (5) with respect to the

characteristic linear dimension (rc) while keeping all the

other non-dimensionalizing factors same as in Eq. (6), gives

dx

dt
¼ u ¼ �y

að1 � e�1:25r2
1 Þ

r2
1

þ bð1 � e�1:25r2
2 Þ

r2
2

 !
ð7aÞ

dy

dt
¼ v

¼
aðx þ 2Þ 1 � e�1:25r2

1

� �

r2
1

þ
bðx � 2Þ 1 � e�1:25r2

2

� �

r2
2

0
@

1
A:

ð7bÞ

Figure 3. Particles paths for different values of Re.
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For deriving the above expressions, in the exponential

functions of Eqs. (4) and (5), the core radius has been

substituted as rc ¼
ffiffiffiffiffiffi
5mt

p
[8]. When pulsation is superim-

posed in the x-direction, Eq. (7) becomes

dx

dt
¼ �y

a 1 � e�1:25r2
1

� �

r2
1

þ
b 1 � e�1:25r2

2

� �

r2
2

0
@

1
A

þ A cosð2pftÞ ð8Þ

where A and f are the non-dimensionalized amplitude and

frequency, respectively. Amplitude of the velocity signal is

non-dimensionalized with respect to the maximum tan-

gential velocity and the frequency of pulsation is non-di-

mensionalized by the circulation frequency of a fluid

particle placed on the core boundary of either vortex.

4. Methodology

4.1 Particle motion

Motion of a particle in two dimensions is associated with

four variables, viz., two position variables and two

momentum variables. The momentum variables are con-

stant multiples of the velocity variables. Here u and v

represent the velocity component along x and y-directions

respectively. The variation of position variables with time

is represented by the particle path in the x–y plane. Varia-

tion of momentum variables with time is shown by a Lis-

sajous figure showing the two associated velocities along

the x and y axes, respectively. To compute the particle

paths, Eqs. (7a) and (7b) are solved simultaneously using

RK-4 method in absence of external pulsation and Eqs. (7b)

and (8) in the presence of pulsation. The total time for

which the integration is carried out is T ¼ 100 and time

step is taken as Dt ¼ 0:005. In every case it was seen that

smaller time step did not yield any difference in the particle

paths. The initial positions are chosen in such a way that

they represent prominent types of particle paths. The pul-

sation is added to the vortex field as shown in the Eq. (8).

The amplitudes of the pulsation chosen for analysis lie

between A ¼ 0:1 and A ¼ 0:5 and frequencies are varied

keeping the amplitude constant. The Fourier spectra of the

velocity component in the x-direction are utilized to ana-

lyze the effect of pulsation.

4.2 Analysis of equilibrium points

Equilibrium points (EPs) are the locations in the domain

where there is no flow. These points can be evaluated by

equating Eqs. (7a) and (7b) to zero and then solving them

simultaneously to obtain the coordinates of EP, i.e.xeq and

yeq. Linearizing the dynamical system near an EP can be

helpful in evaluating its nature. The eigen values of the

Jacobian of the dynamical system at EP can predict the

nature of the EP in most of the cases where linear

approximation is considered to be a good approximation.

The Jacobian of the dynamical system is given by

J ¼

ouðx; yÞ
ox

ouðx; yÞ
oy

ovðx; yÞ
ox

ovðx; yÞ
oy

0
BB@

1
CCA

��������
xeq;yeqð Þ

:

Based on the eigen values of the J, the nature of EPs can

be predicted. There are different types of EPs such as a

center, saddle, source, sink or a spiral [22].

4.3 Quantification of deviation – total average

deviation (TAD)

The deviation of the particle paths from periodicity when

the pulsation is superimposed is quantified by using total

average deviation (TAD) computed as below. At a partic-

ular time t, if the position of the particle in the case where

no pulsation is superimposed is given by ðxðtÞ; yðtÞÞ and

when the pulsation is applied be given by ðxpðtÞ; ypðtÞÞ.
Then the deviation from the periodic path is given by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðtÞ � xpðtÞÞ2 þ ðyðtÞ � ypðtÞÞ2

q
ð9Þ

and the total average deviation is given by

TAD ¼ D

n
ð10Þ

where n is the number of samples taken.

