
1

Distributed Pareto Optimal Beamforming for the

MISO Multi-band Multi-cell Downlink

M. Vishnu Narayanan and Srikrishna Bhashyam1

1Dept. of Electrical Engineering, IIT Madras, Chennai 600036, India.

skrishna@ee.iitm.ac.in

Abstract—In this paper, we consider a multi-cell multi-

band downlink where the base station (BS) in each cell

has multiple transmit antennas. Each cell has one active

mobile station (MS) with a single receive antenna and

treats interference from the other cells as noise. There

is a sum transmit power constraint for each BS over all

the bands. An alternating maximization (AM) algorithm is

proposed to determine the optimal power allocation among

the bands and the optimal beamforming vectors for each

BS in each band. This algorithm can be implemented in a

distributed manner with limited exchange of interference

constraints between the BSs, and only local channel state

information at each BS. The proposed algorithm alternates

between: (1) weighted sum-rate (WSR) optimization for the

beamformers in each band for a given power allocation,

and (2) optimal power allocation across bands for a given

set of beamformers. For the 2-cell and 3-cell settings the

WSR optimization in each band is significantly simplified

using analytical solutions for the sub-problems. The power

allocation across bands for a given set of beamformers is

obtained analytically in all cases. Numerical results show

good convergence properties and significant performance

gain using the proposed AM algorithm compared to: (i)

equal power allocation across bands and weighted sum-

rate optimization in each band, (ii) zero-forcing (ZF)

beamforming, and (iii) maximal ratio transmission (MRT)

beamforming.

Index Terms—Multiple-Input-Single-Output (MISO) In-

terference Channel, beamforming, pareto boundary, rate

region, alternating maximization, weighted sum-rate max-

imization.

I. INTRODUCTION

Modern cellular networks allow full frequency

reuse across cells to support the increasing traffic

demand. However, full frequency reuse requires

the use of advanced interference management tech-

niques. One promising technique is partial or full

coordination between base-stations on the downlink

This work was presented in part at GLOBECOM 2017 [1].

[2]. In [3], [4], a multicell downlink where the

base-stations (BSs) with multiple antennas coop-

eratively design beamforming vectors to their re-

spective active mobile stations (MSs) is considered.

Each cell has one active MS with a single receive

antenna and the receivers treat interference from

other cells as noise. The achievable rate region of

such a multicell system, i.e., the set of all achievable

('1, '2, . . . , '"), where ': is the rate in the : Cℎ

cell, is studied. In [3], [5], the Pareto boundary of

the achievable rate region is characterized using an

explicit parameterization. On the Pareto boundary,

the rate in any cell cannot be increased without

decreasing the rate in at least one other cell. In [4],

it was shown that any point on the Pareto boundary

can be obtained using a distributed optimization in

each cell with a limited exchange of some interfer-

ence parameters between cells.

The work in [3], [4] in the multi-input-single-

output interference channel (MISO-IC) setting has

been extended in several ways. A centralized so-

lution to maximize weighted sum-rate is presented

in [6] with full channel state information. In [7],

[8], the use of more advanced receivers at each

MS based on successive interference cancellation

(SIC) has been analyzed. In [9]–[12], extensions to

a MIMO-IC setting where the MSs have multiple

receive antennas have been studied. While [10]–

[12] restrict attention to single-stream transmission

even in the MIMO setting, some conditions for

Pareto optimality for the general MIMO-IC are

obtained in [9]. The effect of partial, imperfect

or quantized channel state information (CSI) has

been studied in [13]–[16]. Various algorithms for

weighted sum-rate optimization in the MISO-IC

setting have been proposed in [17]–[19]. In [17],

more than one active MSs are allowed in each

cell simultaneously. The algorithms in [18], [19]

are based on monotonic optimization. An iterative
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approach to solve problems posed by the non-

convexity of weighted sum-rate maximization is

studied in [20] in a different setting of wirelessly

powered communications. In [21] and [22], multi-

cell beamforming is studied under constraints on

backhaul communication. In [23], machine learning-

based selection of MISO beamforming is used to

choose between zero-forcing (ZF) and maximal ra-

tio transmission (MRT). In all these works, a single

band is assumed for downlink transmission with a

flat fading or Gaussian IC model.
We consider a multicell multi-band downlink with

a transmit power constraint on the sum power of all

the bands. While each band is modeled as flat fading

or Gaussian, the multi-band system can model sce-

narios where multiple downlink bands are available

in the same cell, or scenarios where frequency-

selective fading can be well approximated using

multiple band-wise flat-fading channels. In sce-

narios with multiple bands with per-band power

constraints, maximum sum-rate is obtained when

full power is utilized [24]. However, since we have

multiple bands and a sum power constraint, we

need also determine the optimal power allocation

across bands in addition to determining the optimal

beamformers for each band for each cell. Joint

optimization of power allocation and beamforming

is difficult.
In this work, we propose an alternating maxi-

mization (AM) algorithm to determine the power

allocation and the beamformers for each band in

each cell to maximize the overall weighted sum-

rate (WSR) of the multi-cell multi-band MISO-IC

system. As in [4], each transmitter in the BS consists

of # antennas, the receiver at the MS consists of a

single antenna, and interference from other cells is

treated as the noise at each receiver. The proposed

AM algorithm consists of two main steps. In step

1 of the AM algorithm, we fix a power allocation

across the bands and maximize the weighted sum-

rate for each band. This optimization for each band

is solved in each cell in a distributed manner while

exchanging only the interference temperature con-

straints between cells. For the optimal interference

constraints determined in Step 1, we optimize the

power allocation across bands in step 2 of the

AM algorithm analytically. We make the following

contributions:

• For the 2-cell single-band case, we derive an

analytical solution for maximizing the rate in

each cell subject to interference temperature

constraints.

• For the 3-cell single-band case, we reduce the

problem of maximizing the rate in each cell

subject to interference temperature constraints

to a single parameter search.

• Taking advantage of the analytical results for

the 2-cell and 3-cell settings, we use a gradient

ascent algorithm to determine the maximum

weighted sum-rate and the corresponding in-

terference constraints.

• The AM algorithm to determine the optimal

beamforming vectors and the power allocation

across bands is proposed for the "-cell  -band

setting.

Finally, we present numerical results for var-

ious settings and observe that: (a) the proposed

AM algorithm converges to the weighted sum-rate

optimal rate vector, (b) the optimal beamformers

and power allocation can achieve all points on the

Pareto boundary corresponding to WSR optimal rate

vectors, (c) there is a significant gain in performance

compared to equal power allocation across bands

and WSR optimization in each band, and (d) there

is significant performance gain over maximal ratio

transmission (MRT) beamforming in each band with

equal power allocation across bands, zero-forcing

(ZF) with equal power allocation across bands (ZF-

EPA) and ZF with optimal power allocation across

bands (ZF-OPA). The MRT scheme does not require

any coordination between cells. The ZF schemes re-

quire each BS to know the channel state information

of the channel from itself to all the users in all cells.

