
Journal of Computer and System Sciences 81 (2015) 1088–1109
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Distributed agreement in dynamic peer-to-peer networks ✩

John Augustine a,∗,1, Gopal Pandurangan b,c,2, Peter Robinson b,3, Eli Upfal c

a Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai 600036, TN, India
b Division of Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
c Department of Computer Science, Brown University, Box 1910, Providence, RI 02912, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 March 2013
Received in revised form 4 April 2014
Accepted 26 June 2014
Available online 12 January 2015

Keywords:
Dynamic networks
Distributed computation
Fault-tolerance
P2P networks
Agreement
Churn
Randomization

Motivated by the need for robust and fast distributed computation in highly dynamic
Peer-to-Peer (P2P) networks, we present first-known, fully-distributed algorithms for
the fundamental distributed agreement problem in dynamic networks that experience
heavy node churn (i.e., nodes join and leave the network continuously over time). Our
algorithms guarantee stable almost-everywhere agreement with high probability even under
high adversarial churn and run in time that is polylogarithmic in n (which is the stable
network size). Our first algorithm can tolerate a churn of up to εn per time step, sends
only polylogarithmic number of bits per node per time step, and works under an adversary
that is oblivious to the algorithm’s random choices. Our second algorithm, designed for the
more challenging adaptive adversary, can tolerate a churn of up to ε

√
n. Being easy to

implement, our algorithms could serve as building blocks for other non-trivial distributed
computation in dynamic networks.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Peer-to-peer (P2P) computing is emerging as one of the key networking technologies in recent years with many appli-
cation systems, e.g., Skype, BitTorrent, Cloudmark etc. However, many of these systems are not truly P2P, as they are not
fully decentralized — they typically use hybrid P2P along with centralized intervention. For example, Cloudmark [25] is
a large spam detection system used by millions of people that operates by maintaining a hybrid P2P network; it uses a
central authority to regulate and charge users for participation in the network. A key reason for the lack of fully-distributed
P2P systems is the difficulty in designing highly robust algorithms for large-scale dynamic P2P networks. Indeed, P2P net-
works are highly dynamic networks characterized by high degree of node churn — i.e., nodes continuously join and leave
the network. Connections (edges) may be added or deleted at any time and thus the topology changes very dynamically.

✩ A preliminary version of this paper appeared in the Proceedings of the ACM/SIAM Symposium on Discrete Algorithms (SODA), 2012, 551–569.

* Corresponding author.
E-mail addresses: augustine@cse.iitm.ac.in (J. Augustine), gopalpandurangan@gmail.com (G. Pandurangan), peter.robinson@ntu.edu.sg (P. Robinson),

eli@cs.brown.edu (E. Upfal).
1 Work done while at the Division of Mathematical Sciences, Nanyang Technological University, Singapore 637371.
2 Work supported in part by the following grants: Nanyang Technological University grant M58110000, Ministry of Education – Singapore (MOE) Academic

Research Fund (AcRF) Tier 2 grant MOE2010-T2-2-082, US NSF grant CCF-1023166, and grant 2008348 from the United States–Israel Binational Science
Foundation (BSF).

3 Work supported by the Nanyang Technological University grant M58110000.
http://dx.doi.org/10.1016/j.jcss.2014.10.005
0022-0000/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2014.10.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:augustine@cse.iitm.ac.in
mailto:gopalpandurangan@gmail.com
mailto:peter.robinson@ntu.edu.sg
mailto:eli@cs.brown.edu
http://dx.doi.org/10.1016/j.jcss.2014.10.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2014.10.005&domain=pdf

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1089
In fact, measurement studies of real-world P2P networks [33,40,64,65] show that the churn rate is quite high: nearly 50%
of peers in real-world networks can be replaced within an hour. (However, despite a large churn rate, these studies also
show that the total number of peers in the network is relatively stable.) We note that peer-to-peer algorithms have been
proposed for a wide variety of computationally challenging tasks such as collaborative filtering [19], spam detection [25],
data mining [28], worm detection and suppression [55,67], and privacy protection of archived data [38]. However, all algo-
rithms proposed for these problems have no theoretical guarantees of being able to work in a network with a dynamically
changing topology and a linear churn rate per round. This is a major bottleneck in implementation and wide-spread use of
these algorithms.

In this paper, we take a step towards designing robust algorithms for large-scale dynamic peer-to-peer networks. In
particular, we study the fundamental distributed agreement problem in P2P networks (the formal problem statement and
model is given in Section 2). An efficient solution to the agreement problem can be used as a building block for robust and
efficient solutions to other problems as mentioned above. However, the distributed agreement problem in P2P networks is
challenging since the goal is to guarantee almost-everywhere agreement, i.e., almost all nodes4 should reach consensus, even
under high churn rate. The churn rate can be as much as linear per time step (round), i.e., up to a constant fraction of the
stable network size can be replaced per time step. Indeed, until recently, almost all the works known in the literature (see
e.g., [32,44–46,66]) have addressed the almost-everywhere agreement problem only in static (bounded-degree) networks
and these approaches do not work for dynamic networks with changing topology. Such approaches fail in dynamic networks
where both nodes and edges can change by a large amount in every round. For example, the work of Upfal [66] showed how
one can achieve almost-everywhere agreement under up to a linear number — up to εn, for a sufficiently small ε > 0 —
of Byzantine faults in a bounded-degree expander network (n is the network size). The algorithm required O (log n) rounds
and polynomial (in n) number of messages; however, the local computation required by each processor is exponential.
Furthermore, the algorithm requires knowledge of the global topology, since at the start, nodes need to have this information
“hardcoded”. The work of King et al. [47] is important in the context of P2P networks, as it was the first to study scalable
(polylogarithmic communication and number of rounds) algorithms for distributed agreement (and leader election) that
are tolerant to Byzantine faults. However, as pointed out by the authors, their algorithm works only for static networks;
similar to Upfal’s algorithm, the nodes require hardcoded information on the network topology to begin with and thus the
algorithm does not work when the topology changes. In fact, this work [47] raises the open question of whether one can
design agreement protocols that can work in highly dynamic networks with a large churn rate.

1.1. Our main results

Our first contribution is a rigorous theoretical framework for the design and analysis of algorithms for highly dynamic
distributed systems with churn. We briefly describe the key ingredients of our model here. (Our model is described in detail
in Section 2.) Essentially, we model a P2P network as a bounded-degree expander graph whose topology — both nodes and
edges — can change arbitrarily from round to round and is controlled by an adversary. However, we assume that the total
number of nodes in the network is stable. The number of node changes per round is called the churn rate or churn limit. We
consider a churn rate of up to some εn, where n is the stable network size. Note that our model is quite general in the
sense that we only assume that the topology is an expander at every step; no other special properties are assumed. Indeed,
expanders have been used extensively to model dynamic P2P networks5 in which the expander property is preserved under
insertions and deletions of nodes (e.g., [52,59]). Since we do not make assumptions on how the topology is preserved, our
model is applicable to all such expander-based networks. (We note that various prior works on dynamic network models
make similar assumptions on preservation of topological properties — such as connectivity, expansion etc. — at every step
under dynamic edge insertions/deletions — cf. Section 1.3. The issue of how such properties are preserved are abstracted
away from the model, which allows one to focus on the dynamism. Indeed, this abstraction has been a feature of most
dynamic models e.g., see the survey of [20].)

We study stable, almost-everywhere, agreement in our model. By “almost-everywhere”, we mean that almost all nodes,
except possibly βc(n) nodes (where c(n) is the order of the churn and β > 0 is a suitably small constant — cf. Section 2)
should reach agreement on a common value. (This agreed value must be the input value of some node.) By “stable” we
mean that the agreed value is preserved subsequently after the agreement is reached.

Our main contribution is the design and analysis of randomized distributed algorithms that guarantee stable almost-
everywhere agreement with high probability (i.e., with probability 1 − 1/nγ , for an arbitrary fixed constant γ � 1) even
under high adversarial churn in a polylogarithmic number of rounds. Our algorithms also guarantee stability once agree-
ment has been reached. In particular, we present the following results (the precise theorem statements are given in the
respective sections below):

4 In sparse, bounded-degree networks, an adversary can always isolate some number of non-faulty nodes, hence almost-everywhere is the best one can
hope for in such networks [32].

5 Expander graphs have been used extensively as candidates to solve the agreement and related problems in bounded degree graphs even in static
settings (e.g., see [32,44–46,66]). Here we show that similar expansion properties are beneficial in the more challenging setting of dynamic networks.

1090 J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109
1. (Cf. Section 4.) An O (log2 n)-round (n is the stable network size) randomized algorithm that achieves almost-everywhere
agreement with high probability under up to linear churn per round (i.e., εn, for some small constant ε > 0), assuming
that the churn is controlled by an oblivious adversary (that has complete knowledge of what nodes join and leave and at
what time, but is oblivious to the random choices made by the algorithm). Our algorithm requires only polylogarithmic
in n bits to be processed and sent (per round) by each node.

2. (Cf. Section 5.) An O (log m log3 n)-round randomized algorithm that achieves almost-everywhere agreement with high
probability under up to ε

√
n churn per round, for some small ε > 0, that works even under an adaptive adversary (that

also knows the past random choices made by the algorithm). Here m refers to the size of the domain of input values.
This algorithm requires up to polynomial in n bits (and up to O (logm) bits) to be processed and sent (per round) by
each node.

3. (Cf. Section 6.) We also show that no deterministic algorithm can guarantee almost-everywhere agreement (regardless
of the number of rounds), even under constant churn rate.

To the best of our knowledge, our algorithms are the first-known, fully-distributed, agreement algorithms that work
under highly dynamic settings. Our algorithms are localized (do not require any global topological knowledge), simple, and
easy to implement. These algorithms can serve as building blocks for implementing other non-trivial distributed computing
tasks in P2P networks.

1.2. Technical contributions

The main technical challenge that we have to overcome is designing and analyzing distributed algorithms in networks
where both nodes and edges can change by a large amount. Indeed, when the churn rate is linear, i.e., say εn per round,
in constant (1/ε) number of rounds the entire network can be renewed!

We derive techniques for information spreading (cf. Section 3) for doing non-trivial distributed computation in such
networks. The first technique that we use is flooding. We show that in an expander-based P2P network even under linear
churn rate, it is possible to spread information by flooding if sufficiently many (a β-fraction of the order of the churn) nodes
initiate the information spreading (cf. Lemma 3.1). In other words, even an adaptive adversary cannot “suppress” more than
a small fraction of the values. The precise statements and proofs are in Section 3.

To analyze these flooding techniques we introduce the dynamic distance, which describes the effective distance between
two nodes with respect to the causal influence. We define the notions of influence sets and dynamic distance (or flooding
time) in dynamic networks with node churn. (Similar notions have been defined for dynamic graphs with a fixed set of
nodes, e.g., [48,17].) In (connected) networks where the nodes are fixed, the effective diameter (e.g., [48]) is always finite.
In the highly dynamic setting considered here, however, the effective distance between two nodes might be infinite, thus
we need a more refined definition for influence set and dynamic distance.

The second technique that we use is “support estimation” (cf. Section 3.4). Support estimation is a randomized technique
that allows us to estimate the aggregate count (or sum) of values of all or a subset of nodes in the network. Support
estimation is done in conjunction with flooding and uses properties of the exponential distribution (similar to [26,56]).
Support estimation allows us to estimate the aggregate value quite precisely with high probability even under linear churn.
But this works only for an oblivious adversary; to get similar results for the adaptive case, we need to increase the amount
of bits that can be processed and sent by a node in every round.

Apart from support estimation, we also use our flooding techniques in the agreement algorithm for the oblivious case
(cf. Algorithm 2) to sway the decision one way or the other. For the adaptive case (cf. Algorithm 3), we use the variance
property of a certain probability distribution to achieve the same effect with constant probability.

1.3. Other related work

1.3.1. Distributed agreement
The distributed agreement (or consensus) problem is important in a wide range of applications, such as database man-

agement, fault-tolerant analysis of aggregate data, and coordinated control of multiple agents or peers. There is a long line
of research on various versions of the problem with many important results (see e.g., [7,53] and the references therein). The
relaxation of achieving agreement “almost everywhere” was introduced by [32] in the context of fault-tolerance in networks
of bounded degree where all but O (t) nodes achieve agreement despite t = O (n

log n) faults. This result was improved by [66],
which showed how to guarantee almost everywhere agreement in the presence of a linear fraction of faulty nodes. Both
the works of [32,66] crucially use expander graphs to show their results. We also refer to the related results of Berman and
Garay on the butterfly network [18].