5. Results and discussion

5.1 Co-rotating vortices

5.1a Co-rotating vortices without pulsation: In non-pul-

sating case of co-rotating vortices, three stagnation points

are observed which have been presented in table 1. There

exist one saddle and two centers. Some of the representa-

tive particle paths generated are shown in figure 4.

It can be seen that all the particle paths are periodic.

There are two major types of particle paths seen in figure 4,

the paths of particles that revolve around a single vortex

and the ones that revolve around both the vortices. This

topology of particle paths for co-rotating vortices matches

with those of earlier authors [10, 21]. If the initial particle

position is taken along the x-axis, it can be seen that all the

prominent types of particle paths are represented. Also

since the particle paths are symmetric about the y-axis,

taking the initial positions only on one side of the x-axis

will suffice. Hence, for the purpose of analysis, the initial

positions are taken along x-axis. As discussed earlier, any
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particle motion is associated with position and momentum

variables. The position variables are depicted on the

physical x–y plane and momentum is depicted on the u–v

plane (Lissajous curve). Fourier spectra give us insights

into the periodicity and the frequency of periodic motion.

Since in the present work, the fluctuations are imposed on

the u-velocity field, the Fourier spectral analysis is carried

out on the u-velocity signal.

The particle paths, the Lissajous curves, the u-velocity

signal and the Fourier spectra of the u-velocity signal have

been shown in three dimensions with the third dimension

represented by the initial position of particles on the posi-

tive x-axis in figure 5. The lowest dominant frequency

corresponding to the u-velocity signals for the particle

motion starting from various initial positions is represented

in table 2. The other dominant frequencies are the rational

multiples of the lowest dominant frequency and hence the

motion is periodic. If the paths deviate from periodicity

then the ratio of frequencies will not be rational [23].

5.1b Co-rotating vortices with pulsation: The particle paths

generated by co-rotating Lamb–Oseen vortices are periodic

and this type of particle motion is not desired when good

mixing is expected in the flow domain. To make the fluid

particles wander more in the flow domain, an external

oscillation can be superimposed. In this regard, investiga-

tion is carried out on the co-rotating Lamb–Oseen vortices

when a pulsation of amplitude A and frequencyf is

superimposed on the velocity field in the x-direction.

Although the parametric combinations of amplitude and

frequency of pulsations can be large, in the present work,

amplitudes between 0.1 and 0.5 are taken, and the fre-

quencies between 0.1 and 3.0 are taken and analysis is

carried out. The deviation from the periodic paths shown in

figure 5 can be quantified using the parameter TAD. The

variation of TAD with superimposed pulsation of amplitude

0.1 and different frequencies is depicted in figure 6.

It can be observed that for small frequencies, the value of

TAD is the highest for initial positions far away from the

origin on the x-axis. These are points that are far away on

the right of the vortex system. Particles in these positions

traverse periodic paths with low frequencies. Hence when

low frequency pulsations are superimposed the deviation

from periodic paths is large. It is also seen from figure 6

that the frequency of value 1.0 shows the maximum devi-

ations from periodic paths for the particles located between

points (0, 0) and (0, 3). This is because the periodic paths in

this range rotate with frequency (f ) close to 1.0 when

pulsations are not superimposed. Pulsations of frequency

1.0 cause resonance and therefore a large deviations from

the periodic paths can be observed. For frequency values

greater than 1, it is observed that the deviations are small.

For particles located near the saddle point (0, 0), large

values of TAD is observed. This is because a small pulsa-

tion of any frequency is adequate to make a particle that is

revolving around one vortex to move around both vortices.