The proposed AM scheme requires the exchange of

interference temperature constraints and the channel

state information as in the ZF schemes.
In [25], a distributed solution to the 2-cell single-

band case is provided using a Signal-to-leakage-

noise ratio approach. However, the sum-rate of this

scheme matches the sum-rate of the ZF scheme

at high SNR. Our AM algorithm achieves rates

better than ZF. In [26], a pricing-based distributed

non-cooperative game approach is proposed for the

multi-cell OFDMA setting. This approach is shown

to converge to a Nash equilibrium and satisfies the

Karush-Kuhn-Tucker (KKT) conditions for the net-

work utility maximization problem. The information

exchange in this method is similar to our proposed

method. However, the iterative approach used is

different and uses dual decomposition. The problem
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is not decomposed into WSR optimization for each

band and power allocation as in our approach. In

[27], the pricing-based approach in [26] is used for

distributed beamforming design in a dynamic time-

division-duplex system.

The rest of this paper is organized as follows.

The system model and the solution approach are

described in Section II. The analytical solutions for

the 2-cell single-band and 3-cell single-band cases

under interference temperature constraints are in

Sections III and IV. Then, this solution is used in a

gradient ascent algorithm for WSR maximization.

Section V presents the proposed AM algorithm

for the "-cell  -band setting. Results relating the

Pareto optimality in each band with overall Pareto

optimality are also presented in this section. Con-

vergence and complexity issues are discussed in

Section VI. The simulation results are in Section

VII. Some of the simulation details and the details

of the solution in the Section IV are presented in

Appendices A and B.

Notations used: Boldface lower case letters are

used to represent vectors. � represents the set of

scalars Γ8 9 : ∀8, 9 , : as defined in Section III. x
�

and | |x| | represent the Hermitian transpose and the

norm of vector x. 0∗, arg(0) and |0 | respectively

represents the conjugate, the complex angle and the

absolute value of the scalar 0.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a " cell system with  distinct fre-

quency bands of operation. Let each cell have one

active mobile-station (MS). Each base-station (BS)

transmitter has # antennas and each MS has a single

antenna. Let h8 9 : represent the # ×1 channel vector

from BS 8 to MS 9 in band : . A 2-cell 2-band

channel is shown in Fig. 1.

For 8, 9 ∈ {1, 2, . . . , "} and : ∈ {1, 2, . . . ,  },
the discrete time baseband signal H 9 : received at

the 9 Cℎ MS in the : Cℎ band is given by

H 9 : =
∑

8

h
�
8 9 :w8: B8: + I 9 : , (1)

where B8: is the transmitted symbol (with unit

average energy) from the 8Cℎ BS in the : Cℎ band,

I 9 : ∈ CN(0, f2
9 :
) is the additive Gaussian noise,

and w8: is the complex # ×1 transmit beamforming

vector used at the 8Cℎ BS in the : Cℎ band. Note

that we use subscripts 8, 9 and : , for BS, MS and

frequency band, respectively.

Band 2

Band 1
MS 1

Band 1

Band 2

MS 2

Band 1

Band 2

BS 2

Band 2

Band 1
BS 1

h122

h211

h121

h212

h112

h111

h221

h222

Fig. 1: 2-user 2-band multiple-input-single-output

interference channel (MISO-IC) model. The mul-

tiple antennas at the BS are not shown separately.

Let '8: be the rate from BS 8 to MS 8 in the : Cℎ

band. Then, '8 =
∑
: '8: is the rate from BS 8 to MS

8. Under the assumption that the BSs encode data

independently, and the MSs treat interference from

the other cell as noise, the achieved rate at receiver

8 in band : for a given set of beamformers {w1: },
{w2: }, . . ., {w": } can be written as [4]:

'8: (w1: ,w2: , . . . ,w": )

= log

(
1 +

|h�
88:

w8: |2
∑
9≠8 |h�98:w 9 : |2 + f2

8:

)
.

BS 8 has a power constraint %8 on the sum

transmit power over all bands and all antennas, i.e.,
∑

:

‖w8: ‖2 ≤ %8 ,∀8. (2)

The achievable rate region R for this system is given

by

R = {('1, '2, . . . , '") :

'8 =
∑
: '8: (w1: ,w2: , . . . ,w": ) for 8 = 1, 2, . . . , ";

and w1: ,w2: , . . . ,w": satisfy (2)} . (3)

A rate vector ('1, '2, . . . , '") is Pareto optimal

if there is no other rate vector ('′
1
, '′

2
, . . . , '′

"
)

such that '′
8 ≥ '8 for all 8, i.e., it is not possible

to increase any component of a Pareto optimal

rate vector without decreasing at least one of the

remaining components. The collection of all such

Pareto optimal rate vectors is referred to as the

Pareto Boundary of the rate region. A beamforming

vector that results in a rate vector on the Pareto

Boundary is referred to as a Pareto beamformer.
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Also note that any rate vector that maximizes the

weighted sum-rate is also Pareto optimal.

In this work, we determine the Pareto beam-

former that maximizes the weighted sum-rate, i.e.,

the beamforming vectors that solve the following

optimization problem:

max
{w8: }

∑

8

V8

∑

:

log

(

1 +
|h�
88:

w8: |2
∑
9≠8 |h�98:w 9 : |2 + f2

8:

)

s.t.
∑

:

| |w8: | |2 ≤ %8 ∀8,

(4)

where V8 is the weight given to 8Cℎ BS. Note that

number of variables to be determined in the above

optimization problem is "# .

A. Solution Approach

We obtain the solution to the optimization prob-

lem in (4) by iteratively optimizing smaller sub-

problems. The simplified alternating maximization

approach is summarized below. The details are

presented in later sections.

First we define new variables %8: for 8 =

1, 2, . . . , " , : = 1, 2, . . . ,  to denote the power

for the 8Cℎ BS in the : Cℎ band. Now, the problem in

(4) can be written as:

max
{w8: },{%8: }

∑

8

V8

∑

:

log

(

1 +
|h�
88:

w8: |2
∑
9≠8 |h�98:w 9 : |2 + f2

8:

)

s.t. | |w8: | |2 ≤ %8: ∀8, :,∑

:

%8: = %8 ∀8.

(5)

For a given {%8: }, the above problem splits into  

independent sub-problems, one for each band. The

problem for the : Cℎ band is:

max
{w8: }

∑

8

V8 log

(

1 +
|h�
88:

w8: |2
∑
9≠8 |h�98:w 9 : |2 + f2

8:

)

s.t. | |w8: | |2 ≤ %8: ∀8.
(6)

We solve the sub-problem for each band in Sections

III and IV for the 2-cell and 3-cell cases. The

general "-cell case can also be solved using the

approach used for the 2 and 3 cell cases. After

solving the sub-problems for each band, we op-

timize the powers {%8: } separately in each cell

8. These optimized powers are then used to solve

the sub-problems in (6) for each band again. This

process is repeated till convergence. The general

alternating maximization algorithm for the "-cell

 -band setting is presented in Section V.

III. TWO-CELL SINGLE-BAND MISO-IC

In this section, we consider the single band case

( = 1). For the two cell MISO-IC system with

 = 1, the optimization problem (4) for sum-rate

(V1 = V2 = 1) can be re-formulated as [4]

max
{w8}

2∑

8=1

log

(

1 +
|h�88 w8 |2

∑
9≠8 Γ 98 + f2

8

)

s.t. |h�8 9w8 |2 ≤ Γ8 9 ,∀ 9 ≠ 8
| |w8 | |2 ≤ %8 ,∀8,

(7)

where additional interference temperature (IT) con-

straint variables � = {Γ8 9 } have been introduced.