1.3.2. Byzantine agreement
We note that Byzantine adversaries are quite different from the adversaries considered in this paper. A Byzantine adver-

sary can have nodes behaving arbitrarily, but no new nodes are added (i.e., no churn), whereas in our case (an external)
adversary controls the churn and topology of the network but not the behavior of the nodes. Despite this difference it is
worthwhile to mention that there has been significant work in designing peer-to-peer networks that are provably robust to

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1091
a large number of Byzantine faults [35,42,57,62]. These focus only on robustly enabling storage and retrieval of data items.
The problem of achieving almost-everywhere agreement among nodes in P2P networks (modeled as an expander graph)
is considered by King et al. in [47] in the context of the leader election problem; essentially, [47] is a sparse (expander)
network implementation of the full information protocol of [46]. More specifically, [47] assumes that the adversary corrupts
a constant fraction b < 1/3 of the processes that are under its control throughout the run of the algorithm. The protocol of
[47] guarantees that with constant probability an uncorrupted leader will be elected and that a 1 − O (1

log n) fraction of the
uncorrupted processes know this leader. Again, we note that the failure assumption of [47] is quite different from the one
we use: Even though we do not assume corrupted nodes, the adversary is free to subject different nodes to churn in every
round. Also note that the algorithm of [47] does not work for dynamic networks.

Other works on handling Byzantine nodes in the context of P2P networks include [62,12,34,36,14,21,68].
In [8], we have developed an almost-everywhere agreement algorithm that tolerates up to Õ (

√
n) churn and Õ (

√
n)

churn per round, in a dynamic network model.

1.3.3. Dynamic networks
Dynamic networks have been studied extensively over the past three decades. Some of the early studies focused on

dynamics that arise out of faults, i.e., when edges or nodes fail. A number of fault models, varying according to extent
and nature (e.g., probabilistic vs. worst-case) and the resulting dynamic networks have been analyzed (e.g., see [7,53]).
There have been several studies on models that constrain the rate at which changes occur, or assume that the net-
work eventually stabilizes (e.g., see [1,31,37]). Some of the early work on general dynamic networks include [2,11] which
introduce general building blocks for communication protocols on dynamic networks. Another notable work is the lo-
cal balancing approach of [10] for solving routing and multicommodity flow problems on dynamic networks. Most of
these papers develop algorithms that will work under the assumption that the network will eventually stabilize and stop
changing.

Modeling general dynamic networks has gained renewed attention with the recent advent of heterogeneous networks
composed out of ad hoc, and mobile devices. To address highly unpredictable network dynamics, stronger adversarial models
have been studied by [9,27,58,50] and others; see the recent survey of [20] and the references therein. The works of
[50,9,27] study a model in which the communication graph can change completely from one round to another, with the
only constraint being that the network is connected at each round ([50] and [27] also consider a stronger model where the
constraint is that the network should be an expander or should have some specific expansion in each round). The model
has also been applied to agreement problems in dynamic networks; various versions of coordinated consensus (where all
nodes must agree) have been considered in [50]. The recent work of [24], studies the flooding time of Markovian evolving
dynamic graphs, a special class of evolving graphs.

We note that the model of [49] allows only edge changes from round to round while the nodes remain fixed. In this
work, we introduce a dynamic network model where both nodes and edges can change by a large amount (up to a linear
fraction of the network size). Therefore, the framework we introduce in Section 2 is more general than the model of [49],
as it is additionally applicable to dynamic settings with node churn. The same is true for the notions of dynamic distance
and influence set that we introduce in Section 3.1, since in our model the dynamic distance is not necessarily finite. In fact,
according to [48], coping with churn is one of the important open problems in the context of dynamic networks. Our paper
takes a step in this direction.

An important aspect of our algorithms is that they will work and terminate correctly even when the network keeps
continually changing. We note that there has been considerable prior work in dynamic P2P networks (see [59] and the
references therein) but these do not assume that the network keeps continually changing over time.

Due to the mobility of nodes, mobile ad-hoc networks can also be considered as dynamic networks. The focus of [58]
are the minimal requirements that are necessary to correctly perform flooding and routing in highly dynamic networks
where edges can change but the set of nodes remains the same. In the context of agreement problems, electing a leader
among mobile nodes that may join or leave the network at any time is the focus of [23]. To make leader election solvable in
this model, Chung et al. introduce the notion of D-connectedness, which ensures information propagation among all nodes
that remain long enough in the network. Note that, in contrast to our model, this assumption prohibits the adversary from
permanently isolating parts of the network. The recent work of [41] presents information spreading algorithms on dynamic
networks based on network coding [3].

1.3.4. Fault-tolerance
In most work on fault-tolerant agreement problems the adversary a priori commits to a fixed set of faulty nodes.

In contrast, [30] considers an adversary that can corrupt the state of some (possibly changing) set of O (
√

n) nodes
in every round. The median rule of [30] provides an elegant way to ensure that most nodes stabilize on a common
output value within O (log n) rounds, assuming a complete communication graph. The median rule, however, only guar-
antees that this agreement lasts for some polynomial number of rounds, whereas we are able to retain agreement ad
infinitum.

Expander graphs and spectral properties have already been applied extensively to improve the network design and fault-
tolerance in distributed computing (cf. [66,32,16]). Law and Siu [52] provide a distributed algorithm for maintaining an

1092 J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109
expander in the presence of churn with high probability by using Hamiltonian cycles. In [61] it is shown how to main-
tain the expansion property of a network in the self-healing model where the adversary can delete/insert a new node
in every step. In the same model, [60] present a protocol that maintains constant node degrees and constant expansion
(both with probability 1) against an adaptive adversary, while requiring only logarithmic (in the network size) messages,
time, and topology changes per deletion/insertion. In [6], it is shown that a SKIP graph (cf. [5]) contains a constant degree
expander as a subgraph with high probability. Moreover, it requires only constant overhead for a node to identify its in-
cident edges that are part of this expander. Later on, [43] presented a self-stabilizing algorithm that converges from any
weakly connected graph to a SKIP graph in time polylogarithmic in the network size, which yields a protocol that con-
structs an expander with high probability. In [13] the authors introduce the hyperring, which is a search data structure
supporting insertions and deletions, while being able to handle concurrent requests with low congestion and dilation, while
guaranteeing O (1/ log n) expansion and O (logn) node degree. The k-Flipper algorithm of [54] transforms any undirected
graph into an expander (with high probability) by iteratively performing flips on the end-vertices of paths of length k + 2.
Based on this protocol, the authors describe how to design a protocol that supports deletions and insertions of nodes. Note
that, however, the expansion in [54] is only guaranteed with high probability however, assuming that the node degree
is Ω(log n).

Information spreading in distributed networks is the focus of [22] where it is shown that this problem requires O (log n)

rounds in graphs with a certain conductance in the push/pull model where a node can communicate with a randomly
chosen neighbor in every round.

Aspnes et al. [4] consider information spreading via expander graphs against an adversary, which is related to the flood-
ing techniques we derive in Section 3. More specifically, in [4] there are two opposing parties “the alert” and “the worm”
(controlled by the adversary) that both try to gain control of the network. In every round each alerted node can alert a con-
stant number of its neighbors, whereas each of the worm nodes can infect a constant number of non-alerted nodes in the
network. In [4], Aspnes et al. show that there is a simple strategy to prevent all but a small fraction of nodes from becoming
infected and, in case that the network has poor expansion, the worm will infect almost all nodes.

The work of [16] shows that, given a network that is initially an expander and assuming some linear fraction of faults,
the remaining network will still contain a large component with good expansion. These results are not directly applicable
to dynamic networks with large amount of churn like the ones we are considering, as the topology might be changing and
linear churn per round essentially corresponds to O (n log n) total churn after Θ(log n) rounds — the minimum amount of
time necessary to solve any non-trivial task in our model.

In the context of maintaining properties in P2P networks, Kuhn et al. consider in [51] that up to O (log n) nodes can
crash or join per constant number of time steps. Despite this amount of churn, it is shown in [51] how to maintain a low
peer degree and bounded network diameter in P2P systems by using the hypercube and pancake topologies. Scheideler
and Schmid show in [63] how to maintain a distributed heap that allows join and leave operations and, in addition, is
resistant to Sybil attacks. A robust distributed implementation of a distributed hash table (DHT) in a P2P network is given
by [15], which can withstand two important kind of attacks: adaptive join-leave attacks and adaptive insert/lookup at-
tacks by up to εn adversarial peers. Note that, however, that collisions are likely to occur once the number of attacks
becomes Ω(

√
n).

2. Model and problem statement

We are interested in establishing stable agreement in a dynamic peer-to-peer network in which the nodes and the
edges change over time. The computation is structured into synchronous rounds, i.e., we assume that nodes run at the
same processing speed and any message that is sent by some node u to its (current) neighbors in some round r � 1
will be received by the end of r. To ensure scalability, we restrict the number of bits sent per round by each node to be
polylogarithmic in the size of the input value domain (cf. Section 2.1). For dealing with the much more powerful adaptive
adversary, we relax this requirement in Sections 3.5 and 5. We model dynamism in the network as a family of undirected
graphs (Gr)r�0. At the beginning of each round r we start with the network topology Gr−1. Then, the adversary gets to
change the network from Gr−1 to Gr (in accordance to rules outlined below). As is typical, an edge (u, v) ∈ Er indicates
that u and v can communicate in round r by passing messages. For the sake of readability, we use V [r,r+t] as a shorthand
for

⋂r+t
i=r V i . Each node u has a unique identifier and is churned in at some round ri and churned out at some ro > ri .

More precisely, for each node u, there is a maximal range [ri, ro − 1] such that u ∈ V [ri ,ro−1] and for every r /∈ [ri, ro − 1],
u /∈ V r . Any information about the network at large is only learned through the messages that u receives. It has no a priori
knowledge about who its neighbors will be in the future. Neither does u know when (or whether) it will be churned out.
Note that we do not assume that nodes have access to perfect clocks, but we show (cf. Section 3.3) how the nodes can
synchronize their clocks.

We make the following assumptions about the kind of changes that our dynamic network can encounter:

Stable network size: For all r, |V r | = n, where n is a suitably large positive integer. This assumption simplifies our analysis.
Our algorithms will work correctly as long as the number of nodes is reasonably stable (say, between n − κn and

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1093
n + κn for some suitably small constant κ). Also, we assume that n (or a constant factor estimate of n) is common
knowledge among the nodes in the network.6

Churn: For each r > 1,
∣∣V r \ V r−1

∣∣ = ∣∣V r−1 \ V r
∣∣ � L = εc(n),

where L is the churn limit, which is some fixed ε > 0 fraction of the order of the churn c(n); the equality in the
above equation ensures that the network size remains stable. Our work is aimed at high levels of churn up to a
churn limit L that is linear in n, i.e., c(n) = n.

Bounded degree expanders: The sequence of graphs (Gr)r�0 is an expander family with a vertex expansion of at least α,
which is a fixed positive constant.7 In other words, the adversary must ensure that for every Gr and every S ⊂ V r

such that |S| � n/2, the number of nodes in V r \ S with a neighbor in S is at least α|S|. Note that we do not
explicitly consider the costs (communication and computation) of maintaining an expander under churn. Instead,
we assume that the duration of each time step in our model are normalized to be large enough to encompass an
expander maintenance protocol such as [52,60].

A run of a distributed algorithm consists of an infinite number of rounds. We assume that the following events occur
(in order) in every round r:

1. A set of at most L nodes are churned in and another set of L nodes are churned out. The edges of Gr−1 may be changed
as well, but Gr has to have a vertex expansion of at least α. These changes are under the control of the adversary.

2. The nodes broadcast messages to their (current) neighbors.
3. Nodes receive messages broadcast by their neighbors.
4. Nodes perform computation that can change their state and determine which messages to send in round r + 1.

Bounds on parameters: Recall that the churn limit L = εc(n), where ε > 0 is a constant and c(n) is the churn order. When
c(n) = n, ε is the fraction of the nodes churned out/in and therefore we require ε to be less than 1 and must adhere
to Eq. (2.1). Moreover, we require the bound β < 1

12 regarding the right hand side of (2.1). However, when c(n) ∈ o(n), ε can
exceed 1. In the remainder of this paper, we consider β to be a small constant independent of n, such that

ε(1 + α)

α
< β. (2.1)

It will become apparent in Section 3 that (2.1) presents a sufficient condition for preventing the adversary from containing
the information propagated by a set of βc(n) nodes, and that the churn expansion ratio ε(1+α)

α presents a sufficient condition
for information propagation in our model (cf. Lemma 3.1). Finally, we assume that n is suitably large (cf. Eqs. (4.7) and (5.8)).

2.1. Stable agreement

We now define the Almost Everywhere Stable Agreement problem (or just the Stable Agreement problem for brevity).
Each node v ∈ V 0 has an associated input value from some value domain of size m; subsequent new nodes come with
value ⊥. Let V be the set of all input values associated with nodes in V 0 at the start of round 1. Every node u is equipped
with a special decision variable decisionu (initialized to ⊥) that can be written at most once. We say that a node u decides
on val when u assigns val to its decisionu . Note that this decision is irrevocable, i.e., every node can decide at most once in
a run of an algorithm. As long as decisionu = ⊥, we say that u is undecided. Stable Agreement requires that a large fraction
of the nodes come to a stable agreement on one of the values in V . More precisely, an algorithm solves Stable Agreement
in R rounds, if it exhibits the following characteristics in every run, for any fixed β adhering to (2.1).