Figure 7 shows the particle paths, Lissajous curves, sig-

nals of u-velocity and their Fourier spectra when pulsations

of frequency f ¼ 0:1 and amplitude A ¼ 0:1 is superim-

posed. It may be observed that the particle located at (0.1, 0)

that was revolving around one vortex (figure 5) is now

revolving around both vortices. Also, the deviation from the

particle path is large for the initial position (3.1, 0). The

particle path characteristics for frequency f ¼ 1:0 and

amplitude A ¼ 0:1 is shown in figure 8. It can be observed

that the superimposition of this frequency is successful in

making large number of particles that were initially moving

around a single vortex to move around both vortices. It is

clear from figures 6 and 8 that the frequency f ¼ 1:0 has

significant influence on the periodic paths whose initial

positions are near the elliptical point (1.782, 0). The variation

of TAD for frequency f ¼ 1:0 and for different amplitudes is

shown in figure 9. It is seen that with increase in amplitude

the effect of pulsations gets magnified. Hence, it can be said

that the frequency of oscillation is the primary parameter

influencing the deviation of particles from periodic paths and

amplitude acts as a magnification factor.

The characteristics of particle motion for frequency f ¼
1:0 and amplitude A ¼ 0:5 is shown in figure 10. In fig-

ure 10a, it can be seen that all the particle paths corre-

sponding to all the initial conditions along x-axis revolve

around both vortices. It is also clear from figure 9 that TAD

acts as a good quantitative measure to access the influence

of superimposed pulsation.

Table 1. EPs location and their nature for co-rotating vortices.

Co-rotating case: a ¼ 1 and b ¼ 1

EPs xeq; yeq

� �
Eigen values Nature of the EP

0; 0ð Þ �0:47 Saddle

�1:782; 0ð Þ �0:71i Center

1:782; 0ð Þ �0:71i Center

Figure 4. Phase portrait showing the particle paths for co-

rotating Lamb–Oseen vortices.
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5.2 Counter-rotating vortices

5.2a Counter-rotating vortices without pulsation: In the

case of counter-rotating vortices in absence of pulsation,

there exist two EPs as shown in table 3. From linear

analysis the nature of the EPs are ascertained and both are

found to be centers.

The particle paths shown in the figure 11 are similar to

the streamlines in a counter-rotating vortex pair as

documented in the texts of hydrodynamics [1]. Since flow

due to stationary vortices is steady the particle paths are

similar to streamlines. In the phase portrait of figure 11, y-

axis is referred to as ‘parting line’ because a fluid particle

originally on this line will neither deviate to right nor to

left. The particles do not cross the parting line in case of

non-pulsatile stationary vortices. However, in presence of

pulsation, there is possibility of particles crossing the

parting line that has been illustrated in later part of present

work. All the other particle paths follow nearly circular

trajectories with the ones closer to the parting line having

larger radius. The particles near the elliptic points (±2.195,

0) traverse a path with smaller radius.

Figure 12 shows the behavior of particle motion for non-

pulsatile counter-rotating vortices. For the initial positions

(0.1, 0) and (0.5, 0), the particle paths do not close during

the time considered for computation (T ¼ 100). These are

the points that are close to the parting line and therefore are

actually traversing a circular trajectory with larger radius.

5.2b Counter-rotating vortices with pulsation: As explained

before, TAD shows a quantitative measure of the effect

Figure 5. (a) Particle paths, (b) Lissajous curves, (c) signals of u-velocity, and (d) Fourier spectra of the u-velocity signal; for the

pulsating case of co-rotating Lamb–Oseen vortices.

Table 2. Lowest dominant frequency for co-rotating vortices.

x y Lowest dominant frequency

0.1 0 0.37

0.5 0 0.62

1.0 0 0.94

1.5 0 1.19

2.01 0 1.19

2.5 0 0.81

2.7 0 0.31

3.1 0 0.31
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Figure 6. Variation of TAD with initial position on x-axis for different frequencies and fixed amplitude A = 0.1, for co-rotating Lamb–

Oseen vortices.