An IT constraint |h�8 9w8 |2 ≤ Γ8 9 limits the maximum

interference caused at 9 Cℎ MS by the 8Cℎ BS. For a

given set of IT constraints, note that each term in the

objective function depends only on the beamform-

ing vector for the corresponding cell and, therefore,

can be maximized separately. From [4], we know

that for any rate vector on the Pareto Boundary,

there exists a corresponding set of IT constraints �

tight at the boundary. Thus, given the IT constraints

�, the optimization problem to be solved in cell 8

is:

max
w8

log

(

1 +
|h�88 w8 |2

∑
9≠8 Γ 98 + f2

8

)

s.t |h�8 9w8 |2 ≤ Γ8 9 ,∀ 9 ≠ 8
| |w8 | |2 ≤ %8 .

(8)

Thus, the Pareto beamformer that maximizes the

sum-rate can be obtained in a distributed manner

by just exchanging the right IT constraints between

the cells. Furthermore, each BS needs to know only

the channel from itself to the mobiles. For example,

for the 2-cell case, BS 1 needs to know only h11

and h12. However, finding the right IT constraints

� corresponding to a given point on the Pareto

boundary is not easy. In [4], an iterative algorithm

that updates the IT constraints and the beamforming

vectors is proposed. This algorithm is numerically

observed to converge to a rate vector on the Pareto

boundary. However, we cannot tell apriori which

boundary point will be obtained. This limitation is

overcome in our solution.
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In the rest of this section, we: (1) solve the

2-cell optimization problem in (8) for a given �

analytically, (2) propose a gradient ascent algorithm

to find the Pareto optimal rate vector that maximizes

weighted sum-rate and, (3) find the beamformer

corresponding to the optimal �.

A. Proposed analytical solution for a given �

Without loss of generality, we will solve for 8 = 1,

i.e., BS 1. The solution for BS 2 can be obtained in a

similar fashion. From [3], we know that any optimal

beamformer will be a linear combination of the

channel vectors emerging out from that BS. Using

this, w1 can be represented as a linear combination

h11 and h12. First, we represent the channel vectors

using basis vectors obtained from Gram-Schmidt

ortho-normalization as follows.

h11 = 011u11,

h12 = 0
(1)
12

u11 + 0 (2)12
u12,

(9)

with one real 011 and two other complex coeffi-

cients, 0
(1)
12

and 0
(2)
12

. Then, for some 111 and 112,

we can write w1 as

w1 = 111u11 + 112u12. (10)

From (9) and (10) we get: |h�
11

w1 |2 = |011 |2 |111 |2,

|h�
12

w1 |2 = |111(0 (1)12
)∗ + 112(0 (2)12

)∗ |2, and | |w1 | |2 =

|111 |2 + |112 |2. Substituting these in (8) for 8 = 1,

we can rewrite the problem (8) as

max
111,112

log

(

1 + |111 |2 |011 |2

Γ21 + f2
1

)

s.t. |111(0 (1)12
)∗ + 112(0 (2)12

)∗ |2 ≤ Γ12,

|111 |2 + |112 |2 ≤ %1.

(11)

Now, define |111 | = W1, |112 | = X1, arg(111(0 (1)12
)∗) =

\1 and arg(112(0 (2)12
)∗) = q1. Substituting these,

and using the monotonicity of the log function, the

above problem can be written as

max
W1,X1,\1,q1

W1

s.t. W2
1 |0

(1)
12

|2 + X2
1 |0

(2)
12

|2

+ 2W1X1 |0 (1)12
| |0 (2)

12
| cos(\1 − q1) ≤ Γ12

W2
1 + X

2
1 ≤ %1, W1 ≥ 0, X1 ≥ 0,

(12)

where we have used |W1 |0 (1)12
|4 9\1 + X1 |0 (2)12

|4 9q1 |2 =

W2
1
|0 (1)

12
|2 + X2

1
|0 (2)

12
|2 + 2W1X1 |0 (1)12

| |0 (2)
12

| cos(\1 − q1).

Note that the objective function does not depend

on \1 and q1. However, the constraints depend on

\1 − q1. \1 − q1 can be chosen to be any value

in [0, 2c] by appropriately choosing the argument

of 111 and 112. Since the feasible set depends on

\1−q1, the choice that results in the largest feasible

set is optimal. Observe that, since cos(\1−q1) ≥ −1,

W2
1 |0

(1)
12

|2 + X2
1 |0

(2)
12

|2 − 2W1X1 |0 (1)12
| |0 (2)

12
|

≤ W2
1 |0

(1)
12

|2 + X2
1 |0

(2)
12

|2 + 2W1X1 |0 (1)12
| |0 (2)

12
| cos(\1 − q1),

Therefore, the choice \1−q1 = c, i.e. cos(\1−q1) =
−1, results in the largest feasible set. This constraint

can now be rewritten as:

���W1 |0 (1)12
| − X1 |0 (2)12

|
���
2

≤ Γ12

or, equivalently

−
√
Γ12 + X1 |0 (2)12

|
|0 (1)

12
|

(8)
≤ W1

(88)
≤

√
Γ12 + X1 |0 (2)12

|
|0 (1)

12
|

(13)

Thus, the feasible region for W1, X1 in problem (12)

is described by the constraints W2
1
+X2

1
≤ %1, W1 ≥ 0,

X1 ≥ 0, and (13). This region is shown as the shaded

region in Fig. 2. The power constraint W2
1
+ X2

1
≤ %1

corresponds to the circular region in Fig. 2, and the

straight lines correspond to inequalities (8) and (88)
in (13). Now, we have two cases. The circular

(i)

(ii)

W1

X1

I2

I1

Fig. 2: Feasible region and solution of (12).

power constraint region can be either inside or

outside the strip as represented by the dotted and

solid circles, respectively. The solution to problem

(12) in the first case is clearly the point I1, which

corresponds to W1 =
√
%1. In the second case, the

solution to the problem (12) is the x-coordinate of

the point I2. We can solve for the intersection of

the circle and the line segment to get the point

I2, whose x-coordinate corresponds to the optimum
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W1. Putting both cases together, we can write this

solution formally as

W1 =





√
%1 if Γ12 > %1 |0 (1)12

|2

|0 (1)
12

|
√
Γ12 + |0 (2)

12
|
√
%131 − Γ12

31

else

(14)

where 31 = |0 (1)
12

|2 + |0 (2)
12

|2. Note that in both the

cases, the solution is on the circle W2
1
+ X2

1
= %1

and satisfies the power constraint with equality.

Therefore, we get X1 =

√
%1 − W2

1
. Note that this

optimum corresponds to the maximum rate that

can be achieved with a particular �, and may not

correspond to a point on the Pareto boundary. We

will use this solution in a gradient ascent algo-

rithm to maximize the weighted sum-rate and obtain

the corresponding point on the Pareto boundary in

the next subsection. The maximum achievable rate

'1(�) for a given � can be written as:

'1(�) = log
(
1 +

W2
1
02

11

Γ21 + f2
1

)
(15)

Similarly, we can solve (8) for BS 2 (8 = 2) to get

'2(�).