Validity: If, in some round r, node u ∈ V r decides on a value val, then val ∈ V .
Almost everywhere agreement: We say that the network has reached strong almost everywhere agreement by round R , if at

least n − βc(n) nodes in V R have decided on the same value val∗ ∈ V and every other node remains undecided, i.e.,
its decision value is ⊥. In particular, no node ever decides on a value val′ ∈ V in the same run, for val′ �= val

∗ .
Stability: Let R be the earliest round where nodes have reached almost everywhere agreement on value val∗ . We say that

an algorithm reaches stability by round R if, at every round r � R , at least n − βc(n) nodes in V r have decided on val∗ .

We also consider a weaker variant of the above problem that we call Almost Everywhere Binary Consensus (or simply,
Binary Consensus) where the input values in V are restricted to {0, 1}.

6 This assumption is important; estimating n accurately in our model is an interesting problem in itself.
7 Note that the value of α determines ε, i.e. the fraction of churn that we can tolerate. In particular, to tolerate linear amount of churn, we require

constant expansion. In principle, our results can potentially be extended to graphs with weaker expansion guarantees as well; however the amount of
churn that can be tolerated will be reduced.

1094 J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109
We consider two types of adversaries for our randomized algorithms. An oblivious adversary must commit in advance to
the entire sequence of graphs (Gr)r�0. In other words, an oblivious adversary must commit independently of the random
choices made by the algorithm. We also consider the more powerful adaptive adversary that can observe the entire state of
the network in every round r (including all the random choices made until round r − 1), and then chooses the nodes to be
churned out/in and how to change the topology of Gr+1.

For the sake of readability, we treat log n as an integer and omit the necessary ceiling or floor operations if their appli-
cation is clear from the context.

3. Techniques for information spreading

In this section, we first derive and analyze techniques to spread information in the network despite churn. First, we
show that the adversary is unable to prevent a sufficiently large set of nodes (of size at least βc(n)) to propagate their
information to almost all other nodes (cf. Lemma 3.1). Building on this result, we analyze the capability of individual nodes
to spread their information. We show in Lemma 3.2 and Corollary 3.1 that at most βc(n) nodes can be hindered by the
adversary. Finally, we show in Lemmas 3.3 and 3.4 that there is a large set of nodes V ∗ such that all nodes in V ∗ are able
to propagate their information to a large common set of nodes.

In Sections 3.4 and 3.5, we describe how to use the previously derived techniques on information spreading to estimate
the “support” (i.e. number) of nodes that belong to a specific category (either red or blue). These protocols will form a
fundamental building block for our Stable Agreement algorithms.

Due to the high amount of churn and the dynamically changing network, we use message flooding to disseminate and
gather information. We now precisely define flooding. Any node can initiate a message for flooding. Messages that need
to be flooded have an indicator bit bFlood set to 1. Each of these messages also contains a terminating condition. The
initiating node sends copies of the message to itself and its neighbors. When a node receives a message with bFlood set
to 1, it continues to send copies of that message to itself and its neighbors in subsequent rounds until the terminating
condition is satisfied.

3.1. Dynamic distance and influence set

Informally, the dynamic distance from node u to node v is the number of rounds required for a message at u to reach v .
We now formally define the notion of dynamic distance of a node v from u starting at round r, denoted by DDr(u → v).
When the subscript r is omitted, we assume that r = 1.

Suppose node u joins the network at round ru , and, from round max(ru, r) onward, u initiates a message m for flooding
whose terminating condition is: 〈hasreached v〉. If u is churned out before r, then DDr(u → v) is undefined. Suppose
the first of those flooded messages reaches v in round r + 	r. Then, DDr(u → v) = 	r. Note that this definition allows
DDr(u → v) to be infinite under two scenarios. Firstly, node v may be churned out before any copy of m reaches v .
Secondly, at each round, v can be shielded by churn nodes that absorb the flooded messages and are then removed from
the network before they can propagate these messages any further. The influence set of a node u after R rounds starting at
round r is given by:

Inflr(u, R) = {
v ∈ V r+R : DDr(u → v) � R

}
.

Note that we require Inflr(u, R) ⊆ V r+R . Intuitively, we want the influence set of u (in this dynamic setting) to capture the
nodes currently in the network that were influenced by u. Note however that the influence set of a node u is meaningful
even after u is churned out. Analogously, we define

Inflr(U , R) =
⋃
u∈U

Inflr(u, R),

for any set of nodes U ⊆ V r .
If we consider only a single node u, an (adaptive) adversary can easily prevent the influence set of this node from ever

reaching any significant size by simply shielding u with churn nodes that are replaced in every round.8

3.2. Properties of influence sets

We now focus our efforts on characterizing influence sets. This will help us in understanding how we can use flooding
to spread information in the network. For the most part of this section we assume that the network is controlled by an
adaptive adversary (cf. Section 2.1). The following lemma shows that the number of nodes that are sufficient to influence
almost all the nodes in the network is given by the churn-expansion ratio (cf. Eq. (2.1)):

8 An oblivious adversary can achieve the same effect with constant probability for linear churn.

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1095
Lemma 3.1. Suppose that the adversary is adaptive. Consider any set U ⊆ V r−1 (for any r � 1) such that |U | � βc(n). Then, after

T = 2

⌈
log n − log c(n) − log(β − ε(1+α)

α) − 1

log(1 + α)

⌉

number of rounds, it holds that

∣∣Inflr(U , T)
∣∣ > n − βc(n). (3.2)

When considering linear churn, i.e., c(n) = n, the bound T becomes a constant independent of n. On the other hand, when considering
a churn order of

√
n, we get T ∈ O (log n).

Proof. Our proof assumes that r = 1 for simplicity as the arguments extend quite easily to arbitrary values of r. We proceed
in two parts: First we show that the nodes in U influence at least n/2 nodes in some T1 rounds. More precisely, we show
that |Infl(U , T1)| � n/2. We use vertex expansion in a straightforward manner to establish this part. Then, in the second
part we show that nodes in Infl(U , T1) go on to influence more than n −βc(n) nodes. We cannot use the vertex expansion
in a straightforward manner in the second part because the cardinality of the set that is expanding in influence is larger
than n/2. Rather, we use a slightly more subtle argument in which we use vertex expansion going backward in time. The
second part requires another T1 rounds. Therefore, the two parts together complete the proof when we set T = 2T1.

To begin the first part, consider U ⊆ V 0 at the start of round 1 with |U | � βc(n). In round 1, up to εc(n) nodes in U can
be churned out. Subsequently, the remaining nodes in U influence some nodes outside U as G1 is an expander with vertex
expansion at least α. More precisely, we can say that

∣∣Infl(U ,1)
∣∣ � (

βc(n) − εc(n)
)
(1 + α). (3.3)

At the start of round 2, the graph changes dynamically to G2. In particular, up to εc(n) nodes might be churned out and
they may all be in Infl(U , 1) in the worst case. However, the influenced set will again expand. Therefore, |Infl(U , 2)|
cannot be less than (|Infl(U , 1)| − εc(n))(1 + α) � βc(n)(1 + α)2 − εc(n)(1 + α)2 − εc(n)(1 + α). Of course, there will be
more churn at the start of round 3 followed by expansion leading to:

∣∣Infl(U ,3)
∣∣ � (

βc(n)(1 + α)2 − εc(n)(1 + α)2

− εc(n)(1 + α)

− εc(n)
)
(1 + α)

= βc(n)(1 + α)3 − εc(n)

3∑
k=1

(1 + α)k.

This cycle of churn followed by expansion continues and we get the following bound at the end of some round i:

∣∣Infl(U , i)
∣∣ � βc(n)(1 + α)i − εc(n)

i∑
k=1

(1 + α)k

= βc(n)(1 + α)i + εc(n)
1 − (1 + α)i+1

α
− εc(n).

Therefore, after

T1 =
⌈

log n − log c(n) − log(β − ε(1+α)
α) − 1

log(1 + α)

⌉
(3.4)

rounds, we get

∣∣Infl(U , T1)
∣∣ � n/2. (3.5)

Now we move on to the second part of the proof. Let T = 2T1. If |Infl(U , T)| > n − βc(n), we are done. Therefore, for
the sake of a contradiction, assume that |Infl(U , T)| � n − βc(n). Let S = V T \ Infl(U , T), i.e., S is the set of nodes in V T

that were not influenced by U at (or before) round T . Moreover, |S| � βc(n) because we have assumed that |Infl(U , T)| �
n − βc(n). We will start at round T and work our way backward. For q � T , let Sq ⊆ V q , be the set of all vertices in V q

that, starting from round q, influenced some vertex in S at or before round T . More precisely,

Sq = {
s ∈ V q : Inflq(s, T − q) ∩ S �= ∅}

.

1096 J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109
Suppose that |S T1 | > n/2. Then

S T1 ∩ Infl(U , T1) �= ∅,

since |Infl(U , T1)| � n/2 by (3.5). Consider a node s∗ ∈ S T1 ∩ Infl(U , T1). Note that s∗ was influenced by U and went on
to influence some node in S before (or at) round T . However, by definition, no node in S can be influenced by any node in
U at or before round T . We have thus reached a contradiction.

We are left with showing that |S T1 | > n/2. We start with S and work our way backwards. We know that |S| � βc(n) >
βc(n) − εc(n). We want to compute the cardinality of S T −1. We first focus on an intermediate set S ′ , which we define as

S ′ = S ∪ {
s′ : ∃(

s, s′) ∈ E T }
.

Since G T is an expander, |S ′| � |S|(1 +α). Furthermore, it is also clear that each node in S ′ could influence some node in S .
Notice that S ′ \ S T −1 is the set of nodes in S ′ that were churned in only at the start of round T . Therefore,

∣∣S T −1
∣∣� ∣∣S ′∣∣ − εc(n)

� |S|(1 + α) − εc(n)

>
(
βc(n) − εc(n)

)
(1 + α) − εc(n)

= βc(n)(1 + α) − εc(n)(1 + α) − εc(n).

Continuing to work our way backwards in time, we get

∣∣S T −2
∣∣ > βc(n)(1 + α)2 − εc(n)(1 + α)2 − εc(n)(1 + α) − εc(n),

or more generally,

∣∣S T −i
∣∣ > βc(n)(1 + α)i − εc(n)

∑
0� j�i

(1 + α) j

= βc(n)(1 + α)i + εc(n)
1 − (1 + α)i+1

α

= βc(n)(1 + α)i − εc(n)(1 + α)i+1

α
+ εc(n)

α
.

We now want the value of i for which

∣∣S T −i
∣∣ > n/2 + εc(n)

α
> n/2.

In other words, we want a value of i such that

βc(n)(1 + α)i − εc(n)(1 + α)i+1

α
+ εc(n)

α
> n/2 + εc(n)

α
,

which is obtained when i = T1. Therefore, it is easy to see that if we set T = 2T1, we get |S T1 | > n/2, thereby completing
the proof. �

At first glance, it might appear to be counterintuitive that the order of the bound T decreases with increasing churn.
When the adversary has the benefit of churn that is linear in n, our bound on T is a constant, but when the adversary is
limited to a churn order of

√
n, we get T ∈ O (log n). This, however, turns out to be fairly natural when we note that the

size of the set U of nodes that we start out with is in proportion to the churn limit.
We say that a node u ∈ V r is suppressed for R rounds or shielded by churn if |Inflr(u, R)| < n − βc(n); otherwise we say

it is unsuppressed. The following lemma shows that given a set with cardinality at least βc(n) some node in that set will be
unsuppressed.

Lemma 3.2. Consider the adaptive adversary. Let U be any subset of V r−1 , r � 1, such that |U | � βc(n). Let T be the bound derived
in Lemma 3.1. There is at least one u∗ ∈ U such that for some R ∈ O (T log n), u∗ is unsuppressed, i.e.,

∣∣Inflr
(
u∗, R

)∣∣ > n − βc(n).

In particular, when the order of the churn is n, T becomes a constant, and we have R = O (log n).

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1097
Before we proceed with our key arguments of the proof, we state a property of bipartite graphs that we will use
subsequently.

Property 3.1. Let H = (A, B, E) be a bipartite graph in which |A| > 1 and every vertex b ∈ B has at least one neighbor in A. There is a
subset A∗ ⊂ A of cardinality at most �|A|/2� such that

∣∣{b : ∃a∗ ∈ A∗ such that
(
a∗,b

) ∈ E
}∣∣� ⌈|B|/2

⌉
.