Figure 7. (a) Particle paths, (b) Lissajous curves, (c) signals of u-velocity, and (d) Fourier spectra of the u-velocity signal; for the

pulsating case of co-rotating Lamb–Oseen vortices with A ¼ 0:1, f ¼ 0:1.
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Figure 8. (a) Particle paths, (b) Lissajous curves, (c) signals of u-velocity, and (d) Fourier spectra of the u-velocity signal; for the

pulsating case of co-rotating Lamb–Oseen vortices with A ¼ 0:1, f ¼ 1:0.

Figure 9. Variation of TAD with particle initial positions on the x-axis for different amplitudes and fixed frequency of f ¼ 1:0, for the

case of co-rotating Lamb–Oseen vortices.
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produced by external pulsation on particle motion in a

stationary vortex system. Figure 13 shows the variation of

TAD for different frequencies when the amplitude is A ¼
0:1 for initial positions of particles on the positive x-axis

Also, it is seen from figure 13 that for initial position of

particles near the elliptic point (2.195, 0), TAD has lower

values for low frequencies (f ¼ 0:1 and f ¼ 0:5) and high

frequencies (f ¼ 2:5 and f ¼ 3:0). The values of TAD are

higher near the elliptic point for frequency f ¼ 1:0. This

can be attributed to some kind of in-phase superposition of

velocity signals with applied pulsating signals. For all fre-

quencies, TAD is larger for particle positions near the

saddle. Similarly higher values of TAD are observed for

particles with initial positions located at far right of the

elliptic point. This is because the particle that starts near the

saddle point moves in a path that takes it to the location far-

right of the elliptic point. The reason for this large deviation

from periodic paths is evident from figure 14 which shows

the particle motion characteristics for frequency f ¼ 0:1
and amplitude A ¼ 0:1. The large values of TAD for par-

ticles near the parting line seem to have been caused due to

increase in curvature of the particle trajectory. Also, it can

be seen from figure 14a that the particle paths do not show

much deviation for paths near the elliptic point.

As is clear from figure 13 that frequency f ¼ 1:0 pro-

duces large values of TAD near the elliptic point. The

Figure 10. (a) Particle paths, (b) Lissajous curves, (c) signals of u-velocity, and (d) Fourier spectra of the u-velocity signal; for the

pulsating case of co-rotating Lamb–Oseen vortices with A ¼ 0:5, f ¼ 1:0.

Table 3. Location of EPs and their nature for counter-rotating

vortices in absence of pulsation.

Counter-rotating case: a ¼ 1 and b ¼ �1

EPs, xeq; yeq

� �
Eigen values Nature of the EP

�2:195; 0ð Þ �1:19i Center

2:195; 0ð Þ �1:19i Center
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variation of TAD with amplitude for fixed frequency of 1.0

is shown in figure 15. As in the co-rotating case it is seen

that the values of TAD increase with increase in amplitude.

Hence, it is inferred that the amplitude plays the role of

enhancing the value of TAD. The particle motion charac-

teristics for superimposed pulsation of amplitude A ¼ 0:5
and frequency f ¼ 1:0 has been shown in figure 16. Larger

deviations appear in particle paths for all the values of

initial position as compared to the non-pulsatile case as

well as compared to the case with amplitude A ¼ 0:1 and

f ¼ 0:1.

In figure 13 and figure 15 sharp fluctuations in TAD can

be seen. Figure 17 shows the variation of the particle paths

and corresponding u–v plots (Lissajous curves) for initial

particle positions of (4.97, 0) and (5.07, 0) that are on the

trough and crest of one such fluctuation in TAD for the

superimposed pulsation of A ¼ 0:1 and f ¼ 1:0 given in

figure 15. It is observed that for small deviation in initial

positions, the particle paths deviate by a significant amount.
Figure 11. Phase portrait showing the particle paths for counter-

rotating Lamb–Oseen vortices.