B. Weighted Sum Rate (WSR) Maximization

In the previous subsection, we determined the

maximum achievable rates '1(�) and '2(�) for

a given �. Here, we propose to maximize the

weighted sum-rate 'F = V'1(�) + (2 − V)'2(�)
with respect to � for a fixed weight V. This results

in a point which is the foot of a tangent to the rate

region, and is on the line VG + (2 − V)H = �, where

� = max
�

{V'1(�) + (2 − V)'2(�)}. Choosing V = 1

corresponds to maximizing sum-rate.

To maximize the WSR, we use a simple coordi-

nate ascent or gradient ascent algorithm [28], where

in each step we move closer to the optimum by

changing � in the positive gradient direction. For

example, Γ12 is updated as:

Γ12,=+1 = Γ12,= + Δ

[
sign

(
m'F

mΓ12,=

)]
, (16)

where Δ > 0 is a step-size parameter. Since we have

an analytical solution for the rates for a given �, the

gradient can be calculated by the differentiation of

(15). The sign of the derivative of '1 when Γ12 ≤
%1 |0 (1)12

|2 is given by

B86=
( m'1

mΓ12

)
= B86=

( |0 (1)
12

|
√
Γ12

−
|0 (2)

12
|

√
%131 − Γ12

)
(17)

Similarly, we can update Γ21 as well. Using gradient

ascent, we determine point on the Pareto boundary

corresponding to the optimal weighted sum-rate.

Although the iterative algorithm in [4] converges

to a point on the Pareto boundary, it is not known

apriori which point on the boundary is obtained.

In our method we choose the boundary point by

choosing the weights in the weighted sum-rate.

C. Finding the beamformer that maximizes WSR

Once we obtain the � and W1 corresponding to the

Pareto boundary rate vector that maximizes WSR,

we can find the beamformer that achieves this rate

vector as follows.

From Section III-A, we know the optimal solution

for W1, X1, and \1 − q1. Substituting this solution in

(10), we get the optimal beamformer. From (10) and

the definition of W1 and X1, we have

w1 = W1u114
9 arg(111) + X1u124

9 arg(112)

=

(
W1u11 + X1u124

9
(

arg(112)−arg(111)
) )
4 9 arg(111) .

Observe that the achieved rate (see objective func-

tion in (8) or (26)) is invariant to a constant phase

rotation of all the beamformer components, i.e.,

w1 and w14
9\ result in the same rate for any \.

Therefore, we can set the phase term 4 9 arg(111) to

be 1. Finally, since \1 − q1 = c, we have

\1 − q1 = arg(1∗110
(1)
12
) − arg(1∗120

(2)
12
) = c

or, equivalently

arg(112) − arg(111) = arg(0 (2)
12
) − arg(0 (1)

12
) + c.

Therefore, we have

w1 = W1.u11 + X1u124
9
(

arg(0 (2)
12

)−arg(0 (1)
12

)+c
)
. (18)

Similarly, we can obtain the beamformer for BS

2 w2 also. It is worth mentioning that: (1) the

base stations only need to share the IT constraints

and can then calculate their WSR beamformer in a

distributed manner, and (2) each BS requires the

channel state information only from itself to the

MSs.
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IV. THREE-CELL SINGLE-BAND MISO-IC

In this section, we solve the 3-cell single-band

case for a given set of IT constraints. In Section

III-A, we derived an analytical solution for the 2-cell

single-band case where we have one IT constraint in

each cell. In the 3-cell case, we have 2 IT constraints

in each cell. The optimization problem to be solved

in each cell 8 is given in (8). Here, we focus on

the solution for cell 1. The solutions for cells 2

and 3 can be obtained in a similar manner. The

optimization problem to be solved in cell 1 is:

max
w1

log

(

1 +
|h�

11
w1 |2

∑3
9=2 Γ 91 + f2

1

)

(19)

s.t |h�
1 9

w1 |2 ≤ Γ1 9 , 9 = 2, 3

| |w1 | |2 ≤ %1.

Using the property that, every beamforming vector

can be represented in terms of the channel vectors

[3], we find the basis vectors by the Gram-Schmidt

ortho-normalization method. Now, we can represent

the beamformer and channel vectors as

h11 = 011u11,

h12 = 0
(1)
12

u11 + 0 (2)12
u12, (20)

h13 = 0
(1)
13

u11 + 0 (2)13
u12 + 0 (3)13

u13,

w1 = 111u11 + 112u12 + 113u13,

where 011 is some real coefficient and remaining

coefficients are complex. Substituting these in (19)

and using the monotonicity of the log function, we

get

max
111,112,113

|111 |202
11

s.t. |111(0 (1)12
)∗ + 112(0 (2)12

)∗ |2 ≤ Γ12,

|111(0 (1)13
)∗ + 112(0 (2)13

)∗ + 113(0 (3)13
)∗ |2 ≤ Γ13,

|111 |2 + |112 |2 + |113 |2 ≤ %1. (21)

This problem has an additional constraint compared

to the problem in (11). Define |111 | = W1, |112 | = X1,

|112 | = Z1, and \: = arg(11: ), for : ∈ 1, 2, 3. Let

arg(0 (:)
12

) = �: , for : = 1, 2, and arg(0 (:)
13

) = �: , for

: = 1, 2, 3. We can now rewrite the problem (21) as

max
W1, X1, Z1, \1, \2, \3

W1

s.t. W2
1 + X

2
1 + Z

2
1 ≤ %1,

W2
1 |0

(1)
12

|2 + X2
1 |0

(2)
12

|2

+ 2W1X1 |0 (1)12
| |0 (2)

12
| cos

(
\1 − \2 − �1 + �2

)
≤ Γ12,

W2
1 |0

(1)
13

|2 + X2
1 |0

(2)
13

|2 + Z2
1 |0

(3)
13

|2

+ 2W1X1 |0 (1)13
| |0 (2)

13
| cos

(
\1 − \2 − �1 + �2

)

+ 2X1Z1 |0 (2)13
| |0 (3)

13
| cos

(
\2 − \3 − �2 + �3

)

+ 2W1Z1 |0 (1)13
| |0 (3)

13
| cos

(
\1 − \3 − �1 + �3

)
≤ Γ13.

(22)

Note again that the objective function does not

depend on \1, \2, and \3. Therefore, \1, \2, and

\3, should be chosen to result in the largest feasible

set as in Section III-A. For a given choice of \1−\2,

the optimal choice of \2 − \3 is derived in closed-

form in Appendix B. Note also that \1 − \3 = (\1 −
\2) + (\2 − \3). Using the solution in Appendix B,

the problem (22) reduces to a simple 1-dimensional

search for W1. For each candidate W1 in this search,

we only need to check if the feasible region is non-

empty. Once we find the largest W1 for which the

feasible region is non-empty, we also have X1, Z1,

\1 − \2 and \2 − \3. As in Section III-C, \1 can

be chosen to be 0. The optimal beamformer is then

calculated as:

w1 = W1u11 + X14
9\2u12 + Z14

9\3u13. (23)

Using the optimum W1, we can get the corresponding

rate as:

'1(�) = log
(
1 +

W2
1
02

11

Γ21 + Γ31 + f2
1

)
(24)

Similarly, we can solve for 8 = 2 and 8 = 3 to

get '2(�) and '3(�). The � corresponding to the

rate vector that maximizes WSR can be determined

using gradient ascent as in Section III-B.