Proof of Property 3.1. Consider each node in A to be a unique color. Color each node in B using the color of a neighbor
in A chosen arbitrarily. Now partition B into maximal subsets of nodes with like colors. Consider the parts of the partition
sorted in decreasing order of their cardinalities. We now greedily choose the first �|A|/2� colors in the sorted order of
parts of B . We call the chosen colors C . Observe that colors in C cover at least as many nodes in B as those not in C .
Suppose the colors in C cover fewer than �|B|/2� nodes in B . Then the remaining colors will cover �|B|/2�, but that is a
contradiction. Therefore, colors in C cover at least �|B|/2� nodes in B . The nodes in A that have the colors in C are the
nodes that comprise A∗ , thereby completing our proof. �
Proof of Lemma 3.2. Again, our proof assumes r = 1 because it generalizes to arbitrary values of r quite easily. From
Lemma 3.1, we know that the influence of all nodes in U taken together will reach n − βc(n) nodes in T rounds. This
does not suffice because we are interested in showing that there is at least one node in V 0 that (individually) influences
n − βc(n) nodes in V R for some R = O (T log n).

From Lemma 3.1, we know that U (collectively) will influence at least n − βc(n) nodes in T rounds, i.e.,
∣∣Infl(U , T)

∣∣ > n − βc(n).

From Property 3.1, we know that there is a set U1 ⊂ U of cardinality at most �|U |/2� such that

∣∣Infl(U1, T)
∣∣ >

n − βc(n)

2
.

Recalling that β < 1
12 < 1

3 , we know that |Infl(U1, T)| � βc(n). We can again use Lemma 3.1 to say that Infl(U1, T)

influences more than n − βc(n) nodes in additional T rounds and, by transitivity, U1 influences more than n − βc(n) nodes
after 2T rounds. We therefore have |Infl(U1, 2T)| > n −βc(n). Again, we can choose a set U2 ⊂ U1 (using Property 3.1) that
consists of �|U1|/2� nodes in U1 such that |Infl(U2, 2T)| � βc(n). Subsequently applying Lemma 3.1 extends the influence
set of U2 to more than n − βc(n) after 3T rounds.

In every iteration i of the above argument, the size of the set Ui decreases by a constant fraction until we are left with
a single node u∗ ∈ U such that |Infl(u∗, O (logn)T)| > n − βc(n). �

Can βc(n) (or more nodes) be suppressed for any significant number of (say, Ω(T logn)) rounds? This is in immediate
contradiction to Lemma 3.2 because any such suppressed set of nodes must contain an unsuppressed node. This leads us to
the following corollary.

Corollary 3.1. The number of nodes that can be suppressed for Ω(T log n) rounds is less than βc(n), even if the network is controlled
by an adaptive adversary.

Corollary 3.2. Consider an oblivious adversary that must commit to the entire sequence of graphs in advance. If we choose a node u
uniformly at random from V 0 , with probability at least 1 − βc(n)

n , then u will be unsuppressed, i.e.,
∣∣Infl(u,Ω(T log n)

)∣∣ > n − βc(n).

Proof. Let S ⊂ V 0 be the set of nodes suppressed for Ω(T log n) rounds. Under an oblivious adversary, the node u chosen
unformly at random from V 0 will not be in S with probability 1 − βc(n)

n , and hence, will not be suppressed with that same
probability. �

The following two lemmas show that there exists a set V ∗ of unsuppressed nodes, all of which can influence a large
common set of nodes, given enough time.

Lemma 3.3. Consider a dynamic network under linear churn that is controlled by an adaptive adversary. In some r ∈ O (logn) rounds,
there is a set of unsuppressed nodes V ∗ ⊆ V 0 of cardinality more than (1 − β)n such that∣∣∣∣

⋂
v∈V ∗

Infl(v, r)

∣∣∣∣ > (1 − β)n.

1098 J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109
Proof. Let V ∗ ⊆ V 0 be any set of unsuppressed nodes, i.e., in some c0 log n rounds for some constant c0, the influence set
of each v ∈ V ∗ has cardinality more than (1 − β)n. Note that, however, we cannot guarantee that, for any two vertices v1
and v2 in V ∗ ,

∣∣Infl(v1, c0 log n) ∩ Infl(v1, c0 log n)
∣∣ > (1 − β)n.

Assume for simplicity that |V ∗| is a power of 2. Consider any pair of vertices {v1, v2}, both members of V ∗ . Recalling that
β < 1

12 < 1
3 , we can say that

∣∣Infl(v1, c0 log n) ∩ Infl(v2, c0 log n)
∣∣ � βn.

Therefore, considering that the intersected set Infl(v1, c0 log n) ∩ Infl(v2, c0 log n) of nodes has cardinality at least βn, we
can apply Lemma 3.1 leading to |Infl(v1, c0 log n + T) ∩ Infl(v2, c0 log n + T)| > (1 −β)n. We can partition V ∗ into a set S1

of |V ∗|
2 pairs such that for each pair, the intersection of influence sets has cardinality more than (1 − β)n after c0 log n + T

rounds. Similarly, we can construct a set S2 of quadruples by disjointly pairing the pairs in S1. Using a similar argument,
we can say that for any Q ∈ S2,

∣∣∣∣
⋂
v∈Q

Infl(v, c0 logn + 2T)

∣∣∣∣ > (1 − β)n.

Progressing analogously, the set S log |V ∗| will equal V ∗ and we can conclude that

∣∣∣∣
⋂

v∈S log |V ∗|

Infl

(
v, c0 log n + T log

∣∣V ∗∣∣)∣∣∣∣ > (1 − β)n.

Since |V ∗| � n, it holds that c0 log n + T log |V ∗| ∈ O (log n), thus completing the proof. �
Lemma 3.4. Suppose that up to ε

√
n nodes can be subjected to churn in any round by an adaptive adversary. In some r ∈ O (log2 n)

rounds, there is a set of unsuppressed nodes V ∗ ⊆ V 0 of cardinality at least n − β
√

n such that

∣∣∣∣
⋂

v∈V ∗
Infl(v, r)

∣∣∣∣ > n − β
√

n.

Proof. Since we assume that c(n) = √
n, the bound T of Lemma 3.1 is in O (log n). Therefore, by instantiating Corollary 3.1,

we know that each of the unsuppressed nodes in V ∗ (which is of cardinality at least n − β
√

n) will influence more than
n − β

√
n nodes in O (log2 n) time. We can use the same argument as in Lemma 3.3 to show that in O (log n) rounds, all the

unsuppressed nodes have a common influence set of size at least Θ(n). That common influence set will grow to at least
n −β

√
n nodes within another O (log2 n) rounds. Thus a total of O (log2 n) rounds is sufficient to fulfill the requirements. �

3.3. Maintaining information in the network

In a dynamic network with churn limit εn, the entire set of nodes in the network can be churned out and new nodes
churned in within 1/ε rounds. How do the new nodes even know what algorithm is running? How do they know how far
the algorithm has progressed? To address these basic questions, the network needs to maintain some global information
that is not lost as the nodes in the network are churned out. There are two basic pieces of information that need to be
maintained so that a new node can join in and participate in the execution of the distributed algorithm:

1. the algorithm that is currently executing, and
2. the number of rounds that have elapsed in the execution of the algorithm. In other words, a global clock has to be

maintained.

We assume that the nodes in V 0 are all synchronized in their understanding of what algorithm to execute and the global
clock. The nodes in the network continuously flood information on what algorithm is running so that when a new node
arrives, unless it is shielded by churn, it receives this information and can start participating in the algorithm. To maintain
the clock value, nodes send their current clock value to their immediate neighbors. When a new node receives the clock
information from a neighbor, it sets its own clock accordingly. Since nodes are not malicious or faulty, Lemma 3.1 ensures
that information is correctly maintained in more than n − βc(n) nodes.

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1099
Algorithm 1 Algorithm to estimate the support R of red nodes when R � n/2.
The following pseudocode is executed at every node u.
P ∈ Θ(logn) controls the precision of our estimate. Its exact value is worked out in the proof of Theorem 3.1.

At round 1:
1: Draw P random numbers s1, s2, . . . , si , . . . , sP , each from the exponential random distribution with rate 1.

//Each si is chosen with a precision that ensures that the smallest possible positive value is at most 1
nΘ(1) ;

//Note that Θ(logn) bits suffice.
2: For each si , create a message mu(i) containing si and a terminating condition: has encountered a message mv (i) with a smaller random number.

//Notice that a message with index i will terminate only when it encounters another message with the same index, but smaller random number.
3: For each i, initiate flooding of message mu(i).

For the next t = Θ(log n) rounds:
4: Continue flooding messages respecting their termination conditions.

//It is easy to see that the number of bits transmitted per round through a link is at most O (log2 n).

At the end of the Θ(log n) rounds:
5: For each i, the node u holds a message mv (i). Let s̄u(i) be the random number contained in mv (i).

6: s̄u ←
∑

i s̄u (i)
P .

7: Node u outputs 1/s̄u as its estimate of R. //Now that the estimation is completed, all messages can be terminated.

3.4. Support estimation under an oblivious adversary

Suppose we have a dynamic network with R nodes colored red in V 0. R is also called the support of red nodes. We
want the nodes in the network to estimate R under an oblivious adversary. We assume that the adversary chooses R and
which R nodes in V 0 to color red, but it does not know the random choices made by the algorithm. Furthermore, we
assume that churn can be linear in n, i.e., c(n) = n.

Our algorithm uses random numbers drawn from the exponential distribution, whose probability density function, we
recall, is parameterized by λ and given by f (x) = λ exp(−λx) for all x � 0. Furthermore, we notice that the expected value
of a random number drawn from the exponential distribution of parameter λ is 1/λ. We now present two properties of
exponential random variables that are crucial to our context. Consider K � 1 independent random variables Y1, Y2, . . . , Y K ,
each following the exponential distribution of rate λ.

Property 3.2. (See [39] for example.) The minimum among all Yi ’s, for 1 � i � K , is an exponentially distributed random variable with
parameter Kλ.

The idea behind our algorithm exploits Property 3.2 in the following manner. If each of the R red nodes generate an
exponentially distributed random number with parameter 1, then the minimum s̄ among those R random numbers will
also be exponentially distributed, but with parameter R. Thus 1/s̄ serves as an estimate of R. To get a more accurate
estimation of R, we exploit the following property that provides us with sharp concentration when the process is repeated
a sufficient number of times.

Property 3.3. (See [56] and pp. 30, 35 of [29].) Let XK = 1
K

∑K
i=1 Yi . Then, for any ς ∈ (0, 1/2),

Pr

(∣∣∣∣XK − 1

λ

∣∣∣∣ � ς

λ

)
� 2 exp

(
−ς2 K

3

)
.

We now present our algorithm for estimating R in pseudocode format (assuming R � n/2); see Algorithm 1.

Theorem 3.1. Consider an oblivious adversary and let γ be an arbitrary fixed constant � 1. Let R̄ = max(R, n − R). By executing
Algorithm 1 to estimate both R and n − R, we can estimate R̄ to within [(1 − δ)R̄, (1 + δ)R̄] for any δ > 2β with probability at
least 1 − n−γ .

Proof. Without loss of generality, let R � n/2. Out of the R red nodes up to βn nodes (chosen obliviously) can be sup-
pressed, leaving us with

R′ �R− βn � (1 − 2β)R (3.6)

unsuppressed red nodes (since R � n/2). In a slight abuse of notation, we use R and R′ to denote both the cardinality and
the set of red nodes and unsuppressed red nodes, respectively. We define

U =
⋂

′
Infl(v, t);
v∈R

1100 J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109
note that t = O (log n) and |U | � (1 − β)n (cf. Lemma 3.3). Let u be some node in U . Let

V u = {
v : v ∈ R∧ u ∈ Infl(v, t)

}
.

For all u ∈ U , R′ ⊆ V u ⊆ R. Notice that s̄u(i) computed by u in Line 6 of Algorithm 1 is based on random numbers
generated by all nodes in V u . Therefore, at round t , node u is estimating R using the exponential random numbers that
were drawn by nodes in V u . Since our adversary is oblivious, the choice of V u is independent of the choice of the random
numbers generated by each v ∈ V u . Therefore, s̄u(i) is an exponentially distributed random number with rate |V u | � R′
(cf. Property 3.2). For any δ > 2β , let ς � min{ δ−2β

1−δ
, δ

1+δ
}. When P = 3γ ln n

ς2 ∈ Θ(log n) parallel iterations are performed,

where γ � 1, the required accuracy is obtained with probability 1 − 1
Ω(nγ)

(cf. Property 3.3). �
3.5. Support estimation under an adaptive adversary

The algorithm for support estimation under an oblivious adversary (cf. Section 3.4) does not work under an adaptive
adversary. To estimate the support of red nodes in the network, each red node draws a random number from the exponential
distribution and floods it in an attempt to spread the smallest random number. When the adversary is adaptive, the smallest
random numbers can easily be targeted and suppressed. To mitigate this difficulty, we consider a different algorithm in
which the number of bits communicated is larger. In particular, the number of bits communicated per round by each node
executing this algorithm is at most polynomial in n.