Figure 12. (a) Particle paths (b) Lissajous curves (c) signals of u-velocity and (d) Fourier spectra of the u-velocity signal; for the non-

pulsating case of counter-rotating Lamb–Oseen vortices.
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This can be considered as a case of sensitivity to initial

conditions (SIC) that is beneficial when mixing is desired in

the flow domain.

It was observed from figure 13 that the TAD is highest

near the parting lines at low frequency f ¼ 0:1. The

variation of TAD with increasing amplitude for frequency

f ¼ 0:1 is shown in figure 18. It is seen that the variation

becomes larger with higher values of amplitude. It is

observed that the value of TAD is almost doubled for all

amplitude ranges when compared with the case of

Figure 13. Variation of TAD with initial position of the particle being on x-axis for different frequencies and fixed amplitude A ¼ 0:1,

for the case of counter-rotating Lamb–Oseen vortices.

Figure 14. (a) Particle paths, (b) Lissajous curves, (c) signals of u-velocity, and (d) Fourier spectra of the u-velocity signal; for the

pulsating case of co-rotating Lamb–Oseen vortices with A ¼ 0:1, f ¼ 0:1.
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Figure 15. Variation of TAD with initial position of particle on x-axis for different amplitudes and fixed frequency of f ¼ 1:0 in the

case of counter-rotating Lamb–Oseen vortices.

Figure 16. (a) Particle paths (b) Lissajous curves (c) signals of u-velocity and (d) Fourier spectra of the u-velocity signal; for the

pulsating case of co-rotating Lamb–Oseen vortices with A ¼ 0:5, f ¼ 1:0.
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frequency f ¼ 1:0 shown in the figure 15. To explore the

possible reason for this, particle motion characteristics are

plotted for frequency f ¼ 0:1 and amplitude A ¼ 0:5 in the

figure 19. It is observed that the particle paths cross the

parting line to get influenced by the other vortex and this is

the reason for large TAD as compared to the case of A ¼
0:5 and f ¼ 1:0, where the particles revolve around only

one vortex.

6. Conclusions

The effect of pulsation on a pair of stationary Lamb–Oseen

vortices has been studied. The motion of particles is mod-

eled as a dynamical system. If the core radius shows a small

change, then the particle paths are almost periodic and can

demonstrate higher degree of wandering in the presence of

external pulsation. The deviation in particle path due to

superposition of pulsation has been quantified using the

concept of ‘total average deviation’ (TAD). For both co-

rotating and counter-rotating stationary vortices, it is found

that frequency of pulsation plays an important role in

moving the particles out of periodic paths and amplitude

enhances the wandering of particles. The saddle point that

exists between the co-rotating vortices plays an important

role in enhancing the influence of pulsations. Since the

velocities near the saddle point are small, even a pulsation

of low amplitude is capable enough to make the particle

revolve around both the vortices. The fluid particles away

from the vortex cores, but not in between them, show high

TAD for low frequencies. In the case of counter-rotating

vortices, superposition of pulsation of high amplitude and

low frequency helps the particle to cross the parting line

which increases TAD by a significant amount.

Figure 17. Variation of (a) paths and (b) u–v plots (Lissajous curves) due to pulsation of A ¼ 0:1 and f ¼ 1:0 for initial positions (4.97,

0) and (5.07, 0) (curves with pulsation are shown by dashed line and without pulsations by continuous lines).
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Figure 18. Variation of TAD with particle initial position on the x-axis for different amplitudes for frequency for f ¼ 0:1 in the case of

counter-rotating Lamb–Oseen vortices.

Figure 19. (a) Particle paths, (b) Lissajous curves, (c) signals of u-velocity, and (d) Fourier spectra of the u-velocity signal; for the

pulsating case of co-rotating Lamb–Oseen vortices with A ¼ 0:5, f ¼ 0:1.
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