V. MULTI-CELL MULTI-BAND MISO-IC

In this section, we consider a "-cell MISO-IC

with  bands. Our aim is to maximize the weighted

sum-rate V1'1 + V2'2 + · · · + V"'" (see (4)), where

'8 =
∑ 
:=1 '8: , for 8 = 1, 2, . . . , " . For each BS,

we have a sum power constraint over all bands, %8
for BS 8. Let %8: be the power used by BS 8 in
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band : . Note that due to the orthogonality of non

overlapping frequency bands, if all %8: ’s are known,

the problem can be split into  independent single

band problems. However, we have a sum power

constraint
∑
: %8: ≤ %8. We need to find the optimal

power allocation, i.e. the %8: ’s with
∑
: %8: ≤ %8,

such that the weighted sum-rate is maximized. For

each BS 8, we define a #×1 power allocation vector

U8 = [U81 U82 · · · U8 ]) such that
∑
: U8: = 1 and

we can write %8: = U8:%8.

In the rest of this section, we (1) first identify

and prove a property of the Pareto boundary for the

multi-band problem, and (2) propose an Alternating

Maximization (AM) algorithm to obtain the optimal

beamformers and the optimal power allocation be-

tween the bands that maximize weighted sum-rate.

A. Relationship between the Pareto boundary for

the multi-band case and the single-band case

Proposition 1: Consider a point ('1, '2, . . . , '")
on the Pareto boundary for the multi-band case and

the corresponding power allocation {%8: }. Then, for

each band : , ('1: , '2: , . . . , '": ), lies on the Pareto

boundary for that band, for an allocated power of

%8: in band : of BS 8.

Proof. Note that we have '8 =
∑ 
:=1 '8: , for 8 =

1, 2, . . . , " . Suppose ('1: , '2: , . . . , '": ) is not on

the Pareto boundary for band : . Then, at least

one of '8: can be increased without decreasing

the others. This implies that we can increase one

of the '8 without decreasing the others. This is a

contradiction since ('1, '2, . . . , '") is assumed to

be on the Pareto boundary for the overall rate over

the  bands. �

For a fixed power allocation U8, 8 = 1, 2, . . . , " ,

we observe that

max
{w8: }

∑

8

V8'8 = max
{w8: }

∑

8

V8

∑

:

'8:

= max
{w8: }

∑

:

∑

8

V8'8:

=

∑

:

max
w1: ,w2: ,...,w":

{
∑

8

V8'8:

}

(25)

This is because, for a fixed U8, 8 = 1, 2, . . . , " , the

rates '8: in band : depend only on the beamforming

vectors w8: for the same band : . Therefore, for a

fixed power allocation across bands, overall WSR

maximization reduces to WSR maximization for

each band with the same weights {V8}.

B. Proposed Alternating Maximization (AM) algo-

rithm for WSR maximization

Ideally, we need to find the optimal {U8} and

{w8: } jointly. However, this is difficult. Therefore,

based on the observations in the previous subsec-

tion, we now propose an alternating maximization

algorithm to obtain the optimal power allocation

across bands and the optimal beamforming vectors

for each BS for each band.

First, we fix {U8} and maximize the WSR in

each band : . To solve the sub-problem for each

band : , we use the approach in Sections III and IV

where IT constraints � are introduced. Given the IT

constraints �, the optimization problem to be solved

in cell 8 for band : is:

max
w8:

log

(

1 +
|h�
88:

w8: |2
∑
9≠8 Γ 98: + f2

8:

)

s.t |h�8 9 :w8: |2 ≤ Γ8 9 : ,∀ 9 ≠ 8
| |w8: | |2 ≤ %8: = U8:%8 .

(26)

This problem is solved independently in each cell

8, 8 = 1, 2, . . . , " , An analytical solution for " = 2

was obtained in Section III. In Section IV, for

" = 3, this problem is reduced to a single pa-

rameter optimization, where the at each search step

only feasibility needs to be checked. For any " ,

this problem is convex and can be solved using

standard convex optimization tools. The optimal

IT constraints corresponding to the WSR optimal

rate vector can be found using the gradient ascent

algorithm in Section III-B for any " .

Next, for the optimal � obtained by WSR max-

imization in each band, we optimize the {U8}. The

rate '8 in cell 8 after optimizing � is:

'8 =
∑ 
:=1 log

(

1 +
|h�
88:

w8: |2
∑
9≠8 Γ 98: + f2

8:

)

=
∑ 
:=1 log

(

1 +
|h�
88:

w̃8: |2U8:%8
∑
9≠8 Γ 98: + f2

8:

)

, (27)

where w̃8: = w8:/
√
U8:%8 is the direction of the

beamformer w8: , and the WSR is:

∑

8

V8'8 =
∑

8

V8

 ∑

:=1

log

(

1 +
|h�
88:

w̃8: |2U8:%8
∑
9≠8 Γ 98: + f2

8:

)

.

(28)
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Now, fixing the directions of the beamformers and

fixing the �, we can optimize {U8}. This reduces

to optimizing the rate '8 in each cell 8 over the

power allocation over bands in that cell, resulting

in a water-filling solution for power allocation, i.e.,

we have:

U8:%8 =

(

_ −
∑
9≠8 Γ 98: + f2

8:

|h�
88:

w̃8: |2

)+
, (29)

with _ being a constant such that
∑
: U8:%8 = %8.

Now, this power allocation {U8} can be used in the

first step to solve the WSR maximization in each

band again.

We alternate between these 2 optimization steps

until we have convergence. Thus, we have an Al-

ternating Maximization (AM) algorithm given in

Algorithm.1.

Algorithm 1 AM Algorithm

1: Initialize: U8: = 1/ for all 8, :

2: repeat

3: for Band : = 1, 2, . . . ,  do

4: %8: = U8:%8 ∀8
5: repeat

6: Initialize: {Γ8 9 : } for band :

7: Solve (26)

8: Update {Γ8 9 : } using gradient ascent

9: until Convergence

10: end for

11: for BS 8 = 1, 2, . . . , " do

12: Update U8: ∀: using (29)

13: end for

14: until Convergence

In Algorithm 1:

• We initialize with equal power-sharing between

the bands in all cells.

• The analytical solution for (26) in Line 7 is

provided in Section III for " = 2. For " = 3,

problem (26) is reduced to a single parameter

search in Section IV. For general " , standard

convex optimization tools can be used. The

solutions provided for " = 2, 3 are much

simpler than using standard tools.

• In this gradient ascent step, we use the equation

(16) in Section III-B for band : . For " = 2, the

derivatives are easily obtained using equation

(17). For general " , numerical evalutation is

used.

• In Lines 9 and 14, convergence is decided by

checking if the change in rate during the previ-

ous iteration is less than a specified threshold

n .

VI. DISCUSSION

A. Convergence

In the AM algorithm, we have two steps: WSR

optimization for each band (Step 1) and power

optimization for each cell (Step 2). Step 1 is a

gradient ascent algorithm wherein each iteration

rate optimization in each cell with IT constraints

is solved. The rate optimization with IT constraints

is convex and the solution is obtained analytically

(for " = 2, 3). The gradient ascent iterations can

possibly converge to a local maximum since the

overall WSR optimization is non-convex. However,

in our simulations, we did not observe this. Fig.