Let R be the support of the red nodes. Every node floods its unique identifier along with a bit that indicates whether
it is a red node or not. At most β

√
n nodes’ identifiers can be suppressed by the adversary for Ω(log2 n) rounds leaving

at least n − β
√

n unsuppressed identifiers (cf. Corollary 3.1). Each node counts the number of unique red identifiers A and
non-red identifiers B that flood over it and estimates R to be A + n−A−B

2 .
This support estimation technique generalizes quite easily to arbitrary churn order. Therefore, we state the following

theorem more generally.

Theorem 3.2. Consider the algorithm mentioned above in which nodes flood their unique identifiers indicating whether they are red
nodes or not and assume that the network is controlled by an adaptive adversary. Let c(n) be the order of the churn; we assume for
simplicity that c(n) is either n or

√
n. Then the following holds:

1. At least n − βc(n) nodes estimate R between R − βc(n)
2 and R + βc(n)

2 . Furthermore, these nodes are aware that their estimate
is within R − βc(n)

2 and R + βc(n)
2 .

2. The remaining nodes are aware that their estimate of R might fall outside [R − βc(n)
2 , R + βc(n)

2].

When c(n) = n, it requires only O (logn) rounds, but when c(n) = √
n, it requires O (log2 n) rounds.

Proof. Let u be any one of the n − βc(n) nodes that receive at least n − βc(n) unsuppressed identifiers (cf. Lemma 3.3
and Lemma 3.4). Let A and B be the number of unique identifiers from red nodes and non-red nodes, respectively, that
flood over u. Let C = n − A − B � βc(n). This means that u estimates R to be A + C

2 . Note that A �R � A + C and since
C � βc(n), R is estimated between R − βc(n)

2 and R + βc(n)
2 . Furthermore, since u received n − βc(n) identifiers, it can be

sure that its estimate is between R − βc(n)
2 and R + βc(n)

2 .
If a node does not receive at least n − βc(n) identifiers, then it is aware that its estimate of R might not be within

[R − βc(n)
2 , R + βc(n)

2].
From Lemma 3.3, when c(n) = n, the algorithm takes O (log n) rounds to complete because we want to ensure that

unsuppressed nodes have flooded the network. When c(n) = √
n, as a consequence of Lemma 3.4, the algorithm requires

O (log2 n) rounds. �
4. STABLE AGREEMENT under an oblivious adversary

In this section we will first present Algorithm 2 for the simpler problem of reaching Binary Consensus, where the input
values are restricted to {0, 1} (cf. Section 2.1). We will then use this algorithm as a subroutine for solving Stable Agreement

in Section 4.2.
Throughout this section we assume suitable choices of ε and α such that the upper bound

β <
1

12
(4.7)

can be satisfied for β; note that (4.7) must hold in addition to bound (2.1). Moreover, we assume that a node can send and
process up to O (log2 m) bits in every round, where m is the size of the input value domain.

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1101
Algorithm 2 Binary Consensus under an oblivious adversary; code executed by node u.
Let decisionu be initialized to ⊥.
Let bu be the current output bit of u. If u ∈ V 0, then bu is initialized to the input value of u; otherwise it is set to ⊥.
Let t1 = 1 be the first checkpoint round. Subsequent checkpoint rounds are given by ti = ti−1 + O (logn), for i > 1. For the terminating checkpoint tR ,
we choose an R ∈ O (logn), i.e., tR ∈ O (log2 n).

At every checkpoint round ti excluding tR :
1: Initiate support estimation (to be completed in checkpoint round ti+1).
2: Generate a random number ru uniformly from {1, . . . , nk} for suitably large but constant k. (With high probability, we want exactly one node to have

generated minu ru .)
3: Initiate flooding of {ru, bu} with terminating condition: 〈(has encountered another message initiated by v �= u with rv < ru) ∨ (current round
� ti+1)〉.

At every checkpoint round ti except t1 :
4: Use the support estimation initiated at checkpoint round ti−1. Let #(1) be u’s estimated support value for the number of nodes that had an output

of 1.
5: if #(1) � 1

4 n then
6: bu ← 0.
7: else if #(1) � 3

4 n then
8: bu ← 1.
9: else if u has received flooded messages initiated in ti−1 then

10: Let {rv , bv } be the message with the smallest random number that flooded over u.
11: bu ← bv .

At terminating checkpoint round tR :
12: if #(1) � n

2 then
13: decisionu ← 1.
14: Flood a 1-decision message ad infinitum.
15: else if #(0) � n

2 then
16: decisionu ← 0.
17: Flood 0-decision message ad infinitum.

If u receives a b-decision message:
18: decisionu ← b

4.1. Binary Consensus

A node u that executes Algorithm 2 proceeds in a sequence of O (log n) checkpoints that are interleaved by O (log n)

rounds. Each node u has a bit variable bu that stores its current output value. At each checkpoint ti , node u initiates
support estimation of the number of nodes currently having 1 as their output bit by using the algorithm described in
Section 3.4. (At checkpoint tR−1, nodes estimate both: the support of 1 and 0.) The outcome of this support estimation
will be available in checkpoint ti+1 where u has derived the estimation #(1). If u believes that the support of 1 is small
(� 1

4 n), it sets its own output bu to 0; if, on the other hand, #(1) is large (� 3
4 n), u sets its output bu to 1. This guarantees

stability once agreement has been reached by a large number of nodes. When the support of 1 is roughly the same as the
support of 0, we need a way to sway the decision to one side or the other. This is done by flooding the network whereby
the flooding message of node v is weighted by some randomly chosen value, say rv . The adversary can only guess which
node has the highest weight and therefore, with constant probability, the flooding message with this highest weight (i.e.,
smallest random number) will be used to set the output bit by almost all nodes in the network.

Theorem 4.1. Assume that the adversary is oblivious and that the churn limit per round is εn. Algorithm 2 reaches stability in O (log2 n)

rounds and achieves Binary Consensus with high probability.

Proof. Throughout this proof we repeatedly invoke the properties of the support estimation as stated in Theorem 3.1, which
succeeds with probability 1 − 1/nγ . Assuming that γ � 2, suffices to guarantee that all of the Θ(log n) invocations of the
support estimation are accurate with high probability.

We first argue that validity holds: Suppose that all nodes start with input value 1. The only way a node can set its output
to 0 is by passing Line 5. This can happen for at most βn nodes. The only way that more nodes can set their output to 0 is
if they estimate the support of 1 to be in (1

4 n, 34 n). If β is suitably small, Theorem 3.1 guarantees that with high probability
this will not happen at any node. The argument is analogous for the case where all nodes start with 0.

Next we show almost everywhere agreement: Let Ni be the number of nodes at checkpoint round ti that output 1. Let
Lowi , Highi , and Midi , respectively, be the sets of nodes in V ti for which #(1) � 1

4 n, #(1) � 3
4 n, and 1

4 n < #(1) < 3
4 n;

note that nodes are placed in Lowi , Highi , and Midi based on their #(1) values, which are estimates of Ni−1, not Ni .
Clearly, we have that Lowi +Midi +Highi = n.

For some i > 1, let u∗ ∈ V ti−1 be the node that generated the smallest random number in checkpoint round ti−1 among
all nodes in V ti−1 . With high probability, u∗ will be unique. By Corollary 3.2, with probability 1 − β (a constant), u∗ is
unsuppressed, implying that bu∗ will be used by all nodes in Midi . Consider the following cases:

1102 J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109
Case A (Ni−1 � (1
4 − δ)n): From Theorem 3.1, we know that with high probability |Lowi | � (1 − β)n implying |Midi | +

|Highi | � βn. Therefore, Ni will continue to be very small leading to small estimates #(1) in subsequent checkpoints.
After O (log n) checkpoints, this causes at least (1 − β)n nodes to decide on 0, with high probability. Moreover, it
is easy to see that the remaining βn nodes will not be able to pass Line 12, since the adversary cannot artificially
increase the estimated support of nodes with 1. (Recall from Section 3.4 that by suppressing the minimum random
variables, the adversary can only make the estimate smaller.)
(We are presenting separate Cases B, C, and D for clarity. Equivalently, we could have treated them together as one
case with the condition that (1

4 − δ)n < Ni−1 < (3
4 + δ)n leading to the implication that with high probability either

|Lowi | + |Midi | � (1 − β)n or |Highi | + |Midi | � (1 − β)n.)
Case B ((1

4 − δ)n < Ni−1 < (1
4 + δ)n): With high probability, |Lowi | + |Midi | � (1 − β)n implying |Highi | � βn. Note first

that nodes in Lowi will set their output bits to 0. Since Ni−1 < (1
4 + δ)n, there are at least (3

4 − δ)n nodes in
V t−1 that output 0. Of these, at most βn could have been suppressed. So, with probability at least 3

4 − δ − β , u∗
is an unsuppressed node that outputs 0. When u∗ outputs 0, nodes in Midi will set their output bits to 0. Thus,
considering Lowi and Midi , we have at least (1 − β)n nodes that set their output bits to 0 with constant probability.
For a suitably small δ and β < 1

4 − δ, this will lead to Case A in the next iteration, which means that subsequently
nodes agree on 0.

Case C ((1
4 + δ)n � Ni−1 � (3

4 − δ)n): With high probability, |Midi | � (1 −β)n. With constant probability (1 −β), u∗ will be
an unsuppressed node and nodes in Midi will set their output bits to the same value bu∗ . This will lead to Case A in
the next iteration.

Case D ((3
4 − δ)n < Ni−1 < (3

4 + δ)n): This is similar to Case B, i.e., with constant probability, at least (1 − β)n nodes will
reach agreement on 1.

Case E (Ni−1 � (3
4 + δ)n): This is similar to Case A. With high probability, at least (1 − β)n nodes will decide on 1.

Note that, when a checkpoint falls either under Case A or Case E, with high probability, it will remain in that case. When a
checkpoint falls under Case B, Case C, or Case D, with constant probability, we get either Case A or Case E in the following
checkpoint. Therefore, in O (logn) rounds, at least (1 − β)n nodes will reach agreement with high probability and all other
nodes will remain undecided.

For property stability, note that if a node has decided on some value in checkpoint tR , it continues to flood its decision
message. We showed that, with high probability, at least (1 − β)n nodes will decide on the same bit value. Therefore, it
follows by Lemma 3.1 that agreement will be maintained ad infinitum among at least (1 − β)n nodes. �
4.2. A 3-phase algorithm for Stable Agreement

We will now describe how we use Algorithm 2 as a building block for solving Stable Agreement: In order to use
Algorithm 2 to solve Stable Agreement, we will need to make a couple of crucial adaptations.

• Suppose every vertex in V 0 has some auxiliary information. We can easily adapt Algorithm 2 so that when a node
u decides on a bit value b, then, it also inherits the auxiliary information of some v ∈ V 0 whose initial bit value
was b. This is guaranteed because our algorithm ensures validity. The auxiliary information can be piggybacked on the
messages that v generates throughout the course of the algorithm.

• For a typical agreement algorithm, we assume that all nodes simultaneously start running the algorithm. We want to
adapt our algorithm so that only nodes in V 0 that have an initial output bit of 1 initiate the algorithm, while nodes that
start with 0 are considered passive, i.e., these nodes do not generate messages themselves, but still forward flooding
messages and start generating messages from the next checkpoint onward as soon as they notice that an instance of
the algorithm is running.
We now sketch how the algorithm can be adapted: In the first checkpoint t1, each node v with a 1 initiates support
estimation and flooding of message 〈rv , bv = 1〉. If the number of nodes with 1 is small at checkpoint t1, then, at
checkpoint t2, nodes that receive estimate values will conclude 0, which will get reinforced in subsequent checkpoints.
However, if the number of nodes with a 1 at checkpoint t1 is large (in particular, larger than βn), then, by suitable
flooding, at least (1 −β)n nodes will know that a support estimation is underway and will participate from checkpoint t2
onward.

Selection and flooding phase: In the very first round, each node u ∈ V 0 generates a uniform random number ru from
(0, 1) and, if the random number is less than 4 log n

n , u becomes a candidate and initiates a message mu for flooding. The
message mu contains the random number ru and the general value valu (from domain {0, . . . , m}) assigned to u by the
adversary. This phase ends after Θ(log n) rounds to ensure that no more than βn nodes are suppressed (the precise bound
on the number of rounds is given by Corollary 3.1). The flooding of the generated messages, however, goes on ad infinitum.

Candidate elimination phase: We initiate Θ(log n) parallel iterations of Binary Consensus, whereby each iteration is
associated with one of the Θ(log n) flooding messages, generated by the candidates in the first phase. More precisely, the
i-th instance of Binary Consensus for the i-th candidate and its flooding message mui is designed as follows: nodes that

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1103
have received a flooded message mui , set their input bit (of the i-th instance of Binary Consensus) to 1 and initiate Binary
Consensus. We say that a flooded message mu is a survived candidate message if the instance of Binary Consensus associated
with it reached a decision value of 1.

Confirmation phase: Among the survived candidate messages, every node v chooses the message mu j among its re-
ceived messages that has the smallest random number ru j (and associated general input value valu j), and initiates a
support estimation for the number of nodes that have received mu j . If the support estimation reveals a support of at least
(1 − β − δ)n for m j then v decides on valu j . Nodes keep flooding their decision ad infinitum.

Theorem 4.2. Consider the oblivious adversary and suppose that εn nodes can be subject to churn in every round. The 3-phase algo-
rithm is correct with high probability and reaches Stable Agreement in O (log2 n) rounds.

Proof. Validity follows immediately from the fact that nodes only decide on some value that was the input value of a
(survived) candidate.

We now argue almost everywhere agreement: Since all nodes choose independently whether to become candidate,
a simple application of a standard Chernoff bound shows that the number of candidates is in the range [2 log n, 8 log n] with
probability � 1 − n−3; in the remainder of this proof, we condition on this event to be true.

Consider the message mu generated by some candidate u in the selection and flooding phase, and consider its associated
instance of Binary Consensus: If mu has reached at least (1 − β)n nodes by flooding, it follows by the properties of the
Binary Consensus algorithm that the decision value of Binary Consensus will be 1 with probability 1 − n−2. On the other
hand, if mu has a very small support (say, βn), the consensus value will be 0 with probability 1 − n−3 (cf. Case A of the
proof of Theorem 4.1), and, if the support of mu is neither too small nor too large, the nodes will reach consensus on either
0 or 1. Thus we can interpret a decision of 1 regarding the i-th message, as a confirmation that the i-th candidate had
sufficiently large support. By taking a union bound, it follows that, with probability at least 1 − n−2, at least (1 − β)n nodes
agree on the set of survived candidate messages, since they reached agreement in each iteration of Binary Consensus. Since
the adversary is oblivious, each of the Θ(log n) flooding messages generated by the candidates will not be suppressed with
probability at least (1 − β) (cf. Corollary 3.2). Therefore, with probability � 1 − n−2, at least one candidate u will have
|Infl(u, O (log n))| � (1 − β)n and thus the set of survived candidates S will be nonempty; let w ∈ S be the candidate who
generated the smallest random number. When the support estimation is initiated in the third phase, a set of at least (1 −β)n
nodes will measure w ’s support to be at least (1 − β − δ)n for some δ > 2β with probability � 1 − n−2 (cf. Theorem 3.1)
and decide on the value valw of w , whereas nodes that do not observe high support remain undecided. This shows almost
everywhere agreement.

Analogously to Algorithm 2, nodes in S flood their decision messages, which are adopted by newly incoming nodes. By
virtue of Lemma 3.1, the stability property is maintained ad infinitum.

The additional running time overhead of the above three phases excluding Algorithm 2 is only in O (log n). This completes
the proof of the theorem. �
5. STABLE AGREEMENT under an adaptive adversary

In this section we consider the Stable Agreement problem while dealing with a more powerful adaptive adversary. At
the beginning of a round r, this adversary observes the entire state of the network and previous communication between
nodes (including even previous outcomes of random choices!), and thus can adapt its choice of Gr to make it much more
difficult for nodes to achieve agreement.

It is instructive to consider the algorithms presented in Section 4 in this context. Both approaches are doomed to fail
in the presence of an adaptive adversary: For the Stable Agreement algorithm, the expected number of nodes that initiate
flooding in the flooding phase is log n. Even though each of these nodes would have expanded its influence set to some
constant size by the end of the next round, the adaptive adversary can spot and immediately churn out all these nodes
before they can communicate with anyone else, thus none of these values will gain any support.

Algorithm 2 fails for the simple reason that the adversary can selectively suppress the flooding of the smallest generated
random value z ∈ {1, . . . , nk} with attached bit bz from ever reaching some 50% of the nodes, which instead might use a
distinct minimum value z′ (with an attached bit value bz′ �= bz) to guide their output changes.

To counter the difficulties we have mentioned, we relax the model. Firstly, we limit the order of the churn to
√

n.
Secondly, we allow messages of up to a polynomial (in n) number of bits to be sent over a link in a single round. Under
these relaxations, we can estimate the support of red nodes in the network simply by flooding all the unique identifiers of
the red and non-red nodes (cf. Theorem 3.2).

Similarly to Section 4, we will first solve Binary Consensus under these assumptions and then show how to implement
Stable Agreement. In this section we assume that the number of nodes in the network is sufficiently large, such that

n � 4β2. (5.8)

Moreover, we assume that every node can send and process up to O (nc + log m) bits per round, where c is a constant and
m is the size of the input domain.

1104 J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109
Algorithm 3 Binary Consensus under an adaptive adversary; code executed by node u.
Let decisionu be initialized to ⊥.
Let bu be the current output bit of u. If u ∈ V 0, then bu is initialized to the input value of u; otherwise it is set to ⊥.
Let t1 = 1 be the first checkpoint round. Subsequent checkpoint rounds are given by ti = ti−1 + O (log2 n), for i > 1, with time between consecutive
checkpoint rounds sufficient for unsuppressed nodes to reach a common influence (cf. Lemma 3.4). For the terminating checkpoint tR , we choose an
R ∈ O (logn), i.e., tR ∈ O (log3 n).

At every checkpoint round ti excluding tR :
1: Initiate support estimation (to be completed in checkpoint round ti+1).

At every checkpoint round ti excluding t1 , tR :
2: Use the support estimation initiated at checkpoint round ti−1. Let #(1) be the estimated support value for nodes that output 1.

3: if support estimation is not accurate within [R − β
√

n
2 , R + β

√
n

2] then
4: Do nothing.

5: else if #(1) < n
2 − β

√
n

2 then
6: bu ← 0.

7: else if #(1) > n
2 + β

√
n

2 then
8: bu ← 1.
9: else

10: if the outcome of an unbiased coin flip is heads then
11: bu ← 0.
12: else
13: bu ← 1.

At terminating checkpoint round tR :
14: if #(1) � n

2 then
15: decisionu ← 1.
16: Flood a 1-decision message ad infinitum.
17: else if #(0) � n

2 then
18: decisionu ← 0.
19: Flood a 0-decision message ad infinitum.

If u receives a b-decision message:
20: decisionu ← b

5.1. Binary Consensus

We now describe an algorithm for solving Binary Consensus, which is similar in spirit to Algorithm 2. The main differ-
ence is the handling of the case where the support of the nodes that output 1 is roughly equal to the support of the nodes
with output bit 0. In this case we rely on the variance of random choices made by individual nodes to sway the balance of
the support towards one of the two sides with constant probability.

First, we argue why this technique does not work when the churn limit is ω(
√

n): In our algorithm we handle the case
where the support of 0 and 1 is roughly equal, by causing each node to update its current output bit to the outcome of a
(private) unbiased coin flip. The standard deviation that we get for the sum of these individual random variables is O (

√
n)

and the event where the balance is swayed by O (
√

n) occurs with constant probability. But since the adversary is adaptive
and has ω(

√
n) churn to play with, it can immediately undo this favorable imbalance by churning out nodes such that the

support of 0 and 1 will yet again be roughly equal.

Theorem 5.1. Algorithm 3 solves Binary Consensus with high probability and reaches stability within O (log3 n) rounds, in the
presence of an adaptive adversary and up to ε

√
n churn per round.

Proof. First consider the validity property: Suppose that all nodes start with input value 1. Theorem 3.2 guarantees that
any node u that receives insufficiently many identifiers for support estimation, will execute Line 4 and therefore never set
its output to 0. On the other hand, if u does receive sufficiently many samples, again Theorem 3.2 ensures that it will
always pass the if-check in Line 7. Thus, no node can ever output 0. The case where all nodes start with 0 can be argued
analogously.

Next, we will show that Algorithm 3 satisfies almost everywhere agreement. Let Ni be the number of vertices at
checkpoint round ti with output bit 1. Let Lowi , Highi , and Midi , respectively, be the sets of nodes in V ti for which
#(1) � n/2 − β

√
n

2 , #(1) � n/2 + β
√

n
2 , and n/2 − β

√
n

2 < #(1) < n/2 + β
√

n
2 ; note that nodes are placed in Lowi , Highi , and

Midi based on their #(1) values, which are estimates of Ni−1, not Ni . In a slight abuse of notation, we use Lowi , Midi ,
and Highi to also refer to their respective cardinalities. Clearly, we have that

Lowi +Midi +Highi = n.

Furthermore, observe that either Lowi or Highi will be 0. Otherwise, we will have two nodes such that one estimates
Ni−1 below n/2 − β

√
n , while the other estimates it above n/2 + β

√
n — a violation of Theorem 3.2.
2 2

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1105
Consider the following cases:

Case A (Ni−1 < n/2 − β
√

n): From Theorem 3.2, Lowi � n − β
√

n and all nodes in Lowi will set themselves to output 0.
Once this case is reached in some checkpoint, it will be reached in all future checkpoints until tR with high probability.
Therefore, the algorithm guarantees almost everywhere agreement on 0 in tR ; with high probability, nodes do not pass
Line 14 in checkpoint tR , thus no node will ever decide on 1.

Case B (Ni−1 > n/2 + β
√

n): This case is similar to Case A with the difference that almost all nodes decide on 1.
Case C (n/2 − β

√
n � Ni−1 � n/2): Notice that Highi = 0. Therefore,

Lowi +Midi � n − β
√

n. (5.9)

We consider two subcases:

1. In this case, we assume that Lowi is at least n/2 + β
√

n. This will set Ni < n/2 − β
√

n putting the network in
Case A in the next checkpoint.
2. In this case, we assume that Lowi < n/2 + β

√
n. This implies that

Midi � n −Lowi − β
√

n � n/2 − 2β
√

n.

The nodes in Midi will choose 1 or 0 with equal probability. The number of nodes that choose 0 is a binomial
distribution with mean Midi

2 and standard deviation
√
Midi

2 . Clearly, with some constant probability, Midi
2 +

√
Midi

2 or
more nodes in the set Midi will set themselves to output 0. Therefore, with constant probability,

Ni < n −Lowi −Midi

2
−

√
Midi

2

< n −Lowi −n −Lowi − β
√

n

2
−

√
n −Lowi − β

√
n

2

Clearly, Ni < n
2 − β

√
n if

3β
√

n <

√
n −Lowi − β

√
n,

which means that

Lowi + β
√

n < n − 9β2n.

We know that Lowi < n
2 + β

√
n. Therefore, Ni < n

2 − β
√

n if

n

2
+ 2β

√
n < n − 9β2n,

that is,

2β <
√

n

(
1

2
− 9β2

)
.

In other words, as long as

n >
4β2

(1
2 − 9β2)2

, (5.10)

it holds with constant probability that

Ni <
n

2
− β

√
n,

which will put the network in Case A at the next checkpoint round. Assumption (5.8) guarantees that condition (5.10)
is easily met.

Case D (n/2 < Ni−1 � n/2 + β
√

n): Using arguments similar to Case C, we can show that with constant probability,

Ni >
n

2
+ β

√
n,

thereby, putting the network in Case B.

1106 J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109
Algorithm 4 Solving Stable Agreement using Binary Consensus. Pseudo code for node u.
1: Suppose that node u starts with an initial general input value valu .
2: for i ← 0 to logm do
3: Node u initiates Binary Consensus by proposing the i-th bit of its current valu . Recall that Binary Consensus will be reached in O (log3 n) rounds.
4: When participating in the support estimation that is part of Binary Consensus, each node u piggybacks its valu on top of the support estimation

message.
5: Let di be the decision returned by Binary Consensus algorithm. If node u has decided on bit value di ∈ {0, 1}, then u has learned of a general input

value val where the i-th bit is di : Node u updates its current value valu by setting it to val and floods valu along the decision message according
to the Binary Consensus algorithm.

6: If u did not decide in the Binary Consensus algorithm, then u does not propose a value in the (i + 1)-th iteration.
7: If u did not decide in the last iteration, it remains undecided. Otherwise, u returns the valu as its decision value and floods this value ad infinitum.

Clearly, after O (logn) checkpoint rounds the network will reach either Case A or Case B9 with high probability and hence
achieve almost everywhere agreement on either 0 or 1.