3b shows the convergence of the gradient ascent

averaged over 1000 channel realizations. Various

choice of step sizes for the gradient ascent step were

studied. The convergence performance for three

choices of step size Δ , namely Δ =
Γ<0G

2=+1 , Δ =
Γ<0G

3=
,

and Δ =
Γ<0G

6=
, are shown in Fig. 3b. Here, = is the

iteration number and Γ<0G is the maximum possible

value for the IT constraint. Overall, we observe that

good convergence behavior is observed for all 3 step

sizes in less than 10 iterations.

Step 2 is a convex optimization step with a

closed-form solution. The overall convergence of

the AM algorithm is shown in Fig. 3a. Fig. 3a

shows the convergence of AM algorithm for the 2-

band and 3-band cases. There is a slight reduction

in the convergence rate with the increase in one

extra dimension (band). However, in both cases,

the convergence is quite fast and requires very few

iterations of AM.

In addition to the equal power allocation initial-

ization, we tried several other initial power alloca-

tions for the AM algorithm. However, no change

was observed in the results.

B. Complexity

The number of variables to be optimized in the

overall WSR optimization problem (4) is "# . In

the proposed algorithm this is solved by breaking

this down into simple sub-problems. In Step 1, " 

sub-problems, each to find one # × 1 beamforming
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Fig. 3: (a):Convergence of AM algorithm with

iterations in terms of the ratio of the rate at a

particular iteration to the final rate, averaged over

1000 channel realizations.

(b):Convergence of Gradient Ascent algorithm for

different approaches for the step size. Ratio of

objective (sum-rate) at a particular iteration to the

optimum value of objective, averaged over 1000

realizations is plotted against the iterations

vector, are solved. For " = 2, an analytical solution

is provided, and for " = 3, it is reduced to a

single parameter search. In Step 2, " sub-problems

with a simple water-filling analytical solution are

solved. Thus the complexity of the overall joint

optimization problem is significantly reduced by

iteratively solving simple problems with analytical

solutions.

C. Information exchange overhead for coordination

Information is exchanged between cells in each

iteration of the gradient ascent step for each band.

The number of parameters sent by each cell per

band is 2(" − 1) in each gradient ascent step, i.e.,

2 parameters (IT constraint, gradient with respect

to IT constraint) to each of the other (" − 1)
cells. Therefore, the overall information exchange

for the whole AM algorithm for a  band system

is 2(" − 1) #�"#�� real scalars, where #�"
and #�� are the number of AM iterations and the

number of gradient ascent iterations, respectively for

each band. Reduction in exchange is possible by: (1)

optimizing the number of iterations for each band,

and (2) taking advantage of the fact that only the

sign of the gradient is used in the gradient ascent

step.

The proposed algorithm can also be implemented

at a centralized server by sending all the channel

information to the server and returning the solution

for the beamformers to the base-stations. This re-

quires " complex channel vectors of dimension

# to be sent to the server from each cell and  

beamforming vectors to be sent back to each cell,

resulting in a total exchange of 2(" + 1) # real

scalars by each cell. Note that this information

exchange increases linearly with the number of

antennas. The centralized implementation will be

useful when the coherence time of the channels

is large. The distributed implementation has two

advantages: (1) The intermediate solutions can also

be used as the solution is converging. When the

channels are changing slowly, this distributed imple-

mentation can operate in tracking mode and allows

for continuous updates of local channel information,

and (2) the delay between the time at which channel

is estimated and the time at which the corresponding

beamformer is used will be lesser than in the

centralized implementation.

In case of a system with multiple users with slot

allocation in a round-robin fashion, the information

needs to be exchanged in every slot. The amount of

information exchanged over time in such a system

can be drastically reduced by providing memory to

the base stations so that they do not have to run the

algorithm again if the same set of users are paired

up again within a coherence time.

D. Reducing complexity for a system with a large

number of sub-carriers

The computational complexity of the proposed

AM algorithm increases linearly in the number of

bands. In an OFDM system with a large number

of sub-carriers, considering each sub-carrier as a
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band might be computationally expensive and un-

necessary. We can reduce the number of bands

by grouping multiple sub-carriers within the co-

herence bandwidth into a single band. The same

beamforming solution can be used for all sub-

carriers in the same band. Suppose we have a multi-

path channel with ! taps using #2 sub-carriers,

and we form  groups each containing #: sub-

carriers with
∑
: #: = #2. The grouping is done

in such a way that the maximum number of sub-

carriers are grouped together while keeping the

channel almost frequency-flat within each band. The

channel responses of each band are taken as the

average of the channel responses of the containing

sub-carriers. Intuitively, when the number of paths

is small, a higher number of sub-carriers can be

grouped together without significant rate reduction.

After performing beamforming on the  bands, we

can use the same optimal beamformers with power

adjusted to match the total power of the band. Let,

w8: be the optimal beamformer for band : in cell

8, then the optimal beamformer for all the #: sub-

carriers within the band is given by
w8:√
#:

.

E. Multiple users in each cell

Thus far, we have considered that each cell con-

tains only one active user. This active user could

be selected in a system with multiple users per cell

by using some scheduling method. For scheduling,

a simple round-robin scheduler or sophisticated

schedulers which take the user demand into account

can be used depending on the necessity. For ex-

ample, each user can be allowed to transmit in a

particular time slot scheduled to it and can be given

full access to all available frequency bands in the

system during this slot. The AM algorithm has to

be repeated in each slot to find out the beamforming

vectors corresponding to the users selected in each

cell. In situations where the same users have paired

again within a coherence time, the recalculation

of beamforming vectors can be avoided by storing

the previous result in memory. This is particularly

useful in situations where the slot duration is small

compared to the coherence time. We could also use

scheduling in the frequency domain (where one or

more bands are allocated to a particular user) or

scheduling in a combination of frequency and time

domains.

(a) Convex Rate Region

(b) Non-convex Rate Region

Fig. 4: Rate region, Pareto Boundary(PB) and opti-

mal sum-rate point using AM algorithm. Rate points

corresponding to Zero-forcing and Maximal Ratio

Transmission beamformers and a Pareto Boundary

with equal power allocation across the bands are

shown for comparison. %8 = 5 and f2
8:
= 1 ∀8, : . (a)

Convex rate region (b) Non-Convex rate region

VII. SIMULATION RESULTS

In this section, we first present simulation results

for the 2-cell  -band downlink to show the effec-

tiveness of our proposed distributed pareto optimal

beamforming using alternating maximization (AM).

The power allocation across bands obtained from

the AM algorithm is shown to perform signifi-

cantly better than equal power allocation across

bands. We also compare our results with two other

well-known beamforming approaches - zero-forcing

(ZF) beamforming and maximal-ratio-transmission

(MRT) in each cell - in terms of the achieved rate

vectors and the sum-rate. For the MRT scheme

we consider equal power allocation across bands,

and for the zero-forcing scheme we consider both
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equal power allocation (ZF-EPA) and optimal power

allocation across bands (ZF-OPA). Then, we present

simulation results to show how the grouping of

sub-carriers in an OFDM system can be used to

reduce the number of frequency bands, and hence

the complexity. We show that multiple sub-carriers

can be grouped without a significant rate reduction.