For property stability, note that if a node has decided on some value �= ⊥ in checkpoint tR , it continues to flood its
decision message. Since at least (1 − β)n have decided, it follows by Lemma 3.1 that any nodes that have been churned in
will also decide on this value within a constant number of rounds, thus agreement will be maintained ad infinitum. �
5.2. Stable Agreement

Now that we have a solution for Binary Consensus, we will show how to use it to solve Stable Agreement where nodes
have input values from some set {0, . . . , m}, for m � 1. Given some input value val we can write it in the base-2 number
system as (b0, . . . , blog m) where bi ∈ {0, 1}, for 0 � i � log m. We call val a general input value and bi a binary input value.

The basic idea of the Stable Agreement algorithm is to run an instance of the Binary Consensus algorithm for each
bi and then combine the agreed bits d1, . . . , dlog m to obtain agreement on the general input values. We now describe our
algorithm; the detailed pseudo code is presented in Algorithm 4. Consider the i-th iteration of Algorithm 4 and suppose that
d1, . . . , di−1 are the first i −1 decision values of the previous i −1 iterations of the Binary Consensus algorithm. We say that
a node u knows a general input value matching the first i binary decision values, if u has knowledge of a some val ∈ {0, . . . , m}
that was the input value of some node v and the first i − 1 bits of val are exactly d1, . . . , di−1. We denote the i-th bit value
of a general value val by val[i]. Recall that the Binary Consensus algorithm executes the support estimation routines
developed in Section 3.5. We slightly modify the support estimation routine by requiring each node u to also piggyback
its current general value valu onto the message it generates for support estimation. Moreover, when u floods the decision
message of the Binary Consensus algorithm, it also piggybacks valu . Whenever a node v updates its current output bit
value to b, this guarantees that v has learned of a general value valw that has b as its first bit. Thus v sets valv to the
new value valw and chooses its next input value for the (i + 1)-th iteration of the Binary Consensus algorithm to be the
(i + 1)-th bit of valv . This is formalized in the following lemma:

Lemma 5.1. Consider iteration i of the Binary Consensus subroutine executed in Algorithm 4. If a node u has a current binary output
value of b, then the i-th bit of valu is b.

Proof. We will show the result by induction over the iterations of the Binary Consensus algorithm. Initially, in the first
iteration, node u uses the first bit of its input value valu . Now suppose that u sets its output bit to 1 − b at some point
during the first iteration. We say that u violates general validity. There are two possible cases: In the first case, u observed a
sufficiently large support for 1 −b and thus received a support estimation message generated by a node v that had a current
output bit 1 − b, while in the second case u received a decision message generated by v . In either case, it follows from
the description of the algorithm that node v has piggybacked valv on top of this message. If valv [i] = 1 − b, then v has
updated its own output bit without updating valv , due to receiving some message from another node v ′ , and both nodes,
v and v ′ , violate general validity. By backwards traversing this chain of nodes that violate general validity, we eventually
reach a node w which has set its output bit value to 1 −b but valw [i] = b, without having received a message from a node
that violates general validity. According to the Binary Consensus algorithm, w only sets its bit value to 1 − b if it has either
observed sufficient support for 1 − b or received a decision message containing a value of 1 − b. In both cases, it follows
from the description of the algorithm that w updates valw to the piggybacked general value, the i-th bit of which is 1 − b,
providing a contradiction. �

The above lemma guarantees that we can combine the decision bits of the Binary Consensus iterations to get a general
decision value that satisfies validity. We can therefore show the following theorem:

Theorem 5.2. Suppose that the network is controlled by an adaptive adversary who can subject up to ε
√

n nodes to churn in every
round. There is an algorithm that solves Stable Agreement with high probability and reaches stability in O (logm log3 n).

9 Due to Eq. (5.8) we know that Cases A and B exist.

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1107
Proof. Almost-everywhere agreement follows almost immediately from the fact that the Binary Consensus algorithm satis-
fies almost-everywhere agreement; what remains to be shown is that all except β

√
n nodes decide: Note that it is possible

that a set S of β
√

n nodes can remain undecided when running an instance of the Binary Consensus algorithm. The nodes
in S will not propose any values in the next iteration but will participate in the support estimation and the propagation
of messages. By the correctness of the Binary Consensus algorithm, all except β

√
n nodes eventually know the decision bit

di of the i-th iteration. In the next iteration, any node v that knows the decision bit di+1, also knows a general value val
such that val[i + 1] = di+1 and thus can propose in the subsequent iteration. This holds regardless of whether v ∈ S and
thus all except β

√
n nodes participate in each iteration.

For validity, we argue that Algorithm 4 maintains the following invariant at the end of every iteration i: a node that is
aware of the decision (bit) values of the first i runs of the Binary Consensus subroutine, has knowledge of a general value
matching the first i binary decision values. By Lemma 5.1, it follows that if a node u proposes a bit b in iteration i, then
b is the i-th bit of some general input value val. This guarantees that the sequence of decision bits corresponds to some
general input value and thus satisfies validity.

Finally, we observe that the proof of stability is identical to the Binary Consensus algorithm, thus completing the
proof. �
6. Impossibility of a deterministic solution

In this section we show that there is no deterministic algorithm to solve Stable Agreement even when the churn is
restricted to only a constant number of nodes per round. As a consequence, randomization is a necessity for solving Stable
Agreement.

We introduce some well known standard notations (see [7, Chap. 5]) used for showing impossibility results of agreement
problems. The configuration Cr of the network at round r consists of

• the graph of the network at that point in time, and
• the local state of each node in the network.

A specific run ρ of some Stable Agreement algorithm A is entirely determined by an infinite sequence of configurations
C0, C1, . . . where C0 contains the initial state of the graph before the first round. Consider the input value domain {0, 1}.
A configuration Cr is 1-valent (resp., 0-valent) if all possible runs of A that share the common prefix up to and including Cr ,
lead to an agreement value of 1 (resp., 0). Note that this decision value refers to the decision of the large majority of nodes;
strictly speaking, a small fraction of nodes might remain undecided on ⊥. A configuration is univalent if it is either 1-valent
or 0-valent. Any configuration that is not univalent is called a bivalent configuration. The following observation follows
immediately from the definition of the Stable Agreement problem.

Observation 6.1. Consider a bivalent configuration Cr in round r reached by an algorithm A that solves Stable Agreement and
ensures almost everywhere agreement. No node in V r can have decided on a value �= ⊥ by round r.

Theorem 6.1. Suppose that the sequence of graphs (Gr)r�0 is an expander family with maximum degree 	. Assume that the churn is
limited to at most 	 +1 nodes per round. There is no deterministic algorithm that solves Stable Agreement if the network is controlled
by an adaptive adversary.

Proof. We use an argument that is similar to the argument used in the proof that f + 1 rounds are required for consensus
in the presence of f faults (cf. [7, Chap. 5]). For the purpose of this impossibility proof, we restrict the input domain of
nodes to {0, 1} and allow arbitrary congestion on the communication channels. Moreover, we assume that the topology of
the network is fixed throughout the run. Thus the adversary can only “replace” nodes at the same position by some other
nodes.

For the sake of contradiction, assume that such a deterministic algorithm A exists that solves Stable Agreement under
the assumed settings. We will prove our theorem by inductively constructing an infinite run ρ of this algorithm consisting
of a sequence of bivalent configurations. By virtue of Observation 6.1 this allows us to conclude that nodes do not reach
almost everywhere agreement.

To establish the basis of our induction, we need to show that there is an initial bivalent configuration C0 at the start
of round 1. Assume in contradiction that there is no bivalent starting configuration. Let D0 (resp. D1) be the configuration
where all nodes start with a value 0 (resp., 1); note that by validity the decision value must be on 0 (resp., 1). Consider
the sequence of configurations starting at D0 and ending at D1 where the only difference between any two configurations
adjacent (in this sequence) is a single bit, i.e., exactly 1 node has a different input value. Since D0 is 0-valent and D1
is 1-valent, this implies that there are two possible starting configurations in this sequence, C0

0 and C0
1 , in which (i) the

input values are the same for all but one node u0, but (ii) C0
0 is 0-valent whereas C0

1 is 1-valent. Consider the respective
one-round extension of C0

0 and C0
1 where the adversary simply churns out node u0. Both successor configurations C1

0 and C1
1

are indistinguishable for all other nodes, in particular they have no way of knowing what initial value was assigned to u0,

1108 J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109
since all witnesses have been removed by the adversary. Therefore, C1
0 and C1

1 must both be either 0-valent or 1-valent,
a contradiction. This shows that there is an initial bivalent configuration, thereby establishing the basis for our induction.

For the inductive step, we assume that the network is in a bivalent configuration Cr−1 at the end of round r − 1. We will
extend Cr−1 by one round (guided by the adversary) that yields another bivalent configuration Cr . Assume for the sake of
a contradiction that every possible one-round extension of Cr−1 yields a univalent configuration. Without loss of generality,
assume that the one-round extension γ where no node is churned out is 1-valent and yields configuration Cr

1. Since by
assumption Cr−1 was bivalent, there is another one-round extension γ ′ that yields a 0-valent configuration Cr

0. Moreover,
we know that a nonempty set S of size at most 	 + 1 nodes must have been subject to churn in γ ′ . (This is the only
difference between Cr

0 and Cr
1 — recall that the edges of the graph are stable throughout the run.)

Let S ′ be a subset of S and let γS ′ be the one-round extension of Cr−1 that we get when only nodes in S ′ are churned
out. Clearly, γ = γ∅ and γ ′ = γS . Consider the lattice of all such one-round extension bounded by γ and γ ′ that is given by
the power set of S . Starting at γ and moving towards γ ′ along some path, we must reach a one-round extension γ{v1,...,vk}
that yields a 1-valent configuration Dr

1, whereas the next point on this path is some one-round extension γ{v1,...,vk+1} that
ends in a 0-valent configuration Dr

0. The only difference between these two extensions is that node vk+1 is churned out in
the latter but not in the former extension. Now consider the one-round extensions of Dr

0 and Dr
1 where vk+1 and all its

neighbors are churned out, yielding Dr+1
0 and Dr+1

1 . For all other nodes, Dr
0 and Dr

1 are indistinguishable and therefore they
must either both be 0-valent or both be 1-valent. This, however, is a contradiction. �

Considering that expander graphs usually are assumed to have constant degree, Theorem 6.1 implies that even if we
limit the churn to a constant, the adaptive adversary can still beat any deterministic algorithm.

7. Conclusion

We have introduced a novel framework for analyzing highly dynamic distributed systems with churn. We believe that
our model captures the core characteristics of such systems: a large amount of churn per round and a constantly changing
network topology. Future work involves extending our model to include Byzantine nodes and corrupted communication
channels. Furthermore, our work raises some key questions: How much churn can we tolerate in an adaptive setting? Are
there algorithms that tolerate linear (in n) churn in an adaptive setting? We show that we can tolerate O (

√
n) churn in

an adaptive setting, but it takes a polynomial (in n) number of communication bits per round. An intriguing problem is to
reduce the number of bits to polylogarithmic in n.

While the main focus of this paper was achieving agreement among nodes which is one of the most important tasks in
a distributed system, as a next step, it might be worthwhile to investigate whether the techniques presented in this paper
can serve as useful building blocks for tackling other important tasks like aggregation or leader election in highly dynamic
networks.

References

[1] Yehuda Afek, Baruch Awerbuch, Eli Gafni, Applying static network protocols to dynamic networks, in: FOCS, 1987, pp. 358–370.
[2] Yehuda Afek, Eli Gafni, Adi Rosen, The slide mechanism with applications in dynamic networks, in: ACM PODC, 1992, pp. 35–46.
[3] R. Ahlswede, N. Cai, S. Li, R. Yeung, Network information flow, IEEE Trans. Inf. Theory 46 (4) (2000) 1204–1216.
[4] James Aspnes, Navin Rustagi, Jared Saia, Worm versus alert: who wins in a battle for control of a large-scale network?, in: OPODIS, 2007, pp. 443–456.
[5] James Aspnes, Gauri Shah, Skip graphs, in: SODA, 2003, pp. 384–393.
[6] James Aspnes, Udi Wieder, The expansion and mixing time of skip graphs with applications, in: SPAA, 2005, pp. 126–134.
[7] Hagit Attiya, Jennifer Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edition, John Wiley Interscience, March

2004.
[8] John Augustine, Gopal Pandurangan, Peter Robinson, Fast byzantine agreement in dynamic networks, in: PODC, 2013, pp. 74–83.
[9] Chen Avin, Michal Koucký, Zvi Lotker, How to explore a fast-changing world (cover time of a simple random walk on evolving graphs), in: ICALP, 2008,

pp. 121–132.
[10] B. Awerbuch, F.T. Leighton, Improved approximation algorithms for the multi-commodity flow problem and local competitive routing in dynamic

networks, in: ACM STOC, May 1994, pp. 487–496.
[11] Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, Michael E. Saks, Adapting to asynchronous dynamic networks, in: STOC, 1992, pp. 557–570.
[12] Baruch Awerbuch, Christian Scheideler, Group spreading: a protocol for provably secure distributed name service, in: ICALP, 2004, pp. 183–195.
[13] Baruch Awerbuch, Christian Scheideler, The hyperring: a low-congestion deterministic data structure for distributed environments, in: SODA, 2004,

pp. 318–327.
[14] Baruch Awerbuch, Christian Scheideler, Robust random number generation for peer-to-peer systems, in: OPODIS, 2006, pp. 275–289.
[15] Baruch Awerbuch, Christian Scheideler, Towards a scalable and robust DHT, Theory Comput. Syst. 45 (2009) 234–260.
[16] Amitabha Bagchi, Ankur Bhargava, Amitabh Chaudhary, David Eppstein, Christian Scheideler, The effect of faults on network expansion, Theory Comput.

Syst. 39 (6) (2006) 903–928.
[17] Hervé Baumann, Pierluigi Crescenzi, Pierre Fraigniaud, Parsimonious flooding in dynamic graphs, in: PODC, 2009, pp. 260–269.
[18] Piotr Berman, Juan A. Garay, Fast consensus in networks of bounded degree, Distrib. Comput. 7 (2) (1993) 67–73.
[19] John F. Canny, Collaborative filtering with privacy, in: IEEE Symposium on Security and Privacy, 2002, pp. 45–57.
[20] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro, Time-varying graphs and dynamic networks, CoRR, abs/1012.0009, 2010, Short

version in ADHOC-NOW 2011.
[21] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, D. Wallach, Secure routing for structured peer-to-peer overlay networks, in: OSDI, 2002, pp. 299–314.
[22] Keren Censor Hillel, Hadas Shachnai, Partial information spreading with application to distributed maximum coverage, in: PODC, 2010, pp. 161–170.

http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6166656B2B61673A64796E616D6963s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6166656B2B67723A736C696465s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib61686C73776564652B636C793A636F64696E67s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4152533037s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib736B6970s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib736B6970657870s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib41573034s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib41573034s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib706F64633133s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6176696E2B6B6C3A64796E616D6963s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6176696E2B6B6C3A64796E616D6963s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib61776572627563682B6C3A666C6F77s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib61776572627563682B6C3A666C6F77s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib61776572627563682B7070733A64796E616D6963s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib61776572627563683A67726F7570s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib687970657272696E67s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib687970657272696E67s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib61776572627563683A72616E646F6Ds1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib41533039s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib424243455332303036s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib424243455332303036s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4243463039s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib42473933s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib43616E6E793032s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib73616E746F726Fs1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib73616E746F726Fs1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib63617374726F3A736563757265s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib43483A504F44433130s1

J. Augustine et al. / Journal of Computer and System Sciences 81 (2015) 1088–1109 1109
[23] Hyun Chul Chung, Peter Robinson, Jennifer L. Welch, Optimal regional consecutive leader election in mobile ad-hoc networks, in: FOMC, 2011,
pp. 52–61.

[24] Andrea Clementi, Riccardo Silvestri, Luca Trevisan, Information spreading in dynamic graphs, in: PODC, 2012, pp. 37–46.
[25] Website of Cloudmark Inc., http://cloudmark.com/.
[26] Edith Cohen, Size-estimation framework with applications to transitive closure and reachability, J. Comput. Syst. Sci. 55 (3) (1997) 441–453.
[27] A. Das Sarma, A. Molla, G. Pandurangan, Fast distributed computation in dynamic networks via random walks, in: DISC, 2012, pp. 136–150.
[28] Souptik Datta, Kanishka Bhaduri, Chris Giannella, Ran Wolff, Hillol Kargupta, Distributed data mining in peer-to-peer networks, IEEE Internet Comput.

10 (4) (2006) 18–26.
[29] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Stochastic Modelling and Applied Probability, Springer, 2009.
[30] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, Christian Scheideler, Stabilizing consensus with the power of two choices, in:

SPAA, 2011, pp. 149–158.
[31] Shlomi Dolev, Self-stabilization, MIT Press, Cambridge, MA, USA, 2000.
[32] Cynthia Dwork, David Peleg, Nicholas Pippenger, Eli Upfal, Fault tolerance in networks of bounded degree, SIAM J. Comput. 17 (5) (1988) 975–988.
[33] Jarret Falkner, Michael Piatek, John P. John, Arvind Krishnamurthy, Thomas E. Anderson, Profiling a million user DHT, in: Internet Measurement Con-

ference, 2007, pp. 129–134.
[34] Amos Fiat, Steve Gribble, Anna Karlin, Jared Saia, Stefan Saroiu, Dynamically fault-tolerant content addressable networks, in: Proceedings of the First

International Workshop on Peer-to-Peer Systems, 2002, Cambridge, MA.
[35] Amos Fiat, Jared Saia, Censorship resistant peer-to-peer content addressable networks, in: SODA, 2002, pp. 94–103.
[36] Amos Fiat, Jared Saia, Maxwell Young, Making chord robust to byzantine attacks, in: ESA, 2005, pp. 803–814.
[37] E. Gafni, B. Bertsekas, Distributed algorithms for generating loop-free routes in networks with frequently changing topology, IEEE Trans. Commun.

29 (1) (1981) 11–18.
[38] Roxana Geambasu, Tadayoshi Kohno, Amit A. Levy, Henry M. Levy, Vanish: increasing data privacy with self-destructing data, in: USENIX Security

Symposium, 2009, pp. 299–316.
[39] C.M. Grinstead, J.L. Snell, Introduction to Probability, American Mathematical Society, 1997.
[40] P. Krishna Gummadi, Stefan Saroiu, Steven D. Gribble, A measurement study of napster and gnutella as examples of peer-to-peer file sharing systems,

Comput. Commun. Rev. 32 (1) (2002) 82.
[41] Bernhard Haeupler, David Karger, Faster information dissemination in dynamic networks via network coding, in: PODC, 2011, pp. 381–390.
[42] Kirsten Hildrum, John Kubiatowicz, Asymptotically efficient approaches to fault-tolerance in peer-to-peer networks, in: DISC, 2003, pp. 321–336.
[43] Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid, Hanjo Täubig, A distributed polylogarithmic time algorithm for self-stabilizing skip

graphs, in: PODC, 2009, pp. 131–140.
[44] Bruce M. Kapron, David Kempe, Valerie King, Jared Saia, Vishal Sanwalani, Fast asynchronous byzantine agreement and leader election with full

information, ACM Trans. Algorithms 6 (4) (2010).
[45] Valerie King, Jared Saia, Breaking the O (n2) bit barrier: scalable byzantine agreement with an adaptive adversary, J. ACM 58 (July 2011) 1–18.
[46] Valerie King, Jared Saia, Vishal Sanwalani, Erik Vee, Scalable leader election, in: SODA, 2006, pp. 990–999.
[47] Valerie King, Jared Saia, Vishal Sanwalani, Erik Vee, Towards secure and scalable computation in peer-to-peer networks, in: FOCS, 2006, pp. 87–98.
[48] F. Kuhn, R. Oshman, Dynamic networks: models and algorithms, SIGACT News 42 (1) (2011) 82–96.
[49] Fabian Kuhn, Nancy Lynch, Rotem Oshman, Distributed computation in dynamic networks, in: STOC, 2010, pp. 513–522.
[50] Fabian Kuhn, Rotem Oshman, Yoram Moses, Coordinated consensus in dynamic networks, in: PODC, 2011, pp. 1–10.
[51] Fabian Kuhn, Stefan Schmid, Roger Wattenhofer, Towards worst-case churn resistant peer-to-peer systems, Distrib. Comput. 22 (4) (2010) 249–267.
[52] C. Law, K.-Y. Siu, Distributed construction of random expander networks, in: INFOCOM, 2003, pp. 2133–2143.
[53] Nancy Lynch, Distributed Algorithms, Morgan Kaufman Publishers, Inc., San Francisco, USA, 1996.
[54] Peter Mahlmann, Christian Schindelhauer, Peer-to-peer networks based on random transformations of connected regular undirected graphs, in: SPAA,

2005, pp. 155–164.
[55] David J. Malan, Michael D. Smith, Host-based detection of worms through peer-to-peer cooperation, in: WORM, 2005, pp. 72–80.
[56] Damon Mosk-Aoyama, Devavrat Shah, Fast distributed algorithms for computing separable functions, IEEE Trans. Inf. Theory 54 (7) (2008) 2997–3007.
[57] Moni Naor, Udi Wieder, A simple fault tolerant distributed hash table, in: IPTPS, 2003, pp. 88–97.
[58] Regina O’Dell, Roger Wattenhofer, Information dissemination in highly dynamic graphs, in: DIALM-POMC, 2005, pp. 104–110.
[59] Gopal Pandurangan, Prabhakar Raghavan, Eli Upfal, Building low-diameter P2P networks, in: FOCS, 2001, pp. 492–499.
[60] Gopal Pandurangan, Peter Robinson, Amitabh Trehan, Dex: self-healing expanders, in: IPDPS, 2014.
[61] Gopal Pandurangan, Amitabh Trehan, Xheal: localized self-healing using expanders, in: PODC, 2011, pp. 301–310.
[62] Christian Scheideler, How to spread adversarial nodes? Rotate! in: STOC, 2005, pp. 704–713.
[63] Christian Scheideler, Stefan Schmid, A distributed and oblivious heap, in: ICALP, 2009, pp. 571–582.
[64] Subhabrata Sen, Jia Wang, Analyzing peer-to-peer traffic across large networks, in: IMW, 2002, pp. 137–150.
[65] Daniel Stutzbach, Reza Rejaie, Understanding churn in peer-to-peer networks, in: IMC, 2006, pp. 189–202.
[66] Eli Upfal, Tolerating a linear number of faults in networks of bounded degree, Inf. Comput. 115 (2) (1994) 312–320.
[67] Vasileios Vlachos, Stephanos Androutsellis-Theotokis, Diomidis Spinellis, Security applications of peer-to-peer networks, Comput. Netw. 45 (June 2004)

195–205.
[68] Maxwell Young, Aniket Kate, Ian Goldberg, Martin Karsten, Practical robust communication in DHTs tolerating a byzantine adversary, in: ICDCS, 2010,

pp. 263–272.

http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4352573131s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4352573131s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib636C656D656E74692D706F64633132s1
http://cloudmark.com/
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib436F68656E3937s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib646973633132s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib444247574B3036s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib444247574B3036s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib44656D626F5A3938s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib44474D53533131s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib44474D53533131s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib646F6C65763A73746162696C697A65s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib445050553838s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib46504A4B413037s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib46504A4B413037s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib666961743A64796E616D6963616C6C79s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib666961743A64796E616D6963616C6C79s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib46533032s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib666961743A6D616B696E67s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6761666E692B623A6C696E6B2D726576657273616Cs1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6761666E692B623A6C696E6B2D726576657273616Cs1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib474B4C4C3039s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib474B4C4C3039s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6772696E737465616431393937696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib5347473032s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib5347473032s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib68616575706C65722B6B3A64796E616D6963s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib484B3033s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib736B6970706C7573s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib736B6970706C7573s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4B4B4B53533130s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4B4B4B53533130s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4B533130s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4B53533036s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4B5353563036s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6B75686E2D737572766579s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6B75686E2B6C6F3A64796E616D6963s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4B4F4D3131s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4B53573130s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4C533033s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4C796E3936s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6D61686C6D616E6Es1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib6D61686C6D616E6Es1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4D533035s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib416F79616D61533038s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4E573033s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib4F573035s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib5052553031s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib49504450533134s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib50543131s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib536368656964656C65723035s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib53533039s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib53573032s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib53523036s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib557066616C3934s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib5641533034s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib5641533034s1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib796F756E673A70726163746963616Cs1
http://refhub.elsevier.com/S0022-0000(14)00140-8/bib796F756E673A70726163746963616Cs1

	Distributed agreement in dynamic peer-to-peer networks
	1 Introduction
	1.1 Our main results
	1.2 Technical contributions
	1.3 Other related work
	1.3.1 Distributed agreement
	1.3.2 Byzantine agreement
	1.3.3 Dynamic networks
	1.3.4 Fault-tolerance

	2 Model and problem statement
	2.1 Stable agreement

	3 Techniques for information spreading
	3.1 Dynamic distance and inﬂuence set
	3.2 Properties of inﬂuence sets
	3.3 Maintaining information in the network
	3.4 Support estimation under an oblivious adversary
	3.5 Support estimation under an adaptive adversary

	4 Stable Agreement under an oblivious adversary
	4.1 Binary Consensus
	4.2 A 3-phase algorithm for Stable Agreement

	5 Stable Agreement under an adaptive adversary
	5.1 Binary Consensus
	5.2 Stable Agreement

	6 Impossibility of a deterministic solution
	7 Conclusion
	References