Later, we show results for the 3-cell multiband case.

Finally, we simulate a scenario where multiple users

are present in each cell but one user is scheduled

per cell. In all these cases we compare the AM

algorithm with the ZF and the MRT beamformers.

In the simulations, we set the noise variance

f2
8:
= 1 ∀8, : . The transmit power constraint for each

cell is set to be equal, i.e., %8 = %/" for all 8, where

% is the total power. When % is fixed for a plot, we

set % = 10 units. Except in Section VII-C, each

channel coefficient in h8 9 : (the channel vector from

BS 8 to MS 9 in band :) is independently generated

to be circularly symmetric complex Gaussian with

zero mean and variance f2
8 9 :

, i.e., �# (0, f2
8 9 :

). For

8 = 9 , i.e., direct channels, f2
8 9 :

is set to 1. For

8 ≠ 9 , i.e., cross channels, f2
8 9 :

) is set to be the

reciprocal of the cross-channel pathloss. Except in

Fig. 9a, cross-channel pathloss is set to 1 (or 0dB).

For the !-tap channel in Section VII-C, we generate

independent zero-mean equal power circularly sym-

metric complex Gaussian random variables for each

tap (for each transmit-receive antenna pair). Then,

we get the #2 subcarrier frequency domain channel

by taking the #2-point discrete Fourier transform

(DFT) of the ! tap coefficients.

A. 2-cell 2-band downlink

Each BS has two antennas. The channel vectors

used are given in Table.I and Table.II in Appendix

A. In Figs. 4a and 4b, we show the achievable

rate region for all possible beam-forming vectors

satisfying the power constraints, the rate vector

achieved by our proposed AM algorithm for dif-

ferent choices of weight V, and the rate vectors

achieved by ZF and MRT beamforming. The rate

vectors achieved by the proposed AM algorithm are

much better than those achieved by ZF beamform-

ing and MRT beamforming. The rates achieved with

equal power allocation across the bands and only

WSR maximization in each band are also shown

for comparison (PB with equal power allocation).

There is a significant improvement achieved using
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Fig. 5: Sum rate vs. Total transmit power for differ-

ent beamforming schemes: 2-Band case

the AM algorithm over equal power allocation. Bar

charts containing the optimal power allocation and

the improvement in the sum-rates with respect to

ZF and MRT are also shown below the rate region

plot.

For a better understanding of the Pareto boundary,

the achievable rate region is plotted by a brute-force

sweep of the � and evaluation of the rate vector for

each case (green points in the figure). Note that, this

rate region obtained by brute-force is only used for

giving an idea about the rate region and is no way

related to the efficiency of our proposed algorithm.

The range for Γ8 9 : is [0, ‖ℎ8 9 : ‖2.%8], which is 0

to 5 in our case. We vary each parameter with a

step size of 0.1. Note that rate region in Fig. 4a

is convex whereas the rate region in Fig. 4b is

non-convex. The rate vector achieved by the AM

algorithm for 20 different V values equally spaced

in [0, 2] are shown (PB with AM algorithm). It

can be seen that these are points on the Pareto

boundary corresponding to the maximum weighted

sum-rate for that weight V. The point corresponding

to the maximum sum-rate is highlighted (AM beam-

former). In Fig. 4b, it can be seen that the weighted

sum-rate optimal points are only on the intersection

of the Pareto boundary and the convex hull of the

rate region. Note that the boundary obtained by

connecting the WSR optimal points gives the convex

hull of the actual rate region. In Fig. 5, the average

sum-rate (over 1000 channel realizations) achieved

by the proposed beamformer (found using the AM

algorithm) is compared with the average sum-rate

achieved by MRT beamforming with equal power

allocation across bands, ZF-EPA and ZF-OPA. It

can be seen that the proposed AM beamformer is
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Fig. 6: Rate region, Pareto Boundary (PB) and opti-

mal sum rate point using AM algorithm. Rate points

corresponding to ZF and MRT beamformers and the

Pareto Boundary with equal power allocation across

the bands are shown for comparison. %8 = 5 and

f2
8:
= 1 ∀8, : . (a) 3-Band (b) 10-Band

significantly better than the ZF-OPA, ZF-EPA and

MRT beamformers. As expected, the MRT beam-

former suffers from interference at higher power

(SNR) and the ZF-EPA and ZF-OPA beamformers

suffer from noise enhancement.

B. 2-cell multi-band downlink

Each BS has 2 antennas and  bands. The

channel vectors are generated as described earlier

and one random realization of channel vectors used

for the plots here is given in Appendix A.

Fig. 6a and Fig. 6b show the rate region for

 = 3 and  = 10, respectively. As in the two-

band case, the ZF and MRT beamformers, and the

Pareto boundaries using WSR maximization with
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Fig. 7: Sum rate vs. Total transmit power for differ-

ent beamforming schemes: 3-Band case.

equal power allocation are used for comparison.

The proposed method using the AM algorithm is

significantly better than the other schemes. The bar

graphs at the bottom show the improvement in sum-

rates obtained by AM algorithm as well as the

optimum power allocation in each BS.

-2 0 2 4 6 8 10 12 14 16

Total power available (dB)

0

10

20

30

40

50

S
u
m

 r
a
te

 (
b
/s

/H
z
)

AM

MRT

ZF-EPA

ZF-OPA

Fig. 8: Sum rate vs. Total transmit power for differ-

ent beamforming schemes: 10-band case.

In Figs. 7 and 8, we show the behavior of

the sum-rate obtained by the AM beamformer in

comparison with the other beamformers (MRT, ZF-

EPA and ZF-OPA) for a 3-band MISO IC and a

10-band MISO IC. The sum-rate plotted against a

varying available power is the average value of 1000

random channel realizations. It is observed that

gains obtained by the proposed algorithm over ZF

and MRT beamformers are similar to the two-band

case in both low SNR and high SNR regimes. Note

that in the low SNR region, though the curves are

close to each other, we achieve a good percentage

improvement in the rates. We can also observe

from these two figures and Fig. 5 for  = 2 that
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the MRT beamformer performs better than the ZF

beamformer for a larger range of SNR with the

increase in the number of bands.

It is also to be noted that for a particular available

power, the percentage improvement provided by

AM algorithm is higher with  > 2 than that of the

2 band case and can be attributed to the fact that

as the dimension increases, the equal power point

moves farther from the edge of the feasible region

(any corner of the hyper-cube which is adjacent to

the origin) and the optimum point can possibly lie

farther from the equal power point.
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Fig. 9: Sum rate obtained for different beamforming

schemes: 3-band case. %8 = 5 for each 8.

So far, we have taken the cross-channel path loss

to be 0 dB. Fig. 9a shows the sum rate as a function

of the cross-channel path loss for a 2-cell 3-band

setting with 2 transmit antennas. It can be observed

that the proposed AM scheme always performs

better than the MRT, ZF-EPA and ZF-OPA schemes.

As the cross-channel pathloss increases, inter-cell

interference reduces and MRT starts to perform

better as expected. ZF performance does not depend

on cross-channel path loss as the interference is

forced to zero irrespective of its strength in this

strategy.

In Fig. 9b, the variation of sum rate with re-

spect to the number of transmit antennas is shown.

The performance of all the schemes improve with

number of antennas, but the AM scheme performs

significantly better than the other schemes.

C. Grouping sub-carriers in an OFDM system
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Fig. 10: Sum rate vs. band size for a 1024 sub-

carrier channel. Realizations for " = 2,4,6 and

20 taps are considered. The number of sub-carriers

equivalent to the coherence bandwidth (�2) is also

shown for reference. ZF and MRT beamformers are

also shown for " = 2 and 20.

Here we simulate grouping of multiple sub-

carriers into bands as discussed in Section VI-D. !-

tap multi-path channels with equal power taps are

considered. The #2 sub-carriers are grouped into

 bands (or sub-carrier groups) with #2/ sub-

carriers each. Simulation results in Fig. 10 show

the variation of sum rate with #2/ for channels

with different number of multi-path components

(!) for #2 = 1024 sub-carriers. As in [29, Sec.

3.3.2], we define �2, the coherence bandwidth, as

the bandwidth within which the frequency corre-

lation function is above 0.5 using the expression

�2 = 0.2/)3 , where )3 is the delay spread. The

coherent bandwidth for each channel is also shown

using a vertical line in terms of the equivalent

number of sub-carriers, #�2
. We can see that the

rate loss due to grouping is insignificant for group

sizes (#2/ ) < #�2
. Also, in this regime, the AM

algorithm performs significantly better than ZF and

MRT.
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Fig. 11: Sum rate vs. Total transmit power: Average

sum rate per slot for 2-cell 4-band MISO-IC with

10 users in each cell scheduled in a Round Robin

fashion.

D. Multiple users in each cell

In Fig. 11, we show simulation results for a

scenario where multiple users are present in each

cell. For illustration, we use simple round-robin

scheduling within a cell. More sophisticated sched-

ulers can also be used along with our beamforming

scheme. Each user is given full access to all fre-

quency bands in the system during the allotted slot.

The AM algorithm is repeated within each slot to

find out the beamforming vectors. Fig. 11 shows the

sum-rate obtained per time slot averaged over 100

slots and 1000 channel realizations. The sum rate

is plotted against total power in the system. A 4-

band, 2-cell MISO-IC is considered with 10 users

in each cell. As expected, the use of the proposed

AM beamformer provides a significant gain in sum

rate.
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Fig. 12: Sum rate vs. Total transmit power for

different beamforming schemes: 3-cell 3-band case

E. Three-Cell MISO-IC

In Fig. 12, we show the simulation results for a

three-cell three-band MISO IC with 3 antennas at

each BS. We use the solution in Section IV to find

the optimum rate for a given �. The � that produces

the rate on the boundary and the optimum power

allocations are found out using the AM algorithm.

Here, we plot the sum-rate as a function of the

total power with different beamformers averaged

over 30 channel realizations. Similar to what we

saw with a 2-cell MISO-IC, we see that the AM

beamformer has a significant advantage over the ZF

and MRT beamformers. The ZF beamformer suffers

from noise enhancement for low power and then

outperforms the MRT for a higher power.

VIII. CONCLUDING REMARKS

In this paper, we considered a multi-band multi-

cell MISO downlink, where the receivers treat in-

terference from other cells as noise. We proposed

the AM algorithm to determine the optimal beam-

formers for each band in each cell and the op-

timal power allocation across bands that achieve

the weighted sum-rate optimal points on the Pareto

boundary of the achievable rate region. The AM

algorithm alternates between: (1) beamforming for

WSR maximization in each band for a given power

allocation across bands, and (2) power allocation

across bands for a given set of beamformers. The

algorithm can be implemented in a distributed man-

ner with a limited exchange of interference con-

straint information among the BSs. For an "-cell

system, the required exchange is proportional to

" − 1. Furthermore, each BS needs to know only

the channel state information for the links from

itself to all the mobile stations. To develop the

AM algorithm, we make use of the observation that

overall Pareto optimality implies Pareto optimality

in each band. The algorithm for the 2-cell and 3-cell

settings is simplified significantly using analytical

solutions to sub-problems. Significant performance

gains are shown using simulations over equal power

allocation across bands, ZF beamforming, and MRT

beamforming. Multiple BSs can simultaneously pro-

ceed with the beamforming without waiting for the

other BSs and can share the required information

as and when they are ready. As every iteration

of the AM algorithm satisfies the constraints and

improves the achievable rate, the BS can also start
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communicating with the MS without waiting for the

completion of the algorithm. In a fading scenario,

the optimal beamformers should be recalculated

once every coherence interval. The complexity of

the proposed AM algorithm can significantly be re-

duced for a multicarrier system with a large number

of sub-carriers using sub-carrier grouping.

Even when the number of cells is more than three,

the proposed method with analytical simplifications

can still be used if the coordination cluster size is

two or three. For coordination clusters with more

than three cells, the AM algorithm can be used by

solving the individual cell rate optimization under

interference constraints numerically using standard

convex optimization tools. Some interesting exten-

sions of the work are to the MIMO setting, the

setting with more than one active user in each cell,

the setting with imperfect channel state information,

and the setting with successive interference cancel-

lation receivers at the mobile stations.

APPENDIX A

CHANNEL VECTORS USED FOR SIMULATION

See Tables I, II, III, and IV.

APPENDIX B

SIMPLIFICATION OF PROBLEM (22)

Consider the second and third constraints in (22).

For a given choice of \1 − \2 = Δ , we will derive

the optimal choice q for \2 − \3 that results in the

largest feasible region for (22). One possible choice

for Δ is

Δ = c + �1 − �2, (30)

which gives the most relaxed feasibility condition

corresponding to the second constraint in (22) alone.

However, in combination with the third constraint

in (22), a different choice for Δ could give the best

overall feasible region. Now, let

−�2 + �3 = �, (31)

Δ − �1 + �3 = �.

Using the above definitions, the angles correspond-

ing to the three cosine terms in the third constraint

can be written, in order, as

(8) \1 − \2 − �1 + �2 = Δ − �1 + �2,

(88) \2 − \3 − �2 + �3 = q + �, (32)

(888) \1 − \3 − �1 + �3 = q + �.

Note that the first term is a constant. To get the best

feasible region, we need to minimize

0 cos(q + �) + 1 cos(q + �)
= 0 cos(q) cos(�) − 0 sin(q) sin(�)
+1 cos(q) cos(�) − 1 sin(q) sin(�)
= cos(q) (0 cos(�) + 1 cos(�))
− sin(q) (0 sin(�) + 1 sin(�))

where 0 = 2X1Z1 |0 (2)13
| |0 (3)

13
| and 1 =

2W1Z1 |0 (1)13
| |0 (3)

13
| are the coefficients of the last two

cosine terms. Define 0 cos(�) + 1 cos(�) = G,and

0 sin(�) + 1 sin(�) = H. After dividing by the

constant
√
G2 + H2, now we need to minimize

G√
G2+H2

cos(q) − H√
G2+H2

sin(q)

= cos
(
q + cos−1

(
G√
G2+H2

) )

We get the minimum value of -1 at q = c −
cos−1

(
G√
G2+H2

)
. Thus, we have found the optimal

q for a given Δ .
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